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A B S T R A C T

Modeling uncertain dynamical models with fuzzy differential approaches is important in different practical
fields. This investigation presents an innovative technique for solving uncertain models using Lucas polynomials
within the Galerkin strategy. We establish essential definitions and preliminary results of the Lucas polynomials
and derive the iterative technique for numerically approximating solutions using the Galerkin strategy. The fuzzy
differential models are transformed into algebraic transcendental equations, and the numerically estimated so-
lutions are derived by solving the resultant system. To modify and adjust the technique’s efficacy, we carry out
and validate the convergence and error estimation requirements. The utilized numerical procedure brings five
great benefits: it recognizes solutions globally, shows off high levels of accuracy and efficiency, excels in solving
nonlinearity terms, is still unaffected by discretization errors and computational round-off matters, and uses a
small number of iterative steps. To demonstrate the importance of fuzzy-type models, we go into great depth
about an electrical engineering application and highlight the significance of its uncertainty modeling. By elim-
inating the importance of wide computational resources, the approach used displays superior performance
compared to existing methodologies. Several comparison tables with the Hilpert kernel strategy are tabulated to
test the accuracy of the Lucas Galerkin approach. The expected results have the potential to have a considerable
influence on scientific and engineering sectors where uncertain and dependable mathematical modeling is
critical.

1. Overview and problem issue

The ambiguous calculus and FTDMs have garnered considerable
scholarly interest owing to their remarkable capacity to address intricate
real-world systems characterized by vagueness and imprecision [1–3].
By integrating ambiguous sets into classical mathematical frameworks,
fuzzy analysis represents a groundbreaking advancement, offering a
rigorous and precise methodology for modeling systems fraught with
uncertainty or incomplete data. The CTDMs are fundamental tools in
modeling physical phenomena across diverse fields. Whilst CTDMs offer
clarity in well-defined systems, real-world complexities often introduce
uncertainty from sources like experimental data, resource errors, and
initial conditions. The FTDMs provide a suitable mathematical frame-
work to represent uncertain systems instead of CTDMs. Solving FTDMs

with specified FTICs is crucial for addressing practical problems with
uncertain parameters. Analytical solutions for FTDMs are limited,
especially in nonlinear and nonhomogeneous cases, in addition to the
time taken to find the required solutions. Consequently, numerical
analysis is essential for obtaining approximate solutions in most
real-world applications modeled by FTDMs.

The FTDMs with restricted FTICs are typically handled by three main
techniques. The 1st one treats the initial data and the resulting solution
as fuzzy functions, requiring fuzzy derivatives, often calculated using
the Hukuhara derivative [4,5]. This scheme tends to produce increas-
ingly uncertain solutions over time, diverging from the behavior of crisp
solutions. The 2nd one converts the FTDMs into a crisp differential in-
clusion [6,7]. A significant limitation here is the absence of a fuzzy
differential operator, leading to solutions that may not be
interval-valued. The 3rd one applies Zadeh’s extension principle by
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solving the corresponding CTDMs and then substituting fuzzy values for
the constant terms, whilst the fuzzy arithmetic is subsequently used to
obtain the final solution [8,9]. This scheme requires reformulating the
solution in a fuzzy framework, making it less user-friendly and compu-
tationally demanding. To overcome these challenges, the concept of
SGD was unveiled and offered greatly in [10]. This approach allows for
two potential local solutions to FTDM and can be executed on a wider
assortment of fuzzy models than other differentiation schemes [11–14].
Similar to the well-established study of CTDMs, researchers have
extensively explored solving FTDMs. Various approaches, including
SGD, Hukuhara differentiability, and the extension principle, have been
employed in these investigations. For a comprehensive overview of
these schemes, their applications, and theoretical underpinnings,
readers are referred to the works of [4–15].

Besides utilizing useful insights into improving the convergence and
accuracy of fuzzy solutions over a wide assortment of FTDMs by thor-
oughly exploring the LOP-GS and its variants, our analysis in this essay
aims to expand the use of the LOP within the GS and employ SGD to
obtain numerical solutions for the following FTDM:

H
ʹ
(ξ) = ℇ(ξ,H(ξ)), (1)

controlled within FTIC

H(a) = L . (2)

Herein, a ≤ ξ ≤ b, ℇ : C([a, b] × RF →RF ), H : C([a, b]→RF ),
L ∈ RF , and a,b ∈ R, in which

RF =

{
a : R→[0,1] | a is upper semicontinuous of

bounded support, normal, and convex.

}

(3)

To solve (1) and (2) numerically, we use an innovative technique
based on the GS, which is expanded using the LOPs that are currently
tried and have a vital role in mathematics and physics. The LOPs display
a recursive relationship, and through the orthogonality benefits, one can
represent any function as a collection of orthogonal bases. Many re-
searchers have adopted the LOPs, and a lot of literature detailing these
numerical-based approaches, along with their different characteristics,
features, and practical applications, as stated in [16–20]. The LOPs have
been utilized to handle the Sobolev model [21], to solve the sinh-Gordon
model [22], to approximate the electrohydrodynamics flow fractional
model [23], to handle the linearization problem [24], and to approxi-
mate the generalized Burgers model [25]. A key area of LOPs involves
determining connection coefficients, which establish relationships be-
tween different orthogonal polynomial sets and focus on evaluating the
coefficients utilized in [26–28].

To facilitate our work and approach clearly, here’s a set of the
novelty, motivation, and limitations of our findings:

• Novelty:
1. This work introduces the application of the LOP-GS framework for
the first time in the context of solving FTDMs, offering a new class of
basis functions for this purpose.

2. Unlike traditional polynomial bases (e.g., Legendre, Chebyshev),
the LOPs exhibit specific orthogonal properties that enhance stability
and accuracy, particularly in handling the imprecision inherent in
fuzzy models.
3. The proposed technique is further validated through a practical
application in electrical circuit engineering, demonstrating both the
theoretical rigor and real-world relevance of the method.
4. A detailed convergence analysis and error estimation are pro-
vided, filling a gap in the literature regarding the theoretical un-
derpinnings of fuzzy Galerkin-based solvers using non-classical
polynomial bases.
• Motivation
1. Many real-world engineering systems, such as electrical circuits,
are influenced by uncertainties and imprecise parameters that are
best modeled using FTDMs. However, existing numerical methods
often lack robustness or fail to guarantee convergence under fuzzy
frameworks.
2. The motivation behind using LOPs arises from their recursive
structure and computational advantages, which are well-suited for
implementing spectral or semi-spectral methods.
3. The study aims to bridge the gap between analytical rigor and
applicability, offering a method that is both mathematically groun-
ded and practically implementable in engineering systems affected
by uncertainty.
• Limitation
1. The current approach is limited to linear FTDMs; extending it to
nonlinear or strongly coupled systems remains a challenge and is
suggested for future research.
2. The implementation relies on the precise construction of the Lucas
basis and assumes smoothness of the underlying fuzzy functions,
which might limit its performance in cases involving discontinuities
or sharp gradients.
3. The method has been tested on a specific class of fuzzy initial value
problems in electrical engineering; broader validation across diverse
domains and model types is required to generalize its effectiveness.

