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ABSTRACT Generative Artificial Intelligence (AI) and Large Language Models (LLMs), including
Visual Language Models (VLMs) and Multimodal LLMs (MLLMs), have shown transformative potential
in education. These technologies address persistent challenges in fostering classroom engagement and
interaction. Our study highlights the efficacy of these models in detecting students’ attention levels and
emotional states, equipping educators with actionable insights to optimize instructional delivery. However,
widespread adoption is hindered by significant barriers such as high computational demands and the limited
availability of high-quality datasets. To overcome these challenges, this research proposes the integration
of MLLMs with Few-Shot Learning techniques, offering a resource-efficient framework to enable their
practical implementation in educational contexts. This study focuses on the application of VLMs and
MLLMs to predict student attention in science, technology, engineering andmathematics (STEM) education,
evaluating the effectiveness of Few-Shot Training compared to traditional AI methodologies. The research is
structured into two phases: the first phase optimizes image frequency and computational costs usingMLLMs,
while the second phase trains VLMs on classroom data to identify visual cues, including gaze direction
and head movement. The results demonstrate that VLMs combined with Few-Shot Learning significantly
outperform traditional models in capturing nuanced visual data, allowing for pedagogical adjustments
comparable to those made through human labeling. These findings underline the transformative potential
of VLMs and MLLMs in education, particularly in resource-constrained environments. Few-Shot Learning
emerges as a practical and effective approach for leveraging small datasets to enhance student engagement
and instructional quality.

INDEX TERMS Attention prediction, engineering education, few-shot learning, large language models,
student engagement.

I. INTRODUCTION
The integration of generative artificial intelligence (AI) and
large language models (LLMs) into higher education has
the potential to significantly enhance LLMs, such as GPT-4
and LLAMA to generate natural language, provide instant
feedback, answer complex questions, and grade assignments,
improving personalized learning [1].
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Recently, LLMs, VLMs, and MLLMs have garnered
significant research interest [2]. However, their application
in education remains limited due to challenges in accessing
comprehensive multimodal datasets [3]. A recent dataset,
collected in classroom settings during STEM and engineer-
ing experiments, marks a significant advance, integrating
emotional and attentional signals with body sensor data.
This integration facilitates the effective training of VLMs
and MLLMs, enhancing their potential for educational
applications [4].
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Engineering classes differ from others in their focus
on collaboration and the use of advanced technologies.
These activities integrate practical elements and teamwork,
fostering active learning and problem-solving in authentic
engineering contexts. Unlike non-engineering classes, stu-
dents engage in significant physical movement, highlighting
the importance of biometric data for precise monitoring and
analysis.

VLMs enhance the understanding of student engagement
by analyzing images and videos, integrating visual and
textual data with the knowledge base of LLMs. In contrast,
MLLMs focus on analyzing multimodal data based on textual
information and data from various modalities. Despite their
potential, their application in education remains underex-
plored, primarily due to the current lack of multimodal data.

Among these techniques, Few-Shot Learning (FSL) and
Zero-Shot Learning (ZSL) have emerged as innovative
approaches [5], offering advantages over traditional machine
learning (ML) models as they require fewer data to produce
reliable predictive models. FSL, unlike ZSL, leverages
labeled images as context. Despite these advances, challenges
such as computational limitations, dataset diversity, and eth-
ical considerations (e.g., bias, fairness, and student privacy)
persist, warranting further exploration. Future research must
prioritize efficient data collection and investigate the synergy
between VLMs and MLLMs to address these issues.

Despite the progress made, the potential of multimodal
LLMs (MLLMs) and VLMs to improve attention prediction
in students through the analysis of visual and textual data
in classroom engineering activities has not been sufficiently
investigated. The integration of these technologies could
offer valuable insights for educators in real-world classroom
settings, where real-time feedback on student engagement is
crucial for optimizing instructional strategies and fostering a
more interactive learning environment. Implementing these
models could help tailor educational content to individual
needs, even in resource-constrained environments, making it
a promising solution for diverse educational institutions.

The use of MLLMs and VLMs in STEM educational
environments, where students frequently engage in experi-
ments and hands-on activities, has proven to be particularly
promising area. These settings present unique challenges for
traditional AI models, as movement, student collaboration,
and real-time experiments generate a large amount of visual
and behavioral signals. VLMs are particularly effective in
capturing and analyzing these signals, enabling more accu-
rate and timely feedback in dynamic educational environ-
ments [2]. This article addresses the following key questions:

• What are the predictive capabilities of LLMs, including
VLMs and MLLMs, in enhancing student engagement
and learning outcomes in STEM and engineering
education

• Can conventional Neural Network (CNN) models
effectively meet the complex demands of engineering
education, and how do they compare to the new LLM
architectures that have emerged in recent years

To facilitate comparison and establish a benchmark
against traditional methods, we propose using classification
methods with CNNs, employing a specific configuration of
hyperparameters for optimal performance.

II. LITERATURE REVIEW
In recent years, agent systems, particularly LLMs, have
shown great potential in the educational field, especially in
detecting student participation and engagement through text
analysis. These models use advanced algorithms to process
data and generate tailored solutions, such as adaptive learning
strategies and personalized feedback, thereby enhancing
the educational experience [1]. However, most research
has hitherto focused on processing and analyzing textual
data, neglecting multimodal analysis, which includes critical
visual components for comprehensive assessment of student
attention.

