Sila gunakan pengecam ini untuk memetik atau memaut ke item ini: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7080
Tajuk: ARTIFICIAL NEURAL NETWORK-BASED ELECTRIC LOAD FORECASTING
Pengarang: De Groff, Dolores
Neelakanta, Perambur
Kata kunci: Load forecasting
Artificial neural network
Backpropagation algorithm
Eigenvalues
Fast learning rate
Power system
Tarikh diterbit: 25-Jun-2025
Penerbit: Scientific Research Publishing Inc.
Siri / Laporan No.: Journal of Computer and Communications;2025, 13(6), 150-159
Abstrak: This paper proposes a unique approach to load forecasting using a fast convergent artificial neural network (ANN) and is driven by the critical need for power system planning. The Mazoon Electrical Company in Oman provided the real data for the study of monthly load forecasting using ANNs, which are presented in this paper. The link between past, present, and future temperatures, loads, and humidities is learned by the artificial neural network (ANN). The test ANN predicts reasonably accurate results of predicted power loads. The underlying exercise uses a traditional multilayer ANN architecture with feed-forward and backpropagation techniques in addition to a recently proposed fast-convergence algorithm that is deduced in terms of eigenvalues of a Hessian matrix associated with the input data of temperature and humidity changing over time. The anticipated results are cross verified with actual power load data obtained.
URI: https://repositori.mypolycc.edu.my/jspui/handle/123456789/7080
ISSN: 2327-5227
: 2327-5219
Muncul dalam Koleksi:JABATAN KEJURUTERAAN ELEKTRIK

Fail Penerangan SaizFormat 
Artificial Neural Network-Based Electric Load.pdf820.51 kBAdobe PDFGambar kecil
Lihat/buka


Item di DSpace dilindungi oleh hak cipta, dengan semua hak dilindungi, kecuali dinyatakan sebaliknya.