

HAK CIPTA TERPELIHARA

Tiada bahagian daripada terbitan buku ini boleh diterbitkan semula, disimpan untuk pengeluaran atau ditukarkan ke dalam sebarang bentuk atau dengan sebarang alat, sama ada dengan cara elektronik, gambar serta rakaman dan sebagainya tanpa kebenaran bertulis daripada Politeknik Sultan Salahuddin Abdul Aziz Shah terlebih dahulu.

GARIS PANDUAN PENYEDIAAN EBOOK

Nama penulis : Arffaazila Binti Rahmat Zurena Binti lemen

No eISBN: 978-629-7667-58-4

Terbitan pertama 2025

Diterbitkan oleh:

UNIT PENERBITAN

Politeknik Sultan Salahuddin Abdul Aziz Shah, Persiaran Usahawan, Seksyen U1, 40150 Shah Alam, Selangor.

Telephone No.: +603 5163 4000

Fax No.: +603 5569 1903

9 38 3937 4 6 7 5 8 6

Alhamdulillah, we express our gratitude to the Divine
Presence because with HIS permission we were able to
complete an ebook titled "Pocket Note Fluid
Characteristics".

The production of the eBook "Pocket Note Liquids Characteristics" is an effort and initiative of the building services diploma lecturers to provide notes and training to strengthen students' mastery of this topic. The idea of this effort is a continuation of the ebook courses and workshops that have been implemented by FITAC.

This book is written for first-year engineering students and covers the properties of fluids and solids. It uses clear explanations and simple derivations, and includes illustrative problems to help students understand the theory.

A huge thank you and appreciation to all parties involved in providing assistance and strong support to make this book a success. Hopefully this small effort will benefit readers and encourage ebook writing.

	INTRODUCTION OF FLUIDS	
	Course Syllabus	1
	Definition of Fluids	2
/	State of Matter	5
	Application of Fluid Mechanics	6
(a)	Frequently Asked Questions – FAQs	11
	VISCOSITY	
2	Viscosity in fluid flows	17
3	FLUID TERM IN ENGINEERING	
	Density	28
/	Specific Weight	32
	Specific Gravity	34
· A	Specific Volume	36
	Q&A	
4	Question & Answe	38

Describe fluid, density, specific weight, specific gravity and specific volume of fluid

Describe the relationships between density, specific weight, specific gravity and specific volume and solve problems using these relationships.

Describe viscosity of fluid,

Newtonian fluid and non
Newtonian fluid

••••••••••

Definition of fluids

Fluids are substances that can flow and take the shape of their container. They are characterized by their ability to deform continuously under the application of a shear stress, no matter how small that stress might be. Fluids encompass two primary states of matter:

Liquids

Have a definite volume but no fixed shape.

Their particles are close together but can move past each other, allowing the liquid to flow.

Examples: Water, oil, and alcohol.

Gases

Have neither a definite shape nor a fixed volume.

Their particles are far apart and move freely, allowing gases to expand and fill any available space.

Examples: Air, oxygen, and carbon dioxide.

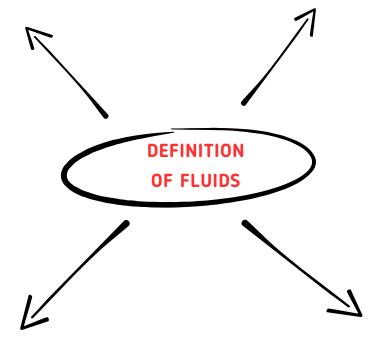
Fluids are distinguished from solids, which have a fixed shape and resist deformation. Additionally, fluids can be described in terms of their viscosity (resistance to flow), density, and pressure.

Definition of fluids

- Fluids undergo continuous deformation, i.e. fluids always keep flowing. Fluid is a substance that does not possess a definite shape and easily yields to external pressure.
- Fluid is any liquid or gas or any material that is unable to withstand a shearing or tangential force, when at rest. When the said forces are applied to the fluid, it goes through a continuous change in shape.
- Fluids are substances with zero shear modulus,
 i.e they cannot resist the shear force applied to
 them

In our day-to-today life, we would have heard the dehydrated patient advised to consume more fluids to compensate for the water loss. Fluids help in the digestion of food, hence we need to take more fluids.