One of the most significant limitations of traditional LLMs
is their inability to analyze non-verbal signals, including
image-based information such as facial expressions, gestures,
or postures, which are essential for understanding the degree
of engagement in an educational environment. In this context,
VLMs andMLLMs have emerged as innovative solutions that
integrate visual and other data that can be used to improve the
analysis of students’ attention and emotions [2], [4].
The application of VLMs and MLLMs in the academic

field is still nascent. These models have proven particularly
useful in capturing non-verbal cues that text-based models
alone cannot detect, such as eye movements, body posture,
and gestures [3], [5]. However, the use of these models has
been limited by the availability of suitable visual datasets
and the high computational demands associated with their
large-scale training and use. Despite these challenges, recent
studies have highlighted the importance of developing richer
and more representative datasets that include not only RGB
images but also biometric and depth signals to improve the
accuracy of attention prediction [6].
In addition to dataset diversity, the effectiveness of

attention and emotion recognition systems critically depends
on the strategies employed for feature extraction. Traditional
approaches in virtual learning environments often rely on
automated facial expression analysis tools that generate
probability vectors corresponding to basic emotions (e.g.,
happiness, sadness, anger, fear, surprise, disgust, and con-
tempt). These features are periodically captured through
webcams and statistically normalized to meet assumptions
for multivariate analyzes such as MANOVA or ANOVA [7].

Classic facial detection methods, such as Haar Cascades,
are commonly used to locate regions of interest, primarily
eyes and mouth, before applying edge detection techniques
such as the Sobel operator. The extracted features are then fed
into neural classifiers trained on standardized facial expres-
sion datasets, with a focus on balancing recognition accuracy
and computational efficiency in real-time systems [8].
More advanced approaches incorporate temporal dynamics

by analyzing transitions in facial landmarks across frames.
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By tracking key points—such as eyes, eyebrows, nose,
and mouth—these methods compute geometric descriptors
(e.g., inter-landmark distances and angles) over sliding
temporal windows. Feature selection techniques, including
information Gain or Chi-square, are then applied before using
classifiers, such as SVMs to detect both discrete emotional
states and transitions with pedagogical significance [9].
Together, these methodologies prioritize robust facial detec-
tion, temporal modeling, and feature discrimination, forming
the foundation for adaptive emotion, and attention, aware
learning systems.

Studies have predominantly approached student attention
prediction using traditional ML techniques and neural
networks with straightforward architectures. However, these
methods often present limitations due to the lack of diversity
in the datasets, which affects their ability to generalize to
different educational contexts. Attention is defined as a cog-
nitive process in which an individual focuses their perception,
resources, and capacities on a specific stimulus or set of
stimuli, filtering out irrelevant information. This process is
essential for learning, memory, and decision-making as it
enable the selective processing of relevant information and
responses, making it particularly significant in educational
contexts [10].
In the educational domain, attention is recognized as a

prerequisite for effective learning. For example, Bloom’s
taxonomy of educational objectives includes, within the
affective domain, the level of ‘‘receiving’’ which involves the
willingness to pay attention and be receptive to educational
stimuli [11]. In other words, before a student can reach higher
levels of learning, theymust first attend to the presentedmate-
rial. From the perspective of cognitive psychology, Posner
and Cohen [20] proposed influential models on the structure
of attention. Posner distinguished attentional components
such as alertness (a state of vigilance), orienting (directing
focus toward a stimulus), and executive attention (voluntary
control of attention) [12]. Posner’s tripartite model has served
as the basis for the development of cognitive assessments,
such as the Attention Network Test, and has influenced our
understanding of sustained and selective attention in learning
contexts. Other theorists have categorized attention into
subtypes such as selective, sustained, or divided attention,
emphasizing the importance of maintaining focus on key
educational tasks and avoiding distractions [10]. These core
concepts underline that a student’s ability to select and
maintain attention on important information is essential for
processing it in memory and constructing knowledge.

When applying these models to a new dataset, such as that
used in this study, the results obtained tend to be inferior
to those evaluated on the original datasets, possibly due to
overfitting to specific educational contexts. For this reason,
multimodal approaches, such as VLMs, offer a significant
improvement over traditional models by integrating different
data sources and enhancing generalization capacity [2].
Advances in FSL have opened up new possibilities

for implementing models such as VLMs and MLLMs in

educational settings. FSL refers to the ability of a model to
generalize from a very small number of examples, which
is particularly valuable in contexts where data is limited or
costly to obtain. This technique has been shown to reduce
computational costs and improve the accuracy of attention
prediction, even in contexts with limited datasets [5].
In the present study, Vision–Language Models such as

LLaVA v1.6 (built on the Hermes-Yi-34B LLM) were
selected over alternatives like Flamingo [13] due to
LLaVA’s superior generalization capability, which does not
require task-specific adjustments. Generative AI methods—
including LLaVA [14], DALL·E [15] and CLIP [16]—
efficiently integrate visual and textual information, enabling
multimodal analysis even under constrained computational
budgets.

The incorporation of visual data into these models confers
enhanced flexibility and adaptability across a range of
educational contexts, including the capacity to predict student
attention and to analyze emotions in real-time classroom set-
tings [17]. Their ability to generalize from a limited number
of examples, combined with their computational efficiency,
makes them particularly suited to dynamic educational
environments, such as STEM and engineering classrooms,
where diverse visual and behavioral cues are constantly
present. In these scenarios, VLMs capture subtle nuances
more effectively than traditional approaches, offering more
accurate insights. Consequently, the use of these models not
only optimizes the allocation of resources but also enhances
the quality of personalized instruction and student engage-
ment, without compromising prediction accuracy [18].

Our decision to utilize large-scale language and vision
assistants, such as LLaVA, is based on their demonstrated
ability to effectively integrate multimodal data and pro-
vide precise, context-aware feedback. This capability is
particularly critical in educational settings with constrained
resources, where maximizing efficiency and accuracy is
essential [1].

Moreover, emerging research underscores the potential
of integrating physiological and biometric data alongside
traditional visual inputs to enhance VLM and MLLM
capabilities. For instance, real-time tracking of heart rate
variability or other biometric values obtained through
smartwatches can offer additional insights into cognitive
load and emotional states [19]. This multimodal integration
creates opportunities to fine-tune educational interventions
by dynamically adjusting content delivery and engagement
strategies based on nuanced interpretations of student states.