In the context of approximation theory, both polynomial and non-
polynomial functions have played pivotal roles in the development of
efficient numerical methods [29,30]. Polynomial functions, particularly
orthogonal polynomials such as Lucas, Legendre, Chebyshev, and Her-
mite, are widely used due to their excellent convergence properties and
ease of implementation within spectral and Galerkin frameworks. They
provide a powerful basis for approximating smooth solutions of differ-
ential and integral models. Likewise, non-polynomial functions, such as
trigonometric, exponential, and spline-based functions, are often
employed when the solution exhibits periodic behavior, discontinuities,
or other features that are difficult to capture with polynomial bases
alone. The choice between polynomial and non-polynomial approxi-
mating functions depends on the nature of the problem, the desired
accuracy, and the computational complexity. This study focuses on a
class of orthogonal polynomial bases, namely the LOPs, which offer a
new perspective within the framework of FTDMs.

The following outlines our main contributions and highlights the
significance of the proposed LOP-GS:

1. Novel use of Lucas orthogonal polynomials: This work is among the
first to integrate LOPs within the GS for solving FTDMs. Unlike
commonly used polynomial bases, the LOPs offer a recursive struc-
ture with favorable computational properties, enabling efficient and
accurate approximation.

2. Extension to fuzzy modeling: The LOP-GS extends classical Galerkin
frameworks to handle fuzzy-valued functions, which are essential for
modeling systems with uncertainty and imprecision, particularly
relevant in engineering applications.

3. Theoretical validation: A rigorous convergence analysis and error
estimation are provided, proving that the LOP-GS is both

Nomenclatures

LOP-GS Lucas orthogonal polynomial - Galerkin strategy
FTDM Fuzzy-type differential model
CTDM Crisp-type differential model
FTIC Fuzzy-type initial condition
CTIC Crisp-type initial condition
SGD Strongly generalized differentiability
SRIC Series resistor-inductor circuit
HKS Hilpert kernel strategy
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mathematically sound and numerically stable. This theoretical
foundation is often lacking in similar work involving non-standard
orthogonal bases.

4. Application to electrical circuit models: To demonstrate real-world
significance, the proposed approach is applied to a fuzzy electrical
circuit problem. The results show that the LOP-GS yields higher ac-
curacy and faster convergence compared to existing techniques.

5. Computational advantages: The Lucas basis leads to a sparse system
structure in the Galerkin formulation, reducing the computational
cost without sacrificing accuracy, an advantage for real-time
simulations.

The LOPs and their generalizations are basic tools across fields, like
physics, computer science, statistics, chemistry, and mathematics

[16–28]. Analytically, the LOP-GS is a straightforward technique to
perform, freed from the necessity for complicated mathematical tools or
specialized techniques in programming. Here are the main steps in the
mathematical outline of the GS within LOP, whilst detailed descriptions
are given in Algorithm 2.

• Step 1: Choosing the approximation: assume the required solution is
a linear combination of the LOPs basis functions.

• Step 2: Formulating the residual: define a new operator by trans-
lating all terms in the FTDM into LHS.

• Step 3: Enforcing the GS condition: the GS requires that the residual
be orthogonal to each LOP basis function.

• Step 4: Solving the obtained transcendental system: simplify the
system, use the linearity condition, and use matrix form
representation.

• Step 5: Construct the approximate solution: infer the finite summa-
tion of multiples of the LOPs basis functions with the obtained un-
known coefficients from Step 4.

This essay is structured into several sections. Following the intro-
duction, Section 2 establishes essential definitions and preliminary re-
sults for the fuzzy analysis. Section 3 provides an overview of FTDM
theory and its solution algorithm. Section 4 constructs the LOP within
GS to facilitate our numerical approach. Section 5 outlines the theo-
retical underpinnings, like convergence and error, for the truncated
approximate solutions. An iterative technique for numerically approxi-
mating solutions is detailed in Section 6, along with two physical ap-
plications. The efficacy of the method is demonstrated through some
findings and comparative analysis in Section 7. Finally, Section 8 con-
cludes the paper with a summary of key findings and potential future
directions.

2. Notes and specifications

The fundamental study of integrals and derivatives of uncertain
functions is known as fuzzy calculus. This area of mathematics, which
has been studied in great detail recently, has become a powerful and
effective tool for mathematically expressing a variety of scientific and
engineering phenomena. Here, we will provide several key terms from
fuzzy calculus theory and preliminary research. We shall use the idea of
SGD, a variation of Hukuhara differentiability that efficiently processes
FTDMs while discussing the concept of a fuzzy derivative.

Let S ∕= ∅, a fuzzy set a in S is an a : S→[0,1]. Thus, a(κ) is analyzed as
the degree of membership of κ in a. An a on R is convex if ∀κ1, κ2 ∈ R and
∀w ∈ [0, 1], a(wκ1 + (1 − w)κ2) ≥ min{a(κ1), a(κ2)}; is upper semi-
continuous if {κ ∈ R|a(κ) ≥ ζ} is closed ∀ζ ∈ [0,1]; and is normal if ∃κ ∈

R with a(κ) = 1. The support of a is {κ ∈ R|a(κ) > 0}.
For all ζ ∈ (0, 1], put [a]

ζ
= {κ ∈ R|a(κ) ≥ ζ} and [a]

0
=

{κ ∈ R|a(κ) > 0}. Then the following are held:

• An a ∈ RF iff [a]ζ is a compact convex subset of R within [a]
1
∕= ϕ.

• If a ∈ RF , then [a]
ζ
= [a1(ζ), a2(ζ)], where a1(ζ) = min{κ|κ ∈ [a]

ζ
}

and a2(ζ) = max{κ|κ ∈ [a]
ζ
}.

• The symbol [a]ζ is the ζ-cut formation of a ∈ RF .

Theorem 1. [31] Presume that a1, a2 : [0, 1]→R with a(κ) =
sup{ζ|a1(ζ) ≤ κ ≤ a2(ζ)} meet the outlined criteria:

1. a1 < ∞ is a non-decreasing and a2 < ∞ is a non-increasing with
a1(1) ≤ a2(1).

2. ∀k ∈ (0, 1], limζ→k− a1(ζ) = a1(k) and limζ→k− a2(ζ) = a2(k) with
limζ→0+ a1(ζ) = a1(0) and limζ→0+ a2(ζ) = a2(0).

Then a : R→[0,1] is in RF with formation [a1(ζ),a2(ζ)]. As well, if a ∈

RF with formation [a1(ζ),a2(ζ)], then a1 and a2 are affirmed (1) and (2).

Algorithm 1
Procedures for finding solutions of FTDM (1) and (2) according to SGD.

Situation
1.

When H(ξ) is (1)-SGD, use [D1H(ξ)]ζ and execute the undermentioned:

​ Process i. Figurate the set of CTDMs:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H
ʹ
1ζ(ξ) = ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ)),

H
ʹ
2ζ(ξ) = ℇ2ζ(ξ,H1ζ(ξ),H2ζ(ξ)),

H1ζ(a) = L 1ζ,

H2ζ(a) = L 2ζ.

​ Process
ii.

Check that [H1ζ(ξ),H2ζ(ξ)] and
[
H

ʹ
1ζ(ξ),H

ʹ
2ζ(ξ)

]
are valid

∀ζ ∈ [0,1].
​ Process

iii.
Fabricate the (1)-solution H(ξ) with [H(ξ)]ζ = [H1ζ(ξ),
H2ζ(ξ)].

Situation
2.