For more klik



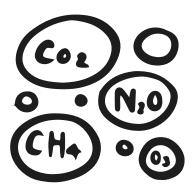
https://byjus.com/physics/fluid/#:~:text=Fluids%20undergo%20continuous%20deformation%2C%20i.e.,tangential%20force%2C%20when%20at%20rest.

Definition of fluids

A fluid is a substance which deforms (flows) continuously under the application of a shear stress, however small they may be.

A stress is defined as a force per unit area, acting on surface element P=F/A

if a fluid is at rest, there can be no shearing forces.


all forces in the fluid must be perpendicular to the planes upon which they act.

States of matter

STATES OF MATTER

GAS

APPLICATIONS OF FLUID MECHANICS

AERODYNAMICS

HYDRAULICS

METEOROLOGY

BIOMEDICAL ENGINEERING

Notes

Content that CLICKS

FLUIDS - ANY FORM OF MATTER THAT FLOWS

Since liquids and gases do NOT have a definite shape, they are able to flow, making them FLUIDS

The three states of matter are solid, liquid, and gas:

Solid: Has a definite shape and volume.

Examples of solids include ice, wood,
and sand.

Liquid: Has a definite volume but takes the shape of its container.

Gas: Has no definite shape or volume

SCAN HERE

HAPPY WATCHING

NOTES

Frequently Asked Questions - FAQs

What are the three common states of matter?

The three states of matter have one thing in common: they are made up of minuscule particles. They can occupy space and have a certain mass. Each of these three states has a volume. Atoms in these three states are strongly attracted to one another.

NOTES

Frequently Asked Questions - FAQs

Is matter created or destroyed?

In 1785, Antoine Lavoisier discovered a scientific law known as the Mass Conservation Law. In its simplest form, it says that matter cannot be generated or destroyed. The total mass and energy of the cosmos remains constant.

PHYSICAL CHARACTERISTICS OF A LIQUID

01

Shape

Liquids have a definite volume but no definite shape, liquids take the shape of their container

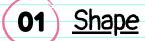
Compressibility

Liquids are nearly incompressible

02



03


Density

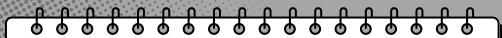
Liquids have lesser densities than solids

PHYSICAL CHARACTERISTICS

GAS

Gases have neither a fixed shape nor a fixed volume.

<u>Compressibility</u>


02

Gases can be compressed easily.

03 <u>Density</u>

Gases have the least density among solid and liquid

SUMMARIY

Solid

- Rigid
- Fixed Shape
- Fixed Volume
- High Density
- Closely tight and organized particles
- Slightly Compressible

Liquid

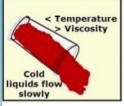
- Not Rigid
- No Fixed Shape
- Fixed Volume
- Average to High Density
- Closely tight but not disorganized particles
- Slightly Compressible

Gas

- Not Rigid
- No Fixed Shape
- No Fixed Volume
- Low Density
- Far apart and disorganized particles
- Highly Compressible

VISCOSITY IS A FLUID'S RESISTANCE TO FLOW, OR ITS INTERNAL FRICTION

A FLUID WITH A HIGH VISCOSITY IS THICK AND FLOWS SLOWLY, WHILE A FLUID WITH A LOW VISCOSITY FLOWS QUICKLY. FOR EXAMPLE, HONEY HAS A HIGH VISCOSITY AND DRAINS SLOWLY FROM A CUP, WHILE WATER HAS A LOW VISCOSITY AND DRAINS QUICKLY.