III. METHODOLOGY
The methodology adopted in this study follows a two-phase
approach designed to evaluate the effectiveness of VLMs
and MLLMs in predicting student emotion and attention in
educational settings. The primary goal was to determine the
optimal data frequencies and intervals necessary to maximize
model performance while balancing prediction accuracy with
computational costs.
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First, we analyzed and selected different types of data
relevant for evaluating student attention, specifically RGB
images and biometric values, all sourced from the DIPSEER
dataset [4]. Second, we implemented and assessed VLMs
and MLLMs using ZSL and FSL methods. The goal was
to determine the least amount of information needed for
accurate predictions. These models were chosen for their
advanced decision-making and contextual understanding,
which allows them to mimic expert-level insights. We then
directly compared the results from these deep learning
models with manual labeling done by experts to evaluate the
different approaches.

The choice of Few-Shot Learning FSL over traditional
supervised learning was driven by the limited availability
of labeled datasets in educational contexts. Unlike fully
supervisedmodels, which require extensive labeled data, FSL
enables robust performance with minimal examples per class.
Additionally, ZSL facilitates generalization to unseen data
without retraining, making it suitable for dynamic classroom
environments.

This study highlights the ability of VLMs and MLLMs to
integrate multimodal data and provide interpretability in their
predictions. Their performance was compared with standard
AI models to assess the relative strengths and limitations
of both approaches. This comprehensive evaluation provides
a detailed understanding of model efficacy across various
machine learning methodologies. The following sections
outline the dataset used, the procedures for collecting and
processing visual and biometric data, and the necessary
hyperparameters for the classic neural network.

For all experiments, LLaVA was instantiated from the
‘liuhaotian/llava-v1.6-34b‘ checkpoint, with 8-bit quanti-
zation enabled, a temperature of 0 (deterministic, greedy
decoding), and a maximum generation length of 512 new
tokens.

A. DATASET DESCRIPTION
The DIPSEER dataset (Dataset for In-Person Student
Engagement Recognition) was specifically designed to ana-
lyze student engagement and emotional responses in face-
to-face learning environments, contrasting with most prior
datasets, which primarily focus on virtual classrooms or
controlled simulations. The dataset comprises a combination
of RGB images and biometric data collected through
smartwatch sensors, alongside a classification of experiments
based on classroom activities. The participants in the dataset
are pre-service teachers demonstrating their skills across
various experiments specifically designed for this purpose.
This dataset provides an ideal foundation for multimodal
analysis using LLMs within the field of engineering, owing
to its Experiments 8 and 9.

The dataset categorizes nine distinct types of experiments,
numbered from 1 to 9, according to the activities performed
by students.

For this study, only scenarios 8 and 9 were selected
for analysis. These two scenarios were chosen because

they represent high-engagement, hands-on tasks that reflect
real-world engineering and STEM education dynamics.

Other scenarios, such as lectures, brainstorming, or reading
activities, involve lower physical activity and limited vari-
ability in visual and biometric signals, which reduces their
relevance for models designed to detect subtle behavioral
cues of attention and emotion.

Scenarios 8 and 9, on the other hand, provide a richer set
of multimodal signals, including facial expressions, head and
body movements and biometric data from wearable sensors.

These elements make them the most suitable for evaluating
the models in dynamic and interactive educational settings,
aligning with the research objectives of improving student
attention and engagement prediction.

1) RGB DATA
Individual images of each student were collected using
a personal camera that recorded their posture and facial
expressions. The images had a resolution of 640 ×

480 pixels, allowing for detailed analysis of both facial
micro-expressions and gestures. The images used for the
analysis were one frame every two seconds, which optimizes
computational capacity while maintaining fluidity of move-
ment and avoiding significant variations between frames.

One of the challenges encountered in this type of
experiment is the students’ high level of mobility during
manual activities, which often causes them to move out
of the camera’s field of view. Therefore, it is crucial to
ensure continuous capture, minimizing significant variations
between images.

2) BIOMETRIC DATA FROM THE SMARTWATCH
Each student in the dataset wore a smartwatch that collected
biometric data in real time, which is necessary for analysis
with theMLLMmodels. The following biometric valueswere
used:

• Heart Rate Sensor: Measures heart rate in beats per
minute (BPM), providing a key indicator of emotional
response and physical activity.

• Accelerometer: Records linear acceleration along the
X, Y, and Z axes at 100 samples per second, allowing
for the analysis of body movement.

• Gyroscope: Measures angular rotation along the X, Y,
and Z axes at 100 samples per second.

• Wake-Up Sensor: Provides a binary or threshold-based
activity signal, indicating whether the user is actively
moving or idle, helping to contextualize bodymovement
and engagement.

In this study, the data selected for analysis included
specific visual and biometric inputs. From the RGB data,
individual frames captured every two seconds with different
resolutions were used, focusing on facial expressions, gaze
direction, head posture, and facial landmarks. Regarding
biometric data, the selected signals were heart rate (as an
indicator of emotional arousal), accelerometer and gyroscope
data (to capture body movement and rotation), and wake-up
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sensor values (to provide contextual activity information).
These data were temporally synchronized with the annotated
attention and emotion labels and served as inputs for the VLM
and MLLM models evaluated in this work.

3) PROCESSED BASIC DATA
This dataset also includes post-processed data that was been
used in the MLLM analysis, described in Section IV. Among
the available data are values processed by different models,
such as a facial mesh of the student’s face, body and head
bounding boxes, body landmarks, as well as basic inferred
information, including gender, age, and ethnicity. These data
facilitate further research and allow other researchers to
access already processed results without the need to repeat
the initial processing steps.