When H(ξ) is (2)-SGD, use [D2H(ξ)]ζ , and execute the
undermentioned:

​ Process i. Figurate the set of CTDMs:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H
ʹ
1ζ(ξ) = ℇ2ζ(ξ,H1ζ(ξ),H2ζ(ξ)),

H
ʹ
2ζ(ξ) = ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ)),

H1ζ(a) = L 1ζ,

H2ζ(a) = L 2ζ.

​ Process
ii.

Check that [H1ζ(ξ),H2ζ(ξ)], and
[
H

ʹ
2ζ(ξ),H

ʹ
1ζ(ξ)

]
are

valid ∀ζ ∈ [0,1].
​ Process

iii.
Fabricate the (2)-solution H(ξ) with [H(ξ)]ζ = [H1ζ(ξ),
H2ζ(ξ)].

Algorithm 2
Procedures for finding LOP-GS solutions of FTICs (1) and (2) in Situation 1 of
Algorithm 1.

Input Initial data: L , ζ, n, N, and M;
LOPs concering H1ζ, H2ζ , H

ʹ
1ζ , H

ʹ
2ζ , ℇ1ζ , and ℇ2ζ .

Routine i. Within ξ ∈ [a, b] and ζ ∈ [0,1] fixed N and M:
Step 1. Set ξj = a+

b − a
N

j with j = 0,1,⋯,N;

Step 2. Set ζη =
1
M

η with η = 0,1, ⋯,M;

Routine ii. Within i = 0,1,⋯,n − 1 evaluate R1ζ(ξ) and R2ζ(ξ).
Routine iii. Within i = 1,2,⋯,n − 1 evaluate

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
R1ζ(ξ)ϕi(ξ)dξ = 0,

∫ 1

0
R1ζ(ξ)ϕi(ξ)dξ = 0,

∑n− 1
i=0

ciϕi(a) = L 1ζ ,
∑n− 1

i=0
diϕi(a) = L 2ζ .

Routine iv. Solve the gained 2n transcendental equations and find ci and di with i

= 0,⋯,n − 1.
Routine v. Substitute ci and di within i = 0,⋯,n on LOPs of H1ζηn

(
ξj

)
and

H2ζηn

(
ξj

)
.

Output The value of H1ζη

(
ξj

)
and H2ζη

(
ξj

)
.
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Henceforth, ∀ζ ∈ (0, 1], we write a1ζ and a2ζ instead of a1(ζ) and
a2(ζ), simultaneously.

Definition 1. [32] In RF within a,b ∈ RF , we use
{
D : RF × RF →R+ ∪ {0},
D(a,b) = sup0≤ζ≤1max{|a1ζ − b1ζ|, |a2ζ − b2ζ|}.

(4)

If a,b ∈ RF , then ∀ζ ∈ [0,1], one has

[a + b]
ζ
= [a]

ζ
+ [b]

ζ
= [a1ζ +b1ζ, a2ζ + b2ζ],

[wa]
ζ
= w[a]

ζ
= [min{wa1ζ, wa2ζ},max{wa1ζ, wa2ζ}],

[ab]
ζ
= [a]

ζ
[b]

ζ
= [min{a1ζb1ζ,a1ζb2ζ, a2ζb1ζ,a2ζb2ζ},

max{a1ζb1ζ, a1ζb2ζ,a2ζb1ζ, a2ζb2ζ}],

a = b iff [a]
ζ
= [b]

ζ iff a1ζ = b1ζ and a2ζ = b2ζ. (5)

Let a, b ∈ RF , if ∃c ∈ RF with a = b + c or c = a⊖ b, then c is a
Hukuhara difference. Here, the outlined criteria are met:

• a⊖ b ∕= a+ ( − 1)b = a − b.
• If a ⊖ b exists, then [a ⊖ b]

ζ
= [a1ζ − b1ζ,a2ζ − b2ζ].

Definition 2. [33] Let H : [a, b]→RF and ξ0 ∈ [a,b]. An H is SGD at ξ0,
if ∃H

ʹ
(ξ0) ∈ RF with either:

1. ∀λ > 0 properly close to 0, H(ξ0 + λ)⊖ H(ξ0), H(ξ0) ⊖ H(ξ0 − λ) exist
with

lim
λ→0+

H(ξ0 + λ) ⊖ H(ξ0)
λ

= lim
λ→0+

H(ξ0) ⊖ H(ξ0 − λ)
λ

= H
ʹ
(ξ0). (6)

2. ∀λ > 0 properly close to 0, H(ξ0)⊖ H(ξ0 + λ), H(ξ0 − λ) ⊖ H(ξ0) exist
with

lim
λ→0+

H(ξ0) ⊖ H(ξ0 + λ)
− λ

= lim
λ→0+

H(ξ0 − λ) ⊖ H(ξ0)
− λ

= H
ʹ
(ξ0). (7)

Remark 1. The limit is taken in (RF , D), and at {a, b}, we
examine one-sided derivatives. If H is differentiable ∀ξ ∈ [a,b], then
H is differentiable on [a, b]. In Definition 2, the 1st type aligns with
the Hukuhara derivative utilized in [34].

Definition 3. [35] Let H : [a, b]→RF . An H is (1)-SGD on [a, b] if it is
differentiable in type (1) of Definition 2 with derivative D1H. Similarly,
an H is (2)-SGD on [a, b] if it is differentiable in type (2) of Definition 2
with derivative D2H.

Theorem 2. [35] Let H : [a, b]→RF and [H(ξ)]ζ = [H1ζ(ξ),H2ζ(ξ)]. Then
∀ζ ∈ [0,1], one has

1. If H is (1)-SGD on [a,b], then H1ζ and H2ζ are differentiable on [a, b]

with [D1H(ξ)]ζ =
[
H

ʹ
1ζ(ξ),H

ʹ
2ζ(ξ)

]
.

2. If H is (2)-SGD on [a,b], then H1ζ and H2ζ are differentiable on [a, b]

with [D2H(ξ)]ζ =
[
H

ʹ
2ζ(ξ),H

ʹ
1ζ(ξ)

]
.

3. Necessities and algorithm of the FTDM

While physical systems often exhibit deterministic behavior, un-
certainties can arise from measurement processes, particularly when
determining initial conditions. To account for such uncertainties, fuzzy
numbers can be employed to represent initial parameters. This neces-
sitates the exploration of perspectives involving FTDMs and FTICs. In
essence, when a system’s starting point is inherently fuzzy, the subse-
quent solution trajectory also becomes fuzzy, demanding the concept of
a fuzzy derivative.

Problem formulation is typically the most crucial aspect of the pro-
cedure, encompassing the determination of the ζ-cut formation for the
nonlinear term, the choice of SGD type, and the partitioning of FTICs.
Subsequently, FTDM is initially expressed as a standard set of CTDMs,
followed by the discretized version of FTDM. To enable the application
of the LOP-GS, the fuzzy function is expressed in the ζ-cut formation as
[H(ξ)]ζ = [H1ζ(ξ), H2ζ(ξ)], and [H(a)]ζ = [L 1ζ, L 2ζ]. Through the
consideration of the ζ-cut formation on both sides of (1) and (2), one can
articulate

[H
ʹ
(ξ)]ζ = [ℇ(ξ,H(ξ))]ζ, (8)

controlled within CTDMs set

[H(a)]ζ = [L ]
ζ
, (9)

where the set gives the endpoints of [ℇ(ξ,H(ξ))]ζ is

[ℇ(ξ,H(ξ))]ζ = [ℇ1ζ(ξ,H(ξ)),ℇ2ζ(ξ,H(ξ))]
= [ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ)),ℇ2ζ(ξ,H1r(ξ),H2ζ(ξ))].