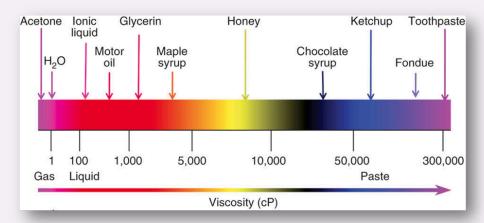


VISCOSITY

- · Fluid friction of liquid to flow
- The physical property of a fluid that limits its ability to flow
- Resistance of a fluid (liquid or gas) to a change in shape, or movement of neighbouring portions relative to one another

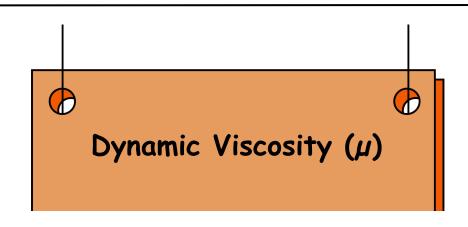
RESISTANCE


FLOWS


- A liquid with high viscosity is thick and flows slowly
- A liquid with low viscosity is thin and flows quickly

TEMPERATURES

- The viscosity of a liquid decreases with increasing temperatures
- The viscosity of gases increases with increasing temperatures



VISCOSITY OF FLUID

	FLUID	VISCOSITY (CPs)
	Air	.02
	Acetone	.3
100	Methanol	.6
	Water	1.0
	Ethanol	1.2
	Olive Oil	84.0
	Motor Oil	540.0
	Maple Syrup	3,200.0
	Honey	12,200.0
	Molasses	20,000.0

Dynamic viscosity measures a fluid's internal resistance to flow when an external force (shear stress) is applied. It quantifies how "thick" or "sticky" a fluid is.

- Units:
 - SI Unit: Pascal-second (Pa·s)
 - Common Unit: Poise (P), where $1 P = 0.1 Pa \cdot cdotps$
 - Millipoise (mP): $1 \, \text{Pa} \setminus \text{cdotps} = 1000 \, \text{mP}$
- Formula:

$$au = \mu \frac{du}{du}$$

Where:

au = shear stress (Pa)

 $\frac{du}{dy}$ = velocity gradient (rate of shear deformation)

Example: Honey has a high dynamic viscosity compared to water.

KINEMATIC VISCOSITY

- Kinematic viscosity is a measure of a fluid's resistance to flow under gravity.
- It's calculated by dividing a fluid's dynamic viscosity by its density

Kinematic viscosity is measured by timing how long it takes a set volume of fluid to flow a known distance through a calibrated viscometer. The temperature at which the test is conducted must also be reported

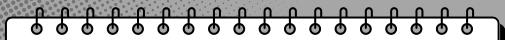
Kinematic Viscosity (v):

- Units:
 - SI Unit: Square meter per second (m²/s)
 - Common Unit: Stoke (St), where $1\,\mathrm{St}=10^{-4}\,\mathrm{m^2/s}$
- Formula:

$$\nu = \frac{\mu}{\rho}$$

Where:

u = kinematic viscosity (m²/s)


 μ = dynamic viscosity (Pa·s)

ho = density of the fluid (kg/m³)

Click!

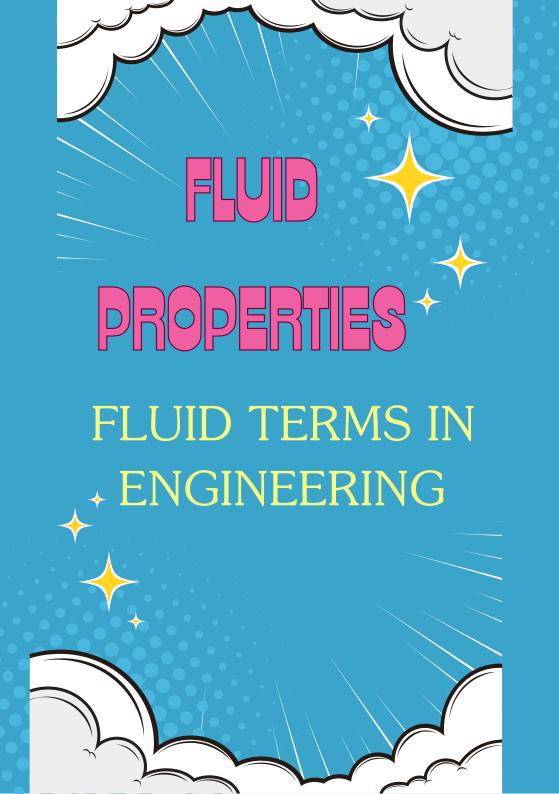
FORMULA OF KINEMATIC VISCOSITY

 $Kinematic viscosity = \frac{dynamic viscosity}{density}$

*with no force involved

$$\nu = \frac{\mu}{\rho} \ (m^2/s)$$

Typical values:


 $Water = 1.14x10^{-6}m^2/s$; $Air = 1.46x10^{-5}m^2/s$

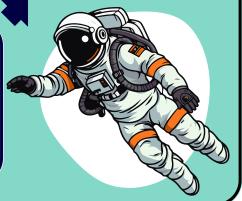
Dynamic vs. Kinematic Viscosity:

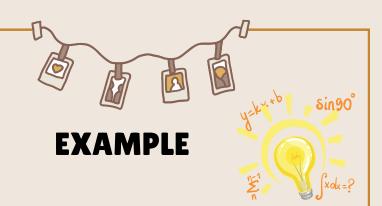
What's the Difference?

DYNAMIC		VISCOSITY	
-)	measures a fluid's resistance to flow when force is applied	V	measures how fast a fluid moves when a force is applied
	Dynamic viscosity is related to external force applied to non- Newtonian fluids		kinematic viscosity is the inherent viscosity of Newtonian fluids
	Symbol μ and unit Ns/m²	<i>~</i> ~	Symbol V and m²/s
	When viscous force is dominant	î	When inertia, as well as viscous force, is dominant

DENSITY

Density is a measure of how heavy something is for its size, or the mass of an object or substance compared to its volume.


Density can be used to explain why some things sink and others float. For example, if an object is more dense than water, it will sink in water. Ice floats because its density is lower than water.



Density is measured in units such

$$Density = \frac{Mass}{Volume}$$

Density Formula: $\rho = m/V$, where ρ is the density, m is the mass of the object and V is the volume of the objec

A fluid of 5000 kg filled an open cylinder container with volume 5.301 meter cube. Calculate the density of fluid and specific weight.

SOLUTION

DENSITY OF FLUID

$$\rho_{oil} = \frac{m}{v} = \frac{5000 kg}{5.301 m^3} = 943.14 kg/m^3$$

EXAMPLE

If 4.8 m³ of oil weighs 30 kN, calculate its density and relative density

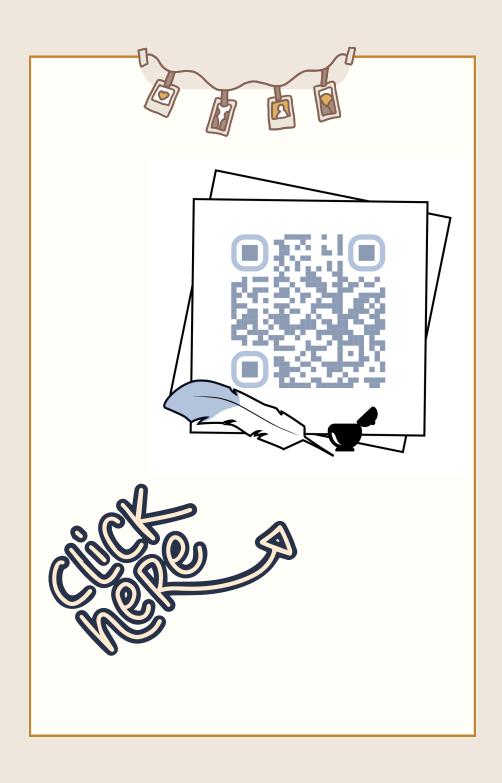
SOLUTION

Given,
$$v = 4.8m^3$$

 $w = 30kN$

$$w = m \times g$$
 $\therefore m = \frac{w}{g}$

$$\rho = \frac{m}{v} = \frac{w}{q \times v}$$


Density

$$\rho_{oil} = \frac{w}{g \times v} = \frac{30 \times 10^3 N}{9.81 \times 4.8 m^3} = 637.10 kg/m^3$$

Relative density

$$S_{g} = \frac{\rho_{oil}}{\rho_{water}} = \frac{637.10}{1000} = 0.637$$

SPECIFIC WEIGHT

Specific weight, also known as unit weight, is the weight of a material per unit volume

5 OTHER FORMULA

 $\gamma = \varrho g$ $\gamma = Density x gravity$

> UNIT N/m³

Specific weight is related to fluid density by the acceleration due to gravity. For example, the specific weight of water on Earth at 4° Celsius is 9.807 kilonewton per meter cube

Weight = m x g

m = mass (kg) g = gravity (meters per second squared) **BASIC FORMULA**

 γ = Weight/ volume

UNIT N/m³

3

A drum of 1 meter cube volume contains 8.5 kN an oil when full. Find the specific weight.