4) ATTENTION AND EMOTION LABELS
DIPSEER provides attention and emotion labels at one-
second intervals, which are then propagated to all frames
within each second to ensure consistency. Six annotators
applied one label per second rather than per individual frame.

The annotators are divided into two groups:

• Expert evaluators: Five experts reviewed the videos,
assigning attention scores on a 1–5 scale (1 minimal,
5 maximal) and classifying emotions into nine cate-
gories (enjoyment, hope, pride, relief, anger, anxiety,
shame, despair, boredom).

• Self-assessment: Students labeled their own attention
and emotions after each class session, using the same
scale and the same nine emotion categories.

A simple majority vote determined the final label for each
one-second interval. Once a consensus label was reached,
it was applied to all subsequent frames until a new majority
emerged and, for the initial segment of the video, to preceding
frames.

These consensus labels serve as the ground truth for model
evaluation. Model predictions are compared directly against
them using weighted accuracy, F1 score, MAE and MSE,
ensuring a fair and consistent assessment.

Although human annotations directly influence the final
labels, inter-annotator agreement was moderate: emotion F1
scores remained below 0.5 (Table 1), and attention agreement
was around 0.6(Table 2). This variability highlights the

TABLE 1. Comparison of F1 score and accuracy of six human labelers,
including self-assessments, for student emotion classification across all
experimental frames. Lower scores indicate higher labeling disagreement.

TABLE 2. Comparison of weighted precision, Mean Squared Error (MSE),
Mean Absolute Error (MAE), F1 score, and Cohen’s kappa for six human
labelers, including self-assessments, in predicting student attention
levels.

subjective nature of the task and supports the use of majority
voting as a robust baseline.

5) EDUCATIONAL SCENARIOS
The dataset covers nine educational scenarios, each designed
to simulate different learning activities. These include reading
sessions, robotics testing, educational design experiments,
and traditional classes. Each scenarios has a fixed duration
of 5 minutes, allowing for the analysis of student interactions
and behavior in real teaching contexts.

For this study, only Scenarios 8 and 9were selected, as they
reflect academic dynamics typical of engineering classes:

• Scenario 1: NewsReading - Students read news articles
either projected on a screen or on their personal devices,
focusing on content that will be assessed later.

• Session 2: Brainstorming Session - During this cre-
ative session, students generate ideas for projects or
solutions to problems.

• Scenario 3: Lecture - A traditional teaching format
where the instructor delivers a lecture in front of the
class, with minimal to no student interaction.

• Scenario 4: Information Organization - Students
organize and synthesize information gathered from
various sources.

• Scenario 5: Lecture Test - A formal assessment
concerning the content of Session 3, administered via
mobile devices.

• Scenario 6: Individual Presentation of Work - Ran-
domly selected students present their projects to the
group.

• Session 7: Knowledge Test - A formal written assess-
ment on a specific subject area, conducted using Kahoot,
to evaluate collective knowledge on the material covered
in Session 1.

• Scenario 8: Robotics Experimentation - A practical
session in which students apply robotics technology to
problem-solving, emphasizing computational thinking.

• Scenario 9: MTINY Activity Design - Students design
and plan an educational activity using the MTINY
educational tool, integrating computational thinking
principles.

The dataset includes detailed attention and emotion
labels, synchronized with sensor signals from smartwatches,
together with expert manual labeling. This combination of
visual and biometric data is particularly suitable for research
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on attention and emotion analysis in educational settings. The
images from scenarios 8 and 9 selected for analysis in VLMs
and MLLMs include a total of 14,425 analyzed images. Due
to computational limitations, frames were sampled every two
seconds over five-minute videos, covering 57 subjects, whose
demographic characteristics are detailed in Table 3. This table
summarizes key information such as gender (male and female
distribution), age ranges, and inferred ethnicity categories.
Providing this demographic breakdown helps contextualize
the dataset, supports the analysis of potential biases, and
improves the generalizability of the findings across diverse
student populations.

TABLE 3. Demographic distribution of participants in the DIPSEER
dataset.

It is worth noting that the data used in this study
were collected from a real classroom with no demographic
or behavioral balancing. While this decision preserves
the ecological validity of the collected data, it may also
introduce potential biases related to participant distribution or
classroom dynamics. Future research should address this lim-
itation by incorporating more diverse and balanced datasets.

B. PROMPT STRATEGY EMPLOYED
The prompt strategy employed in this study leverages the
capabilities of MLLMs and VLMs to efficiently perform
complex tasks, such as detecting emotions and attention
levels in students. Several prompting approaches were
designed and evaluated to enhance the performance and
accuracy of predictions within these models. The final
prompts that yielded the best results for each specific scenario
are detailed in Appendix. Extensive testing was conducted
using various prompt configurations [20], [21] and subtle
variations applied to one image per second extracted from
selected experiments. This included the implementation of
ZSL and FSL strategies.

The prompt configurations were assessed based on the
quality of the predictions generated, with outputs optimized
according to the characteristics of the input data and the visual
context.

C. HYPERPARAMETERS OF CLASSICAL NEURAL
NETWORKS
For this analysis, a CNN model with hyperparameters that
have been thoroughly explored and have performed robustly
in similar tasks was utilized [22], [23], [24].

In trials with this CNN model, the hyperparameters
yielding the best results were as follows: 48 kernels of size
3× 3 with strides of 2× 2, a pooling layer with a 2× 2 pool
size, and a fully connected dense layer containing 50 units,
with a batch size of 20 used for training.

The choice of reduced image size is due to the lower
complexity of classic models like a CNN, which contrasts
with the more complex LLM-based models; thus, larger
images may not yield additional precision or performance
benefits. This approach allows for greater hyperparameter
exploration, optimizing model tuning.