(10)

The formulation presented in (8–10), along with the identification of
Theorems 1 and 2, elucidates the approach to handling numerical so-
lutions of FTDMs. It is possible to transform the original FTDM into a set
of CTDMs. Consequently, the numerical methods can be directly applied
to the resultant CTDM system.

Definition 4. [35] Let H : [a, b]→RF such that D1H or D2H exists. If H

and D1H satisfy FTDM (1) and (2), H is called a (1)-solution. Similarly, if
H and D2H satisfy FTDM (1) and (2), H is called a (2)-solution.

An ℇ : [a, b] × RF →RF is continuous at (ξ0, z0) in [a, b] × RF , if
∀ε > 0, ∃δ(ε, ζ) > 0 as D(ℇ(ξ, z),ℇ(ξ0, z0)) < ε whenever |ξ − ξ0| < δ and
D(z, z0) < δ at ∀ξ ∈ [a, b] and z ∈ RF .

Theorem 3. [35] Let ℇ ∈ C([a, b] ×RF →RF ) and assume ∃k > 0 with
D(ℇ(ξ,H(ξ)),ℇ(ξ,℘(ξ))) ≤ kD(H(ξ),℘(ξ)) for ∀ξ ∈ [a, b] and
H(ξ),℘(ξ) ∈ RF . Then, FTDM (1) and (2) have two unique solutions on [a,
b]. Namely, (1)-SGD and (2)-SGD.

Algorithm 1 aims to develop a method for solving (1) and (2) using
their ζ-cut formations. The resulting set will consist of two CTDM sys-
tems for each SGD type.

Situation 2 in Algorithm 1 is an extension of the procedure used in
[36], where the derivative is considered in the 2nd form of Definition 3.
So, in Situation 2, a new solution for (1) and (2) is obtained.

An g : [a, b] × R2→R is equicontinuous on [a, b] if ∀ε > 0 and ∀(ξ,H,

℘), (ξ, H1, ℘1) ∈ [a, b] × R2; |g(ξ,H,℘) − g(ξ,H1,℘1)| < ε whenever
‖ (ξ,H,℘) − (ξ,H1,℘1)‖< δ and uniformly bounded on any bounded set,
where ‖ ⋅ ‖ is the Euclidean norm.

Theorem 4. [37] Given FTDM (1) and (2) and ℇ : [a, b] × RF →RF with

1. [ℇ(ξ,H(ξ))]ζ = [ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ)),ℇ2ζ(ξ,H1ζ(ξ),H2ζ(ξ))].

O. Abu Arqub et al.
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2. ℇ1ζ and ℇ2ζ are equicontinuous functions on [a,b].
3. ∃L > 0 as ∀ζ ∈ [0,1], we have

Then, for (1)-SGD, FTDM (1) and (2), and the set of CTDM in Process
I - Situation 1 are equivalent, and for (2)-SGD, FTDM (1) and (2), and the
set of CTDM in Process ii - Situation 2 are equivalent.

To sum up our strategy during the evolution process for solving (1)
and (2) in (1)-SGD is based on solving the set of CTDMs in Process i -
Situation 1 by converting the needed functions into the corresponding
LOPs and then using the GS, the problem can be converted to a group of
transcendental equations that can be solved utilizing MATHEMATICA
package to get the solution. Also, for (2)-SGD, we use CTDMs in Process
ii - Situation 2.

4. Assemble the LOPs approximation

To facilitate descriptions, we employ GS as an innovative numerical
approach. The GS is a weighted residual-based algorithm, where the
weighted functions are a finite set of orthogonal bases. Afterward, we
construct the LOP-GS using the LOPs as the weighting functions. Un-
doubtedly, theorems of convergence and error are utilized too.

To minimize the length of this essay and avoid repetition, we will
review only the first case concerning the (1)-SGD. Since the remaining
case is similar, we will proceed as follows:

• First, the LOPs representing a special function over a given interval
are described.

• Then, we use this representation to express the base functions in the
CTDMs in Process i - Situation 1 for the (1)-SGD type in terms of
LOPs.

• Next, we define the residual function needed for the GS.
• Finally, via the orthogonality between the residual and the LOPs, we
transform the systems of CTDMs into algebraic sets of transcendental
equations. By solving the resulting sets, we find the approximate
nodal model.

Definition 5. [21] For the LOP of degree k, the terms ϕk(ξ) can be built
recurrently as

ϕk(ξ) = ξϕk− 1(ξ) + ϕk− 2(ξ),ϕ0(ξ) = 2, ϕ1(ξ) = ξ, k ≥ 2. (12)

Definition 6. [21] The LOP possesses the power from representa-
tion as

ϕk(ξ) = k
∑

⌊
k
2

⌋

r=0

(k − r − 1)!
r!(k − 2r)!

ξk− 2r, k ≥ 1. (13)

To simplify, a few needed results and characteristics of the LOPs are
discussed next. Here are the first few undermentioned LOPs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0(ξ) = 2,

ϕ1(ξ) = ξ,

ϕ2(ξ) = ξ2 + 2,

ϕ3(ξ) = ξ3 + 3ξ,

ϕ4(ξ) = ξ4 + 4ξ2 + 2.

(14)

One important relationship of LOPs is their formulas through the
power form (13) within the representation

ϕk(ξ) =
1

k + 1
ϕ

ʹ
k+1(ξ) +

1
k − 1

ϕ
ʹ
k− 1(ξ),k ≥ 2. (15)

To facilitate, one can generate a matrix approach to the LOPs.
Anyhow, let us denote the matrix with the following entries by L:

lij ∕= 0,∀i,

lij = 0, j > i.
(16)

Clearly, L is an infinite, lower-triangular, nonsingular matrix. For
example, for k = 6, one find

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0

0 1

0 ⋯

⋱ ⋯

⋯ ⋯ 0

⋯ ⋯ ⋮

2 0

0 3

1 ⋱

0 1

⋯ ⋯ ⋮

⋱ ⋯ ⋮

2 0
0

2

5

0

4 0
0

9

5

0

1 ⋱ ⋮
0

6

1

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)

The original sequence of Lucas numbers can be extracted from the
sums of the inputs in the rows of L, that is,

∑k

r=0 lkr = ϕk. Furthermore,
the inputs of the columns of L correspond to the column sequences of (2,
1)-Pascal triangle, excluding the inputs l00 starting from 2.

To improve efficiency, if ϕξ = [ϕ0(ξ),ϕ1(ξ),⋯,ϕk(ξ),⋯]
T and X =

[
1, ξ, ξ2,⋯, ξk,⋯

]T, one gains the LOPs matrix form sequence as

ϕξ = LX. (18)

Generally, the power form representations and their associated
inversion formula of the LOPs are essential for deriving numerous sig-
nificant related relations. Anyhow, the inversion formula of (13) can be
written as (for the derivation, see [26]).

ξτ = τ!
∑τ

k=0

(k+τ)even

(− 1)
τ− k
2 ρk(

τ− k
2

)

!

(
τ+k
2

)

!