SOLUTION

$$w = m \times g$$
 $\therefore m = \frac{w}{g}$

$$\rho = \frac{m}{v} = \frac{w}{g \times v}$$

Specific weight

$$\gamma = \frac{w}{v} = \frac{8.5 \times 10^3 N}{1m^3}$$
$$= 8.5 \times 10^3 N/m^3$$

SPECIFIC GRAVITY

INFO

It is common to use the <u>density</u> of water at 4 oC as a reference point as water at this point has the highest density of 1000 kg/m3

DENSITY OF WATER IN VARIOUS UNITS

- 1000 kilograms per cubic meter
- I gram per cubic centimeter
- 62.43 pounds per cubic foot
- 0.036 pounds per cubic inch

4

APPLICATIONS OF SPECIFIC GRAVITY

 The gem purity can be determined by comparing its specific gravity with the already measured high purity level of another gem. This allows the gem's value to be determined very quickly.

WHAT IS THE DIFFERENCE BETWEEN SPECIFIC GRAVITY AND SPECIFIC WEIGHT?

Specific weight is the ratio of the weight of an object to the object's volume. In the case of specific gravity, it is the ratio of an object's density to the density of water.

WHAT IS SPECIFIC GRAVITY?

Specific gravity, more formally known as relative density, is a measure of the density of a substance in comparison to the density of water.

6 FORMULA

Specific gravity = $\frac{\text{Density of the object}}{\text{Density of water}} = \frac{\rho_{\text{object}}}{\rho_{\text{H,O}}}$

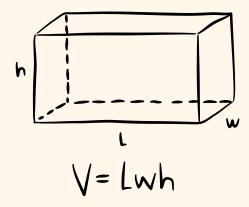
The specific gravity of benzene is 0.876.

Weight and its density in

SOLUTION

Density

$$S._g = \frac{\rho_{benzene}}{\rho_{water}}$$


$$\rho_{benzene}=0.876\times 1000=876kg/m^3$$

Specific weight

$$\gamma = \frac{w}{v} = \frac{(m \times g)}{v} = \rho \times g$$

$$= 876 \times 9.81 = 8593.6 N/m^3$$

SPECIFIC VOLUME

Definition

Specific volume is a thermodynamic property defined as the volume occupied by a unit mass of a substance.

Standard Unit

The standard unit for specific volume is cubic meters per kilogram (m3/kg)

Importance of Specific Volume

Understanding States of Matter: Specific volume helps in describing the physical state of a substance (solid, liquid, or gas). Gases, for instance, have much larger specific volumes compared to liquids and solids due to the greater distance between molecules.

Formula

$$v = \frac{V\left(m^3\right)}{m\left(kg\right)}$$

V = Volume (cubic meters) m = mass (kg)

A CYLINDER WITH A HEIGHT OF 600CM AND DIAMETER OF 100CM CONTAINS 6000N OF LIQUID WHEN IT IS FULL. ESTIMATE THE SPECIFIC WEIGHT AND SPECIFIC GRAVITY OF THE LIQUID.

SOLUTION

Specific weight

$$\gamma = \frac{w}{v} = \frac{8.5 \times 10^3 N}{1m^3} = 8.5 \times 10^3 N/m^3$$

Specific gravity

$$\rho_{oil} = \frac{w}{g \times v} = \frac{8.5 \times 10^3 N}{9.81 \times 1m^3} = 866.5 kg/m^3$$

$$S_{g} = \frac{\rho_{oil}}{\rho_{water}} = \frac{866.5}{1000} = 0.8665$$

During a science experiment, a student pours cooking oil, water, and sand into a transparent beaker. The water and oil form separate layers, while the sand settles at the bottom. When the beaker is tilted, both the water and oil shift position and take the new shape of the beaker, but the sand remains at the bottom. Based on the observation in the experiment, which of the substances can be classified as fluids? Justify your answer using the behavior of the substances in the beaker.