IV. RESULTS
Our analysis classifies the data into three principal categories:
ZSL, FSL, and MLLMs. Each approach offers distinct
perspectives on model performance, catering to different
levels of data exposure and adaptability. This segmentation
underscores the varying strengths of each method in handling
diverse data contexts, from minimal exposure in ZSL to
contextual adaptability in FSL and MLLMs.

Under the ZSL framework, which capitalizes on the
model’s inherent ability to predict outcomeswithout exposure
to specific examples, experiments adhere to the following
configurations:

• Reduction of image resolution. The original resolution
is tested first, followed by resolutions of 128 and
64 pixels in width, maintaining the aspect ratio.

• Conversion of the attention label range to a higher
scale. The output format is requested on a scale
from 1 to 10, 1 to 50 and 1 to 100, instead of the original
1 to 5 scale. The result is then converted back to one
of the initial five classes based on proximity, using the
methods of rounding down, rounding up, or rounding to
the nearest value.

• Cropping frames to the face bounding box. Frames
are cropped to the face bounding box with varying
margins added to the subject’s bounding box: 0, 20, and
40 pixels.

• Inclusion of historical data from previous moments
leading up to the LLM. Frames from earlier moments
are selected to provide context for the processed frame.
These prior frames are combined into a single image
arranged in either horizontal or vertical format, as shown
in Figure 1.

The results from the four experiments conducted in the
MLLM are shown in Table 4 for the attention cases and in
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FIGURE 1. Example of a horizontally concatenated image sequence using
two consecutive frames to provide temporal context for attention
prediction using Zero-Shot Learning. The black frame is added for
visualization purposes to highlight the margin of the image that is fed to
the language model.

TABLE 4. Performance of MLLMs using different input combinations:
smartwatch data, basic visual information, and RGB images. Evaluated by
weighted accuracy and F1 score.

TABLE 5. Performance of MLLMs in student emotion classification using
smartwatch, visual, and RGB data, reported by F1 score and accuracy.

Table 5 for the emotion results. The first experiment analyzes
all available information, including demographic data from
the profile (age, gender, and emotion, inferred by another
model), biometric data from the smartwatch (wake-up sensor
and rotation sector), and inferred information from the RGB
camera (head rotation, eye-opening area, mouth-opening
area). All of this is combined with the visual information
already available from the RGB images.

The FSL approach employs an inter-subject testing strat-
egy, where the same subject is consistently used across the
entire dataset. This enables a more controlled analysis of
model performance. The FSL Results for attention, shown
in Table 6, provide insights into the model’s generalization
capacity, while Table 8 presents its effectiveness in capturing
emotional nuances.

TABLE 6. Weighted accuracy, Mean Squared Error (MSE), and Mean
Absolute Error (MAE) of Few-Shot Learning (FSL) models using intra-
and inter-subject configurations with 8 and 16 example shots.

TABLE 7. Summary of best-performing models and configurations for
student attention and emotion prediction, compared with human labeler’
performance.

For the ZSL approach, the attention an emotion results
are shown in Table 9 and in Table 10, respectively. Only
configurations yielding outcomes superior to chance are
included, highlighting reliable and robust results.

The best-performing model configuration was selected for
further testing consistently achieving reliable results, even
with only eight shots. This level of efficiency demonstrates
the model’s applicability in educational settings, underscor-
ing the value of FSL in balancing predictive accuracy and
computational efficiency.

TABLE 8. F1 score and weighted accuracy of FSL models using
16 example shots in intra-subject configuration for student emotion
classification.

Metrics used to evaluate the performance of VLMs include
measures of weighted accuracy and MSE. The selection of
these metrics is critical because they offer complementary
insights into different aspects of model evaluation. Weighted
accuracy metrics provide insight into the overall correctness
of the model by taking into account the varying importance
of different classes or outcomes. This provides a nuanced
picture of performance, especially in cases where certain
tasks or classes are more critical than others. On the other
hand, the weighted MSE is crucial for tackling the problem
as a regression problem with continuous predictions, as it
quantifies the root mean square difference between predicted
and actual values, making it especially useful for identifying
model accuracy and bias in regression-based tasks. Taking
together, these metrics provide a comprehensive evaluation
framework, facilitating a more robust assessment of the
model’s ability to generalize across a variety of tasks and
conditions, while gauging its computational efficiency.

The most commonly used metric for these types of
problems in state-of-the-art models is the accuracy, which
evaluates the model’s classification performance by weight-
ing across each class. Another approach some researchers
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TABLE 9. Weighted accuracy, Mean Squared Error (MSE), Mean Absolute
Error (MAE), and F1 Score for ZSL models under various configurations
including image scaling, face cropping, and historical context inclusion.

TABLE 10. F1 score and weighted accuracy of ZSL models using historical
image sequences and face cropping techniques to classify student
emotions.

adopt is the use of MAE and MSE, treating the attention
problem as a regression task that penalizes the difference
between decisions. Thesemetrics need to be adjusted for class
imbalance in the dataset, as Class 3 is the majority class,
meaning a model that classifies all frames as belonging to
Class 3 would outperform other approaches.

A particular emphasis was placed on the analysis of
the Mean Squared Error (Weighted MSE), a metric that
quantifies the magnitude of the errors produced by each
method, with greater weight assigned to larger deviations. For
the purposes of this analysis, solely the model configurations
that demonstrated a performance level that exceeded chance

in the emotion-labelling task, as determined by Cohen’s
Kappa [25], were considered.

In the field of ZSL, configurations that utilize the full
image size without prior context or rescaling yield better
results than Labelers 1, 3, 4, and 5, even when the image
size is reduced, without significantly affecting the MSE
(see Table 7).