ϕk(ξ). (19)

ρk =

⎧
⎨

⎩

1
2
,k = 0,

1,k > 0.
(20)

The orthogonality condition of LOPs derived from

{
|ℇ1ζ(ξ,H1(ξ),℘1(ξ)) − ℇ1ζ(ξ,H2(ξ),℘2(ξ))| ≤ Lmax{|H1(ξ) − H2(ξ)|, |℘1(ξ) − ℘2(ξ)|},
|ℇ2ζ(ξ,H1(ξ),℘1(ξ)) − ℇ2ζ(ξ,H2(ξ),℘2(ξ))| ≤ Lmax{|H1(ξ) − H2(ξ)|, |℘1(ξ) − ℘2(ξ)|}.

(11)
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∫2

− 2

ϕk(ξ)ϕj(ξ)
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
4 − ξ2

√ dξ =
〈
ϕk(ξ),ϕj(ξ)

〉
=

⎧
⎨

⎩

0, k ∕= j,

4π, k = j > 0,
2π, k = j = 0.

(21)

This reveals that ∀p ∈ C([0,1]→R) can be portrayed regarding LOPs
as

p(ξ) ≈ pn(ξ) =
∑n

i=0
ciϕi(ξ), (22)

wherein ci = 〈p(ξ),ϕi(ξ)〉 and ϕi(ξ) within i = 0,1,⋯, n are the LOPs.
After presenting the abovementioned results on LOPs, we proceed to

the problem formulation. Anyhow, to find an approximate solution of
the CTDMs set in Situation 1, we interpolate LOPs for H1r(ξ) and
H2r(ξ) as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1ζ(ξ) ≈ H1ζn(ξ) =
∑n− 1

i=0
ciϕ1ζi(ξ),

H2ζ(ξ) ≈ H2ζn(ξ) =
∑n− 1

i=0
diϕ2ζi(ξ),

(23)

wherein ci and di within i = 0, 1,⋯, n are unknown coefficients, and
ϕ1ζi(ξ) and ϕ2ζi(ξ) are the LOPs.

Moreover, the terms approximations of H
ʹ
1ζ, H

ʹ
2ζ, ℇ1ζ, and ℇ2ζ,

simultaneously, are
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H
ʹ
1ζ(ξ) ≈ H

ʹ
1ζn(ξ) =

∑n− 1

i=0
ciϕ

ʹ
1ζi(ξ),

H
ʹ
2ζ(ξ) ≈ H

ʹ
2ζn(ξ) =

∑n− 1

i=0
diϕ

ʹ
2ζi(ξ).

(24)

Substituting (24) and (25) into Process i - Situation 1, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n

i=0
ciϕ

ʹ
1ζi(ξ) = ℇ1ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

,

∑n

i=0
diϕ

ʹ
2ζi(ξ) = ℇ2ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

.

(26)

To proceed, we use (26) to compute the needed two residuals R1ζ(ξ)
and R2ζ(ξ) as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1ζ(ξ) =
∑n− 1

i=0
ciϕ

ʹ
1ζi(ξ) − ℇ1ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

,

R2ζ(ξ) =
∑n− 1

i=0
diϕ

ʹ
2ζi(ξ) − ℇ2ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

.

(27)

However, when R1ζ(ξ) = 0 and R2ζ(ξ) = 0, one has the exact solution
that handles the set of CTDMs in Situation 1. In the proposed LOP-GS
approximation, we aim to minimize the residuals by making it orthog-
onal to the chosen LOPs, which are the basis functions used to find
H1ζ(ξ) and H2ζ(ξ) approximations.

To find c0, c1,⋯, cn− 1 and d0, d1, ⋯, dn− 1, we select LOPs as weight

functions, then we integrate the multiple of the LOPs by the residuals
and equate the result with zero since R1ζ(ξ) and R2ζ(ξ) are orthogonal
with (2n − 2) functions ϕ0(ξ), ϕ1(ξ), ⋯, ϕn− 1(ξ), thus we can get the
needed (2n − 2) algebraic equations controlled by the CTICs in Process i
- Situation 1. So
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫1

0

R1ζ(ξ)ϕi(ξ)dξ = 0, i = 0,1,⋯,n − 1,

∫1

0

R1ζ(ξ)ϕi(ξ)dξ = 0, i = 0,1,⋯,n − 1,

∑n− 1

i=0
ciϕi(a) = L 1ζ,

∑n− 1

i=0
diϕi(a) = L 2ζ.

(28)

Hereabouts, we get an algebraic set of 2n transcendental equations
with 2n unknown c0, c1,⋯, cn− 1 and d0, d1,⋯, dn− 1. Afterward, substitute
the estimated constants c0, c1,⋯, cn− 1 and d0, d1,⋯, dn− 1 in (23) to gain
the needed approximation of Situation i concerning (1)-SGD.

5. Analysis of convergence and error

To show the efficiency and adaptability of the LOP-GS approxima-
tion, this part presents and proves the convergence and captures the
error estimate, ensuring that Process i - Situation 1 concerns (1)-SGD.

In the field of approximation, convergence and error are essential for

ensuring the accuracy and efficiency of numerical schemes, preventing
divergence, and optimizing computational performance. This can sym-
metrize as

• Ensures numerical solutions approximate the true solution correctly.
• Prevents solutions from diverging or becoming unreliable.
• Helps select methods that converge faster with minimal
computation.

• Identifies and minimizes sources of numerical error.
• Confirms the reliability of mathematical models and simulations.

Recalling that H1ζn(ξ) =
∑n− 1

i=0 ciϕ1ζi(ξ), H2ζn(ξ) =
∑n− 1

i=0 diϕ2ζi(ξ),
Hζn(ξ) = (H1ζn(ξ), H2ζn(ξ)), and Hζ(ξ) = (H1ζ(ξ), H2ζ(ξ)). Also,
throughout the next results H1ζm(ξ) =

∑m
i=0 ciϕ1ζi(ξ), H2ζm(ξ) =

∑m
i=0 diϕ2ζi(ξ), Hζm(ξ) = (H1ζm(ξ),H2ζm(ξ)), and zζ(ξ) = (z1ζ(ξ), z2ζ(ξ))

with z1ζ, z2ζ ∈ L2([0,1]).

Theorem 5. Presume
( ∑∞

i=0 ciϕ1ζi(ξ),
∑∞

i=0 diϕ2ζi(ξ)
)

be the Lucas
interpolation of (H1ζ(ξ),H2ζ(ξ)) with H1ζ,H2ζ ∈ L2[0,1]. Then
Hζn(ξ)→Hζ(ξ) as n→∞.

Proof. Let (H1ζm(ξ),H2ζm(ξ)) be any partial sum of
( ∑∞

i=0 ciϕi(ξ),
∑∞

i=0 diϕ2ζi(ξ)
)
. Then for n > m, one has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ)) ≈ ℇ1ζn(ξ,H1ζn(ξ),H2ζn(ξ)) = ℇ1ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

,

ℇ2ζ(ξ,H1ζ(ξ),H2ζ(ξ)) ≈ ℇ2ζn(ξ,H1ζn(ξ),H2ζn(ξ)) = ℇ2ζn

(

ξ,
∑n− 1

i=0
ciϕ1ζi(ξ),

∑n− 1

i=0
diϕ2ζi(ξ)

)

.

