Sila gunakan pengecam ini untuk memetik atau memaut ke item ini: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7111
Tajuk: MACHINE LEARNING APPROACH TO AERODYNAMIC ANALYSIS OF NACA0005 AIRFOIL: ANN AND CFD INTEGRATION
Pengarang: Taiba Kouser
Dilek Funda Kurtulus
Srikanth Gol
Abdulrahman Aliyu
Imil Hamda Imran
Luai M. Alhems
Azhar M. Memon
Kata kunci: NACA0005
Aerodynamic coefficients
Reynolds number
Angle of attack
Artificial neural network (ANN)
Tarikh diterbit: Jul-2025
Penerbit: IEEE Access
Siri / Laporan No.: ;Volume 13
Abstrak: This study presents a machine learning approach to predict the unsteady aerodynamic performance of a NACA0005 airfoil. Data generated by computational fluid dynamics (CFD) is used to train the model for Reynolds numbers Re ∈ [1000 − 5000] and angles of attack ranging from 9◦ to 11◦. A robust Scaled Conjugate Gradient (SCG) algorithm is employed for efficient training of data. The ANN has a two-layer architecture, 9 fixed neurons in the first hidden layer and a varying number of neurons in the second layer to achieve optimal performance. The model yielded coefficients of determination (R 2 ) of 0.994 (Coefficient of lift (Cl)) and 0.9615 (Coefficient of drag (Cd )) for training, and 0.9563 (Cl) and 0.9085 (Cd) for testing. Overall mean errors are found to be less than 1%. It offers a powerful surrogate modelling approach for aerodynamic studies at ultra-low Reynolds numbers. Moreover, it provides rapid and reliable alternatives to traditional CFD simulations in aerodynamic analysis for unseen cases.
URI: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7111
Muncul dalam Koleksi:JABATAN KEJURUTERAAN MEKANIKAL

Fail Penerangan SaizFormat 
MACHINE LEARNING APPROACH TO AERODYNAMIC ANALYSIS.pdf2.11 MBAdobe PDFGambar kecil
Lihat/buka


Item di DSpace dilindungi oleh hak cipta, dengan semua hak dilindungi, kecuali dinyatakan sebaliknya.