When this is treated as a classification problem and
weighted accuracy is used, as is common in the literature,
it is observed that even a slight reduction in resolution can
improve the results, with a significant enhancement when
scaling by 10 with a ceil rounding. However, ZSL alone is
not enough to match human labelers’ performance 9.

Despite their widespread use, the performance of CNNs
applied to this task falls considerably short compared to the
results achieved by VLMs, obtaining a balanced accuracy
of 0.259 for emotion and 0.320 for attention. These results
are marginal in comparison to those of models derived
from LLMs.

When addressing the problem using FSL, performance
reaches that of human labelers, provided that example images
of the same subject from the same experiment type are
available. In the attention results, the best performance when
using up to eight samples per class is likely because using
more samples leads to poorer generalization across subjects.
This approach outperforms Labeler 3. However, the MLLM
approach makes no contribute significant improvements in
regression or classification tasks in the attention field.

In terms of emotion detection, using ZSL the F1 Score
and Accuracy metrics, as shown in Table 10, reveals
that providing a horizontal history of previously processed
images and applying facial cropping significantly improves
the baseline performance of ZSL, even surpassing Human
Labelers 5 and 2 7. Meanwhile, contrary to expectations,
incorporating biometric data into the model provides no
substantial benefits and, in some cases, results in poorer
performance compared to other approaches. Furthermore,
in specific instances, the LLM-based model failed to generate
a response or clarify the solution, with these cases being
classified as direct errors in the analysis.

V. DISCUSSION
One of the most significant findings from the data presented
are that models based on LLMs outperform traditional
AI models in ZSL experiments. These models achieve
performance levels comparable to human labelers in terms
of weighted MSE and weighted accuracy. This outcome
is particularly striking given that the final labels were
determined by human labelers through a simple majority
voting system.

Notably, Labelers 1, 2, 4, and 5 demonstrate superior
performance in attention tasks compared to certain ZSL
model configurations. A key observation is that reducing
image resolution to 128 or 64 pixels does not significantly
impact model performance and, in some cases, even improves
it. This robustness is evident in metrics such as weighted
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accuracy and weighted MSE, suggesting the models are
robust to variations in input image resolution.

In terms of precision, FSL models outperform human
labelers, achieving their best performance when utilizing
up to eight samples per class in the same subject and
experiment. This approach enables the model to surpass
Labeler 3 in weighted accuracy, highlighting the importance
of incorporating subject-specific examples. These results
were observed in inter-subject contexts, using images from
engineering experiments as examples.

The classic CNN model yielded suboptimal results,
likely due to insufficient refinement of input image data
(e.g., cropping and aligning facial features) and limited
experimentation with alternative model configurations. This
limitation highlights an advantage of vision-language models
(VLMs), which can achieve effective performance without
extensive preprocessing of input data.

In the domain of emotion detection, ZSL models equipped
with a historical context of prior images and facial crops
outperformed human labelers, including Labelers 5 and
2. These findings suggest that incorporating a historical
context significantly enhances the model’s ability to identify
emotional patterns more accurately compared to processing
individual images. The inclusion of prior images proved
critical for improving performance, particularly in metrics
such as the F1 score and precision. Furthermore, transitioning
from ZSL approaches to FSL ones, such as the ‘‘ZSL:
History Horizontally 2 Frame’’ configuration, demonstrated
enhanced results.

For attention-related tasks, the FSL approach closely
approximated the performance of Labeler 2, substantially
outperforming Labeler 3 and demonstrating significant
improvements over the traditional CNN. These outcomes are
detailed in Table 8.

Although the dataset comprised only 57 students, which
may introduce selection bias, further studies should inves-
tigate larger and more diverse samples to enhance the
generalizability of the findings. Expanding the dataset would
provide a more comprehensive understanding of model
performance across different demographics and learning
environments.

Overall, FSL methods without image resolution reduction
or cropping consistently outperform human labelers with
lower accuracy levels. While ZSL does not yet achieve
human-level accuracy in attention classification, it surpasses
the performance of traditional learning methods. In cases
where the VLM failed to generate a result for specific images,
these instances were attributed to errors in capturing the
image’s specific value rather than systemic flaws in the
model’s design, indicating room for further optimization.

VI. LIMITATIONS
Notwithstanding the encouraging results obtained in this
study, several limitations were identified that may have rami-
fications for the practical deployment and generalizability of
the proposed models.

Firstly, the models demonstrated performance degradation
in uncontrolled classroom scenarios, particularly under
suboptimal lighting conditions, partial occlusions, or when
students moved outside the camera’s field of view. These
limitations indicate the reliance of the models on high-quality
visual inputs, giving rise to concerns regarding their robust-
ness in real-world educational environments.

Secondly, the integration of biometric data from wearable
devices, such as smartwatches, did not result in consistent
performance enhancements. This underscores the necessity
for more rigorous validation and contextualisation of bio-
metric signals prior to their incorporation into multimodal
learning models.

Thirdly, the models demonstrated a propensity to favour
the majority class, thereby constraining their sensitivity to
detect less frequent yet pedagogically salient states, such
as extreme engagement or disengagement. This imbalance
in class composition poses a risk of minority behaviours
being overlooked, which may be critical for instructional
adaptation.

Furthermore, the dataset utilised in this study exhibited
a high degree of demographic homogeneity, characterised
by a paucity of representation with respect to age, cultural
background, and ethnicity. This restricts the external validity
of the findings and may impact the model’s effectiveness
when applied to more diverse educational settings.

Another limitation that was identified was the occurrence
of silent failures in certain Zero-Shot Learning (ZSL) con-
figurations, where the models failed to produce outputs for
specific instances. Although these failures are not common,
they do pose reliability concerns for practical deployment in
live classroom settings.