(25)
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‖ Hζn(ξ) − Hζm(ξ)‖2=‖

[
H1ζn(ξ)

H2ζn(ξ)

]

−

[
H1ζm(ξ)

H2ζm(ξ)

]

‖2

=‖

⎡

⎢
⎢
⎢
⎢
⎣

∑n

i=m+1
ciϕ1ζi(ξ)

∑n

i=m+1
diϕ2ζi(ξ)

⎤

⎥
⎥
⎥
⎥
⎦
‖2

<

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑n

i=m+1
|ci|

2
(π
2

)

∑n

i=m+1
|di|

2
(π
2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(29)

By Bessel’s inequality;
∑n

i=m+1 |ci|
2
≤
∑∞

i=m+1 |ci|
2
≤‖H1ζ‖

2 < ∞ and
∑n

i=m+1 |di|
2
≤
∑∞

i=m+1 |di|
2
≤‖H2ζ‖

2 < ∞. So, ‖ Hζn(ξ) − Hζm(ξ)‖2→0 as
n,m→∞. Thus, Hζn(ξ) is a Cauchy sequence and converges. Anyhow

Hence,
[
z1ζ(ξ)
z2ζ(ξ)

]

=

[
H1ζ(ξ)
H2ζ(ξ)

]

and
[

H1ζn(ξ)
H2ζn(ξ)

]

=

[∑n

i=0
ciϕ1ζi(ξ)

∑n

i=0
diϕ2ζi(ξ)

]

converges to Hζ(ξ) =
[

H1ζ(ξ)
H2ζ(ξ)

]

as n→∞. █

Theorem 6. Presume H1ζ(ξ) and H2ζ(ξ) are the exact solutions of CTICs,
and H1ζn(ξ) and H2ζn(ξ) are their approximations. Then ε1ζn(ξ) = H1ζ(ξ) −
H1ζn(ξ) and ε2ζn(ξ) = H2ζ(ξ) − H2ζn(ξ) can be approximated using the LOP-
GS.

Proof. Herein H1ζn(ξ) and H2ζn(ξ) satisfy (23) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H
ʹ
1ζn(ξ) = ℇ1ζn(ξ,H1ζn(ξ),H2ζn(ξ)),

H
ʹ
2ζn(ξ) = ℇ2ζn(ξ,H1ζn(ξ),H2ζn(ξ)),

H1ζn(a) = L 1ζ,

H2ζn(a) = L 2ζ.

(31)

Subtracting (31) from Process i - Situation 1, one has
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εʹ
1ζn(ξ) = ℇ1ζn(ξ, ε1ζn(ξ), ε2ζn(ξ)),

εʹ
2ζn(ξ) = ℇ2ζn(ξ, ε1ζn(ξ), ε2ζn(ξ)),

ε1ζn(a) = 0,
ε2ζn(a) = 0,

(32)

wherein
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ℇ1ζn(ξ, ε1ζn(ξ), ε2ζn(ξ)) = ℇ1ζ(ξ,H1ζ(ξ),H2ζ(ξ))

− ℇ1ζn(ξ,H1ζn(ξ),H2ζn(ξ)),

ℇ2ζn(ξ, ε1ζn(ξ), ε2ζn(ξ)) = ℇ2ζ(ξ,H1ζ(ξ),H2ζ(ξ))

− ℇ2ζn(ξ,H1ζn(ξ),H2ζn(ξ)).

(33)

To solve (32), we can utilize LOP-GS. Then, we have an algebraic set
of 2n transcendental equations. By handling this set, we get the required
approximation. █

6. The LOP-GS algorithm and solvability experiments

For the LOP-GS, the series formations and a new version of recur-
rence relations have been used to solve FTDMs controlled with FTICs.
The LOPs are tested throughout the GS to show that they allow analyt-
ical and approximate solutions using a few terms of the LOPs.

Numerical methods have become indispensable tools for scientists
and engineers, solving complex problems that often lack analytical
counterparts like FTDMs. Algorithm 2 aims to develop the LOP-GS as a
novel tactic for solving (1) and (2) using their ζ-cut formations. The

resulting set will consist of two CTDMs for each SGD type, but to
minimize the length of this essay and avoid repetition, we will review
only the 1st case concerning the (1)-SGD since the remaining case is
similar. Herein, all the symbolic computations have been performed
using MATHEMATICA 11.

To elucidate further, CTDM can be proficiently characterized as
FTDM. The next SRIC substantiates this claim (see Fig. 1, where resis-
tance, solenoid, and voltage are denoted as R, L, E , simultaneously):
⎧
⎪⎪⎨

⎪⎪⎩

I
ʹ
(ξ) = −

R
L

I (ξ) + E (ξ),

I (0) ≅
E (0)
R

.

(34)

However, it is crucial to acknowledge that uncertainty in the (34)

Fig. 1. Portrayal of the SRIC in its crisp version.

〈[
z1ζ(ξ)

z2ζ(ξ)

]

−

[
H1ζ(ξ)

H2ζ(ξ)

]

,

[
ϕ1ζi(ξ)

ϕ2ζi(ξ)

]〉

=

〈[
z1ζ(ξ)

z2ζ(ξ)

]

,

[
ϕ1ζi(ξ)

ϕ2ζi(ξ)

]〉

−

〈[
H1ζ(ξ)

H2ζ(ξ)

]

,

[
ϕ1ζi(ξ)

ϕ2ζi(ξ)

]〉

= lim
n→∞

〈[
H1ζn(ξ)

H2ζn(ξ)

]

,

[
ϕ1ζi(ξ)

ϕ2ζi(ξ)

]〉

−

[
ci

di

]

=

[
ci

di

]

−

[
ci

di

]

=

[
0

0

]

.

(30)
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may stem from natural influences, leakage, inaccuracies in element
modeling, and electrical noise.

The SRIC involves a resistor and an inductor connected in series. The
inductor resists changes in current, while the resistor controls the flow of
current. This individual configuration is widely used in electronic de-
vices and demands a detailed analysis of power distribution, impedance,
voltage, and current. This framework allows for the analysis and
calculation of key SRIC specifications, like transient behaviors, time
constants, and current response.

Within (34), I (0) ≅
E (0)
R indicates that the initial current passing

the inductor is approximately E (0)
R amperes, though not exactly E (0)

R . This
uncertainty can be attributed to several factors, including:

• Measurement error: accurately measuring the initial current in an
inductor is a significant challenge due to inherent limitations in
precision. This difficulty arises from the fact that the current through
an inductor experiences rapid temporal fluctuations, where even
small measurement errors can cause significant inaccuracies in the
determined initial current.

• Model shape: the simplified version of (34) approximates the actual
SRIC in real-world conditions. To illustrate, the model may overlook
the fallout of parasitic resistance and capacitance within the SRIC,
leading to some degree of uncertainty.

• Numerical inaccuracies: given the inherent limitations in computa-
tional precision, a certain degree of error is unavoidable when
numerically solving (34).

The variability in E (0)
R in (34) can significantly impact its resolution.

A slight deviation in E (0)
R may produce substantial differences in the

predicted current when solving SRIC. Thus, acknowledging this uncer-
tainty is crucial. To address it, two approaches are common:

1. Sensitivity analysis: evaluating how changes in I (0) affect the so-
lution by solving (34) for different E (0)

R values.
2. Probabilistic approach: entrusting a probability distribution to E (0)

R
and applying Monte-Carlo simulations to generate multiple re-
alizations, forming a probability distribution of future values.

Applying fuzzification to (34) while accounting for the environ-
ment’s stochastic nature enhances result accuracy and improves the
detection of new constraints in circuit assessment, as exhibited next.