Answer:

Water and oil are classified as fluids because they can flow and take the shape of the container. Sand is not a fluid because it does not flow freely or change shape to fit the container.

A student is experimenting using a balloon and a plastic bottle filled halfway with colored water. When she squeezes the plastic bottle:

- The water level rises and flows upward through a small tube.
- The balloon, which contains air, expands slightly.

The student observes that the water stays together as a visible stream, while the air in the balloon spreads out to fill the space evenly. Based on the observations from the experiment, describe two physical characteristics of liquids and two physical characteristics of gases. Explain how the experiment shows these characteristics.

Answer:

- Liquids:
 - 1. Have a definite volume the water stayed the same amount in the bottle.
- 2. Take the shape of their container the water flowed and filled the shape of the tube when squeezed.
- Gases:
- 3. Do not have a definite shape or volume the air in the balloon expanded to fill the space.
- 4. Can be compressed the air in the balloon was squeezed and changed in size.

An engineer is analyzing the flow of oil through a pipe. The oil has a density of 850 kg/m³ and a dynamic viscosity of 0.34 Pa·s. She needs to determine the kinematic viscosity of the oil to understand how it will behave under different flow conditions. Using the data given in the stimulus, identify the values of:

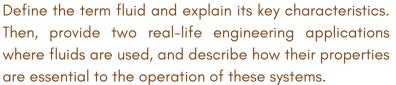
- a) Dynamic viscosity (μ)
- b) Kinematic viscosity (ν)

Then, explain how these properties affect the flow of the oil through the pipe.

Answer:

- a) Dynamic viscosity (µ) = 0.34 Pa·s
- b) Kinematic viscosity (v) =
- ν=μρ=

 $0.34 \, \text{Pa} \cdot \text{cdotps} = 4.00 \times 10^{-4} \, \text{m}^2$


Explanation:

- Dynamic viscosity measures the oil's internal resistance to flow. A higher value means the fluid flows more slowly.
- Kinematic viscosity accounts for both the fluid's viscosity and its density, helping determine how the fluid moves under gravity and pressure differences.

Answer:

Definition of Fluid

A fluid is a substance that can flow and continuously deform under the action of a shear stress, regardless of how small the applied stress is. Fluids include both liquids and gases.

Key Characteristics of Fluids

No fixed shape: Fluids take the shape of their container.

Ability to flow: Fluids can move from one place to another under the influence of pressure or gravity.

Compressibility: Gases are compressible while liquids are relatively incompressible.

Viscosity: A measure of a fluid's resistance to flow.

Continue....

Density and pressure variation: Fluids exert pressure in all directions and their behavior depends on density.

Real-life Engineering Applications:

Hydraulic Braking System in Vehicles:

Fluids (typically brake fluid) are used to transfer force from the brake pedal to the brake pads. The incompressibility of the fluid ensures that force is transmitted efficiently.

Cooling Systems in Power Plants:

Water or other coolants are circulated to absorb and carry away heat. The high specific heat capacity and fluidity of water allow it to efficiently transfer heat and maintain system temperature.

Describe the physical characteristics of liquids and gases. Then, compare how these characteristics influence their behavior in engineering applications. Provide at least one example for each.

Answer:

Physical Characteristics of Liquids:

Definite volume but no definite shape – liquids take the shape of their container but maintain a consistent volume.

Incompressibility – liquids are nearly incompressible, meaning their volume does not change significantly under pressure.

Surface tension – liquids have cohesive forces that cause surface tension, allowing them to form droplets.

Flow behavior - liquids can flow and are affected by viscosity, which determines how easily they move.

Physical Characteristics of Gases:

No definite shape or volume – gases expand to fill the shape and volume of their container.

Compressibility – gases are highly compressible and can change volume significantly under pressure.

Low density - compared to liquids, gases have much lower density.

Free movement of molecules – gas molecules move freely and rapidly in all directions.

Comparison and Application:

Liquids in Engineering: Used in hydraulic systems due to their incompressibility, which allows force to be transmitted efficiently (e.g., car brakes).

Gases in Engineering: Used in pneumatic systems where compressibility allows the storage and controlled release of energy (e.g., air compressors in factory automation).