With regard to the evaluation framework, whilst weighted
accuracy, F1-score, MAE, and MSE were utilised to assess
model performance, the study did not incorporate confidence
intervals or statistical significance testing. This determination
was informed by the deterministic nature of the evalu-
ated models, which consistently generate outputs devoid
of stochastic variability. However, future work involving
randomised prompt ordering, cross-subject generalisation,
or large-scale testing would benefit from the inclusion
of statistical significance and uncertainty quantification to
strengthen the robustness of the evaluation.

Finally, although Cohen’s Kappa was calculated in order
to assess inter-annotator agreement on emotion labels,
confirming moderate agreement above chance, the specific
values were not reported in order to avoid redundancy.
This finding signifies a methodological limitation, and
future research should incorporate more detailed inter-rater
reliability analyses, such as Krippendorff’s Alpha, to provide
a more comprehensive assessment of annotation quality.

A. RECOMMENDATIONS FOR FUTURE WORK
To address these limitations, future research should prioritize:

• Expanding the dataset with a more diverse participant
population to improve model generalizability.
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• Enhancingmodel robustness to low-quality visual inputs
through advanced preprocessing techniques or data
augmentation.

• Developing adaptive multimodal fusion strategies that
contextualize biometric data according to the learning
environment.

• Implementing and carefully following the IEEE Eth-
ically Aligned Design framework1 to guide ethical
considerations and ensure responsible, context-aware
deployment in real classroom environments.

Furthermore, it is essential to examine how such systems
might be implemented ethically and effectively in real
classroom environments, paying close attention to student
privacy, equitable access, instructor training, and adaptation
to diverse pedagogical contexts, so that these solutions are
not only technically robust but also socially responsible and
practically beneficial.

VII. CONCLUSION
The findings of this study have significant potential for
application in real-world educational settings, particularly
in STEM education. The proposed use of Vision-Language
Models combinedwith Few-Shot Learning presents a feasible
solution for educators and institutions seeking to leverage
advanced AI models without the need for large datasets.
Since FSL only requires a small number of examples per
class, institutions with limited data can quickly calibrate these
models using their own student data. This approach allows
for real-time analysis of student engagement and learning
patterns, making it highly relevant for classrooms that face
constraints in resources, such as access to large datasets or
high computational power.

Beyond their predictive performance, the true value
of these models lies in their ability to actively support
instructional decision-making. By integrating explainability
features, the models allow educators not only to receive
engagement predictions but also to query the reasons
behind them. This transparency helps teachers understand
the underlying factors, such as body language patterns or
emotional cues, that influence student engagement. When
deployed in interactive dashboards, these models can provide
real-time recommendations, alternative teaching strategies,
or explanations tailored to specific classroom situations. This
shifts the role of the system from a passive analytics tool
to an active pedagogical assistant, enabling educators to
refine their instruction, personalize learning, and respond
more effectively to the dynamic needs of their students. Such
capabilities have the potential to foster more reflective, data-
informed teaching practices and improve learning outcomes
across diverse educational environments.

Furthermore, the implementation of VLMs andMLLMs in
a typical classroom environment appears viable. The model’s
ability to process and analyze both biometric and visual data

1https://standards.ieee.org/wp-content/uploads/import/documents/other/
ead_v2.pdf

offers valuable insights into student engagement without the
need for intensive data preprocessing, a common barrier in
many educational institutions. By minimizing the data and
computational requirements, this system could be adapted
to existing classroom technology, such as standard desktop
computers or affordable wearable devices. While there may
be challenges in terms of the hardware needed to process
these models in real-time, such as the demand for advanced
GPUs or other computational resources, these limitations
could be addressed with future advancements in hardware
accessibility and optimization algorithms.

Moreover, it is important to recognize potential privacy
concerns when collecting and analyzing biometric data from
students. Ensuring that these systems comply with data
protection regulations and ethical standards is crucial for their
widespread adoption in educational environments. Address-
ing these concerns through secure data handling practices
and transparency with stakeholders can help mitigate these
challenges.

This study contributes to a growing body of research
on how AI-driven tools can be integrated into educational
contexts to enhance learning outcomes. Future research
should focus on the practical deployment of these systems in
various educational settings, considering not only technical
feasibility but also the social and ethical implications of
their use. With continued advances in AI technology and
data availability, the proposed systems have the potential
to revolutionize how we understand and support student
learning in real-time.

The integration of VLMs and MLLMs with FSL into
educational environments offers an actionable framework
for enhancing student engagement. In classrooms where
resources may be limited, the use of FSL can enable rapid
model training with minimal data, allowing educational
institutions to make the most of their available data. This
is particularly valuable in settings where large-scale datasets
are not available, such as smaller schools or universities with
limited access to specialized educational data. Furthermore,
these models can be calibrated to meet the specific needs of
educators, making them adaptable to a variety of learning
environments.

However, beyond the technical and practical feasibility of
such systems, it is crucial to address their ethical implications.
AI systems that process student biometric and emotional data
raise significant privacy concerns. Even when such systems
do not directly identify individuals, there is a growing—
albeit weak—consensus among stakeholders on the necessity
of safeguarding emotional data, driven by various factors,
ranging from ethical responsibility to institutional liabil-
ity [26]. The urgency of protecting student data privacy is
particularly pronounced in educational environments, where
AI technologies introduce novel risks to the security of
personal information [27]. Among the most critical issues
are the need for informed consent, establishing robust
regulatory frameworks, and preventing surveillance ormisuse
of sensitive information [28], [29].
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Equally important is the principle of fairness in the
deployment of AI tools that analyze students’ emotional
and biometric data. Studies reveal that fairness is often
overlooked in current AI/ML research on student mental
health, with few works reporting demographic breakdowns
or addressing biases in their models [30]. These omissions
risk reinforcing existing inequalities, particularly when inter-
sectional and structural disparities are not considered [31].
Moreover, both students and future AI developers require
explicit training and guidance to understand the implications
of fairness and bias, especially when such technologies are
applied to vulnerable or marginalized groups.

