Sila gunakan pengecam ini untuk memetik atau memaut ke item ini: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7170
Tajuk: ERROR TRACKING-BASED NEURO-ADAPTIVE LEARNING CONTROL FOR PNEUMATIC ARTIFICIAL MUSCLE SYSTEMS WITH OUTPUT CONSTRAINT
Pengarang: Zhu, Guangming
Yan, Qiuzhen
Kata kunci: Pneumatic artificial muscle systems
Iterative learning control
Barrier Lyapunov function
Neural network control
Error tracking method
Tarikh diterbit: Nov-2023
Penerbit: IEEE Access
Siri / Laporan No.: ;Volume 11
Abstrak: Pneumatic muscle actuators are widely used in the manufacture of bionic robots and rehabilitation medical equipment. However, due to complicated inherent nonlinearities, time-varying characteristics and uncertainties, it is still a challenge to carry out the accurate dynamic modelling and controller design for PAM systems. To address above issues, we propose an error tracking-based neuro-adaptive iterative learning control scheme to get satisfactory non-uniform angle trajectory tracking performance. First, the error-tracking method is used to overcome the nonzero initial state error in iterative learning controller design for the PAM system. Second, a difference-learning neural network is utilized to compensate for unknown uncertainties in the PAM system dynamics. Moreover, a barrier Lyapunov function is applied to design controller so as to restrict the the difference between system out error and the desired error trajectory within the preset bound during each iteration. And the stability of the closed-loop system is proven theoretically by using Lyapunov synthesis. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.
URI: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7170
Muncul dalam Koleksi:JABATAN KEJURUTERAAN MEKANIKAL

Fail Penerangan SaizFormat 
ERROR TRACKING-BASED NEURO-ADAPTIVE LEARNING CONTROL.pdf1.32 MBAdobe PDFGambar kecil
Lihat/buka


Item di DSpace dilindungi oleh hak cipta, dengan semua hak dilindungi, kecuali dinyatakan sebaliknya.