Application 1. Let’s analyze the SRIC subject to some uncertainty
[11]

I
ʹ
(ξ) = −

R
L

I (ξ) + E (ξ), ξ ∈ [0,1], (35)

controlled by the FTIC

I (0) = L with L (κ) =
{
25κ − 24, 0.96 ≤ κ ≤ 1,
− 100κ + 101, 1 ≤ κ ≤ 1.01. (36)

The ζ-cut formation of (35) and (36) leads to

[ℇ(ξ,I (ξ))]ζ =
[

−
R
L
I 2ζ(ξ), −

R
L
I 1ζ(ξ)

]

+ E (ξ). (37)

[L ]
ζ
= [0.96+0.04ζ, 1.01 − 0.01ζ]. (38)

Numerically, assume (R, L) = (1, 1)/(Ohm, Henry) with E (ξ) =

sin(ξ)+ 1. Anyhow, to reveal the fuzzy solution of (35) and (36),
consider two situations

Situation i. The CTDMs corresponding to type (1)-SGD are

{
I

ʹ
1ζ(ξ) = − I 2ζ(ξ) + sin(ξ) + 1,

I
ʹ
2ζ(ξ) = − I 1ζ(ξ) + sin(ξ) + 1,

(39)

controlled by the CTICs
⎧
⎪⎪⎨

⎪⎪⎩

I 1ζ(0) =
24
25

+
1
25

ζ,

I 2ζ(0) =
101
100

−
1

100
ζ.

(40)

Herein, the exact I 1ζ(ξ) and I 2ζ(ξ) of (39) and (40) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 1ζ(ξ) =
1
2
(sin(ξ) − cos(ξ)) +

(
24
25

+
1
25

ζ
)

cosh(ξ)

−

(
101
100

−
1

100
ζ
)

sinh(ξ) −
1
2
e− ξ + 1,

I 2ζ(ξ) =
1
2
(sin(ξ) − cos(ξ)) +

(
101
100

−
1

100
ζ
)

cosh(ξ)

−

(
24
25

+
1
25

ζ
)

sinh(ξ) −
1
2
e− ξ + 1.

(41)

Situation ii. The CTDMs corresponding to type (2)-SGD are
{

I
ʹ
1ζ(ξ) = − I 1ζ(ξ) + sin(ξ) + 1,

I
ʹ
2ζ(ξ) = − I 2ζ(ξ) + sin(ξ) + 1,

(42)

controlled by the CTICs
⎧
⎪⎪⎨

⎪⎪⎩

I 1ζ(0) =
24
25

+
1
25

ζ,

I 2ζ(0) =
101
100

−
1

100
ζ.

(43)

Herein, the exact I 1ζ(ξ) and I 2ζ(ξ) of (42) and (43) are
⎧
⎪⎪⎨

⎪⎪⎩

I 1ζ(ξ) = −
1
2
e− ξ +

(
24
25

+
1
25

ζ
)

e− ξ + 1+
1
2
(sin(ξ) − cos(ξ)),

I 2ζ(ξ) = −
1
2
e− ξ +

(
101
100

−
1

100
ζ
)

e− ξ + 1+
1
2
(sin(ξ) − cos(ξ)).

(44)

Application 2. Let’s analyze the FTDM, including uncertain forc-
ing and nonhomogeneous terms [11]

H
’
(ξ) = 2ξH(ξ) + ξH, ξ ∈ [0,1], (45)

controlled by the FTIC

H(0) = L with L (κ) = max(0,1 − |κ|), κ ∈ R. (46)

The ζ-cut formation of (45) and (46) leads to

[U(ξ,H(ξ))]ζ = [2ξH1ζ(ξ)+ ξ(ζ − 1), 2ξH2ζ(ξ)+ ξ(1 − ζ)]. (47)

[L ]
ζ
= [ζ − 1, 1 − ζ]. (48)

Anyhow, to reveal the fuzzy solution of (45) and (46), consider two
situations as

Situation i. The CTDMs corresponding to type (1)-SGD are
{

H
ʹ
1ζ(ξ) = 2ξH1ζ(ξ) + ξ(ζ − 1),

H
ʹ
2ζ(ξ) = 2ξH2ζ(ξ) + ξ(1 − ζ),

(49)

controlled by the CTICs
{

H1ζ(0) = ζ − 1,
H2ζ(0) = 1 − ζ. (50)

Herein, the exact H1ζ(ξ) and H2ζ(ξ) of (49) and (50) are
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⎧
⎪⎪⎨

⎪⎪⎩

H1ζ(ξ) =
1
2

(
3eξ2 − 1

)
(ζ − 1),

H2ζ(ξ) =
1
2

(
3eξ2 − 1

)
(1 − ζ).

(51)

Situation ii. The CTDMs corresponding to type (2)-SGD are
{

H
ʹ
1ζ(ξ) = 2ξH2ζ(ξ) + ξ(1 − ζ),

H
ʹ
2ζ(ξ) = 2ξH1ζ(ξ) + ξ(ζ − 1),

(52)

controlled by the CTICs
{

H1ζ(0) = ζ − 1,
H2ζ(0) = 1 − ζ. (53)

Herein, the exact H1ζ(ξ) and H2ζ(ξ) of (52) and (53) are
⎧
⎪⎪⎨

⎪⎪⎩

H1ζ(ξ) =
1
2

(
3e− ξ2 − 1

)
(ζ − 1),

H2ζ(ξ) =
1
2

(
3e− ξ2 − 1

)
(1 − ζ).

(54)

7. Findings and comparative analysis

This piece offers the key findings of the study and provides a
comparative analysis to contextualize the results. By examining trends,
patterns, and variations, we assess how the data aligns with existing
literature, theoretical frameworks, or industry benchmarks. Through
this analysis, we aim to identify significant insights, highlight similar-
ities and differences, analyze and compare, and draw meaningful con-
clusions that contribute to a deeper understanding of the subject.

The discussions of Application 1 are as follows. To obtain the desired
outcomes, we employ the LOP-GS to get the evolution values of the fuzzy
solution at some values of ξ in [0, 1] and ζ in the truth [0,1] interval,
utilizing Algorithm 1 and Algorithm 2 within N = 10 and M = 4.

Anyhow, Table 1 and Table 2 display |Error| in I 1ζηn

(
ξj

)
and I 2ζηn

(
ξj

)
,

comparing within I 1ζη

(
ξj

)
and I 2ζη

(
ξj

)
, simultaneously, at n = 6 in

Situation i. Tables 3 and 4 display similar results in Situation ii. The two

shapes in Fig. 2 portray the fuzzy approximate solution
[
I n

(
ξj

)]ζη
in

Situation i and Situation ii, simultaneously at n = 6.
The discussions of Application 2 are as follows. To obtain the desired

outcomes, we employ the LOP-GS to get the evolution values of the fuzzy
solution at some values of ξ in [0, 1] and ζ in the truth [0,1] interval,
utilizing Algorithm 1 and Algorithm 2 within N = 10 and M = 4.

Anyhow, Table 5 and Table 6 display |Error| in H1ζηn

(
ξj

)
and H2ζηn

(
ξj

)

comparing within H1ζη

(
ξj

)
and H2ζη

(
ξj

)
, simultaneously, at n = 6 in

Situation i. Tables 7 and 8 display similar results in Situation ii. The two
shapes in Fig. 3 portray the fuzzy approximate solution [Hn(ξ)]

ζη in Sit-
uation i and Situation ii, simultaneously at n = 6.