Beyond privacy and fairness, the ethical deployment of
AI in education must also consider transparency, account-
ability, and inclusive stakeholder engagement [32]. The
concept of algorithmovigilance—continuous oversight and
evaluation of AI systems—has been proposed to miti-
gate unintended negative outcomes and to foster trust in
educational settings [33]. Ethical frameworks should thus
prioritize transparent decision-making, iterative evaluation,
and the active involvement of educators, students, and policy-
makers. According to Drira et al. [30], many AI education
tools neglect key ethical dimensions such as demographic
bias and explainability. Their review found that fewer than
10% of works considered fairness frameworks or included
stakeholder feedback.

Not only does the present study demonstrate potential of
AI-driven educational tools but it also provides a path forward
for practical implementation. Future work should explore the
scalability of these models in diverse educational settings,
addressing both technical challenges and ethical considera-
tions, to ensure their broad and responsible application.
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PROMPT 1. Template used in Zero-Shot Learning for emotion detection
using VLMs. The model is asked to select one of nine predefined emotion
categories based solely on a provided image.

PROMPT 2. Template for Few-Shot Learning in emotion detection using
VLMs. Multiple context examples are provided before asking the model to
classify a new target image.

PROMPT 3. Example of a fully structured Few-Shot Learning prompt using
four context images to guide the model in classifying the emotion
displayed in a fifth image.

that no personally identifiable information (PII) was stored or
shared.
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PROMPT 4. Template for Zero-Shot Learning in emotion detection using
MLLMs, incorporating biometric and demographic data alongside visual
input.

FIGURE 2. Visual layout of historical context images used in FSL to guide
the model in emotion classification tasks. (a)-(d) Reference images,
(e) Target image.

The existing consents permit the analysis and publication
of the data for academic purposes while fully adhering to

PROMPT 5. Example of a complete MLLM prompt showing the fusion of
demographic, biometric, and visual data for emotion classification.

FIGURE 3. Example of a multimodal prompt combining visual,
demographic, and biometric data as input to a MLLM for emotion
detection.

PROMPT 6. Template for Zero-Shot Learning prompts to predict attention
levels in classroom settings using a single frame and predefined
engagement scale.

the conditions set by the participants and relevant ethical
standards.

APPENDIX
DETAILED PROMPT STRUCTURES AND EXAMPLES
This appendix provides a detailed analysis of the prompt
structures used in this study, focusing on their role in guiding
multimodal and language models. These prompts form the
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PROMPT 7. One-shot learning template providing a single labeled
example before requesting attention prediction on a new image.

PROMPT 8. Example of a complete Few-Shot Learning prompt using four
labeled examples to improve model performance in attention
classification.

foundation for consistent and accurate outputs, ensuring
alignment with study objectives.

The appendix is organized into sections covering:

1) Emotion prompt structures, including ZSL and FSL
configurations.

FIGURE 4. Visual layout of historical context images used in FSL to guide
the model in attention classification tasks. (a)–(d) Reference images,
(e) Target image.

2) Attention prompt structures, with examples demon-
strating different learning scenarios.

Each section includes template designs and practical
examples, highlighting their importance in optimizing model
performance and minimizing errors in complex tasks.

A. EMOTION PROMPT STRUCTURE
1) ZSL PROMPTS
ZSL prompts leverage the model’s pre-trained knowledge
to generate responses without requiring prior task-specific
examples. A detailed task description and context guide the
model’s predictions.

2) FSL PROMPTS
Unlike the case of attention prediction, in FSL prompts for
emotion adding a counter of previous examples helps to
obtain more consistent results, reducing noise in the system
output.

3) EXAMPLE FSL PROMPTS (4 SHOTS)
The following example illustrates a typical FSL prompt
configuration for emotion detection using four shots, giving
the model an initial context to improve predictive accuracy
in educational settings. By presenting a sequence of relevant
examples, the model adapts to the task at hand, enhancing
its ability to generalize from limited data. An example of the
images used is shown in Figure 3
In multimodal linguistic models (MLLMs), instructions

are designed to handle various types of data, such as images
and text. In this context, the prompt retains the prompt
structure used for attention.
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PROMPT 9. Template for Zero-Shot Learning in attention detection using
Multimodal Large Language Models (MLLMs), integrating visual,
biometric, and contextual data.

4) EXAMPLE PROMPTS IN MULTIMODAL LANGUAGE
MODELS
This section provides an example of prompts used in Mul-
timodal Language Models (MLLMs) for emotion detection.
An illustration of a typical MLLM prompt is shown in
Figure 2.

B. ATTENTION PROMPT STRUCTURE
The final prompts used in this study can be categorized into
three main sections based on the type of learning and the
model’s capabilities:

1) ZSL PROMPTS
The following example shows the ZSL prompt used in
attention prediction.

2) FSL PROMPTS (1 SHOT)
In FSL, prompts are crafted by giving the model a limited
set of input-output examples before prediction. This approach
can substantially improve model performance on complex
tasks (see Table 7), as it provides context about the task’s
nature. Here, labeled classroom examples are used in the
prompt to assist the model in accurately detecting attention

and emotions, thereby enhancing its adaptability to diverse
data.

3) EXAMPLE FSL PROMPTS (4 SHOTS)
The following example illustrates a typical FSL prompt
configuration for attention detection using four shots, giving
the model an initial context to improve predictive accuracy
in educational settings. By presenting a sequence of relevant
examples, the model adapts to the task at hand, enhancing its
ability to generalize from limited data 3.

4) PROMPTS IN MULTIMODAL LANGUAGE MODELS
This section provides an example of prompts used inMLLMs
for emotion detection. Image used is shown in Figure 2.
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