Identify and define dynamic viscosity (μ) and kinematic viscosity (ν) . Explain the difference between them and how each property is applied in engineering systems. Include their units and one practical example for each.

Answer:

Definition of Dynamic Viscosity (μ) :

Dynamic viscosity is a measure of a fluid's internal resistance to flow when an external force is applied. It reflects how "thick" or "sticky" a fluid is.

Unit: Pascal-second (Pa·s) or N·s/m² or kg/(m·s)

Definition of Kinematic Viscosity (ν):

Kinematic viscosity is the ratio of dynamic viscosity to fluid density. It represents how easily a fluid flows under gravity without considering external force.

Formula: $\nu = \mu / \rho$

Unit: m²/s

Continue....

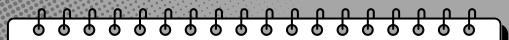
Difference Between μ and ν :

Dynamic viscosity depends only on the fluid's internal resistance to flow, regardless of its density.

Kinematic viscosity considers both internal resistance and density, making it useful in comparing fluids of different densities.

Applications in Engineering:

Dynamic Viscosity Example:


Used in designing lubrication systems for machinery – thicker oils (high μ) are chosen for heavy loads to prevent wear and friction.

Kinematic Viscosity Example:

Used in pipeline design and fluid flow analysis - helps engineers predict flow rate and pressure drop, especially in water treatment or oil transport systems.

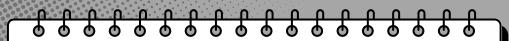
QUESTION

When poured into a graduated cylinder, a liquid is found to weigh 8N when occupying a volume of 600 ml. Determine its specific weight, density and specific gravity

ANSWER

Given, $v=600ml = 0.6l = 6 \times 10^{-4} \text{ m}^3$ w = 8N

Specific Weight


y=w/v =8N /6 X 10⁻⁴ m³ =13333.3N/m³

Specific gravity $Sg = \rho_{material}/\rho_{water}$

=1359.2/1000 =1.36 From Formula Specific weight, we can find the density

 $\gamma = \rho \times g$ $\varrho = \gamma / g$ =13333.3/9.81
=1359.2 kg/m^3

QUESTION

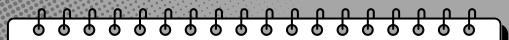
A container is filled with oil of specific gravity 0.79, the oil weight is 98 N. Estimate the volume of the oil

ANSWER

Given, Sg=0.79 w = 98N

Specific gravity

 $Sg = \rho_{\text{material}}/\rho_{\text{water}}$ $\rho_{\text{materia}} = Sg \times \rho_{\text{water}}$ $= 0.79 \times 1000$ $= 7900 \text{ kg/m}^3$


Specific Weight

γ=ρ×g γ= 7900 x 9.81 =77499N/m³

Find the volume using formula Specific Weight

y=w/v v = w/y=98N /77499 N/ m^3 =0.00126 m³

QUESTION

The kinematic viscosity and the specific weight of a fluid are 3.26 x 10⁻⁵ m²/s and 9.47kN/ m³ respectively.

Calculate the dynamic viscosity

ANSWER

Given, Sg=0.79 w = 98N

Density

 $y=p \times g$ p=y/g $p=9.47 \times 10^3 / 9.81$ $p=92900.7 \text{ kg/}m^3$

Kinematic Viscosity

 $v=\mu/\rho$ 3.26 x 10⁻⁵= μ /92900.7 μ = 3.26 x 10⁻⁵ x 92900.7 μ =3.02 Ns/m²

el Hole

REFERENCE

- 1. Cengel, Y. A., & Cimbala, J. M. (2013). Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Education.
- 2. White, F. M. (2011). Fluid Mechanics (7th ed.). McGraw-Hill.
- 3. Munson, B. R., Young, D. F., & Okiishi, T. H. (2009). Fundamentals of Fluid Mechanics. Wiley.
- 4. Kundu, P. K., Cohen, I. M., & Dowling, D. R. (2015). Fluid Mechanics. Academic Press.
- 5. Nizam Mat Ali, Mohd Ali Jasmi, Hamidah Zakaria, Sarah Afzan Karim (2014), A Textbook of Hydraulics. Politeknik Sultan Idris Shah.