The figures clearly show that ∀ξj ∈ [0, 1] and ∀ζη ∈ [0, 1], the ζ-cut
formation of the LOP-GS approximations corresponds to valid level sets.
These findings align with Situation 1 and Situation 2 of Algorithm 1.
Also, it is evident that the graphs closely align, exhibiting similar
behavior and strong agreement. Notably, the FTDM significantly in-
fluences the model profiles, often resulting in unconventional behavior
when deviating substantially from the crisp value.

Next, we compare the gained LOP-GS results with those HKS results
that were studied in [11]. Such comparisons are important because they
help us understand how well the LOP-GS performs in practice. These
results also give readers more confidence in the proposed approach, as
they show how it stands relative to trusted techniques that have already
been studied and used by other researchers. Anyhow, results of LOP-GS
against HKS in |Error| even nodals of Application 1 at some values of ξ in
[0, 1] and ζ in truth [0, 1] interval are tabulated in Tables 9–12. Similarly,
Tables 9–12 show the comparative results for Application 2.

Table 13, 14, 15, 16
In comparative terminologies, the LOP-GS solves Application 1 more

accurately from HKS at all nodal ξj in [0, 1] and ζη in truth [0, 1] interval,
whilst for Application 2, the LOP-GS closely and better than the HKS in
somenodal ξj in [0, 1] and ζ in truth [0, 1] interval, especially at ξj =1, and
the |Error| between LOP-GS and HKS nodals is equal at ζη = 1. The su-

Table 1
Results of Situation i in Application 1: |Error| in LOP-GS solutions for I 1ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 9.699959 × 10− 9 9.640032 × 10− 9 9.115334 × 10− 9 9.520181 × 10− 9 9.460254 × 10− 9

0.2 2.641258 × 10− 8 2.617179 × 10− 8 2.457983 × 10− 8 2.569021 × 10− 8 2.544942 × 10− 8

0.3 1.761498 × 10− 8 1.750937 × 10− 8 1.698563 × 10− 8 1.729814 × 10− 8 1.719253 × 10− 8

0.4 3.429775 × 10− 8 3.400601 × 10− 8 3.244489 × 10− 8 3.342254 × 10− 8 3.313080 × 10− 8

0.5 1.728345 × 10− 9 1.765390 × 10− 9 1.675457 × 10− 9 1.839485 × 10− 9 1.876531 × 10− 9

0.6 3.581515 × 10− 8 3.554604 × 10− 8 3.357486 × 10− 8 3.500782 × 10− 8 3.473871 × 10− 8

0.7 1.551620 × 10− 8 1.535626 × 10− 8 1.406268 × 10− 8 1.503639 × 10− 8 1.487646 × 10− 8

0.8 2.921767 × 10− 8 2.901339 × 10− 8 2.816756 × 10− 8 2.860483 × 10− 8 2.840054 × 10− 8

0.9 8.831035 × 10− 9 8.742033 × 10− 9 8.759028 × 10− 9 8.564023 × 10− 9 8.475021 × 10− 9

1 1.076916 × 10− 13 1.081357 × 10− 13 6.510481 × 10− 10 1.028066 × 10− 13 1.028066 × 10− 13

Table 2
Results of Situation i in Application 1: |Error| in LOP-GS solutions for I 2ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 8.959909 × 10− 9 9.060611 × 10− 9 9.008478 × 10− 9 9.264671 × 10− 9 9.460254 × 10− 9

0.2 2.393753 × 10− 8 2.430009 × 10− 8 2.391514 × 10− 8 2.500283 × 10− 8 2.544942 × 10− 8

0.3 1.650490 × 10− 8 1.668440 × 10− 8 1.614883 × 10− 8 1.709092 × 10− 8 1.719253 × 10− 8

0.4 3.142851 × 10− 8 3.185510 × 10− 8 2.995948 × 10− 8 3.278096 × 10− 8 3.313080 × 10− 8

0.5 1.873253 × 10− 9 1.878247 × 10− 9 1.495614 × 10− 9 1.790433 × 10− 9 1.876531 × 10− 9

0.6 3.289200 × 10− 8 3.336146 × 10− 8 2.887614 × 10− 8 3.417750 × 10− 8 3.473871 × 10− 8

0.7 1.382819 × 10− 8 1.409980 × 10− 8 1.162755 × 10− 8 1.449501 × 10− 8 1.487646 × 10− 8

0.8 2.723790 × 10− 8 2.751953 × 10− 8 2.236517 × 10− 8 2.825590 × 10− 8 2.840054 × 10− 8

0.9 8.206561 × 10− 9 8.267845 × 10− 9 6.676907 × 10− 9 8.588783 × 10− 9 8.475021 × 10− 9

1 2.997042 × 10− 10 2.253783 × 10− 10 4.766986 × 10− 10 3.006019 × 10− 10 1.028066 × 10− 13
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Table 3
Results of Situation ii in Application 1: |Error| in LOP-GS solutions for I 1ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 9.207106 × 10− 9 9.270260 × 10− 9 9.333512 × 10− 9 9.396765 × 10− 9 9.460018 × 10− 9

0.2 2.481272 × 10− 8 2.497259 × 10− 8 2.513188 × 10− 8 2.529118 × 10− 8 2.545047 × 10− 8

0.3 1.673867 × 10− 8 1.685172 × 10− 8 1.696510 × 10− 8 1.707848 × 10− 8 1.719186 × 10− 8

0.4 3.230559 × 10− 8 3.251236 × 10− 8 3.271872 × 10− 8 3.292508 × 10− 8 3.313144 × 10− 8

0.5 1.804567 × 10− 9 1.821704 × 10− 9 1.839559 × 10− 9 1.857414 × 10− 9 1.875268 × 10− 9

0.6 3.386938 × 10− 8 3.408641 × 10− 8 3.430367 × 10− 8 3.452093 × 10− 8 3.473819 × 10− 8

0.7 1.452796 × 10− 8 1.461569 × 10− 8 1.470288 × 10− 8 1.479007 × 10− 8 1.487727 × 10− 8

0.8 2.769257 × 10− 8 2.786881 × 10− 8 2.804569 × 10− 8 2.822258 × 10− 8 2.839946 × 10− 8

0.9 8.278173 × 10− 9 8.327643 × 10− 9 8.376879 × 10− 9 8.426116 × 10− 9 8.475353 × 10− 9

1 1.063593 × 10− 13 9.681144 × 10− 14 9.747758 × 10− 14 9.814371 × 10− 14 9.880984 × 10− 14

Table 4
Results of Situation ii in Application 1: |Error| in LOP-GS solutions for I 2ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 9.523382 × 10− 9 9.508021 × 10− 9 9.492207 × 10− 9 9.476393 × 10− 9 9.460018 × 10− 9

0.2 2.560914 × 10− 8 2.556715 × 10− 8 2.552733 × 10− 8 2.548752 × 10− 8 2.545047 × 10− 8

0.3 1.730560 × 10− 8 1.727862 × 10− 8 1.725027 × 10− 8 1.722193 × 10− 8 1.719186 × 10− 8

0.4 3.333737 × 10− 8 3.328444 × 10− 8 3.323285 × 10− 8 3.318127 × 10− 8 3.313144 × 10− 8

0.5 1.893882 × 10− 9 1.892070 × 10− 9 1.887599 × 10− 9 1.883128 × 10− 9 1.875268 × 10− 9

0.6 3.495572 × 10− 8 3.490251 × 10− 8 3.484819 × 10− 8 3.479387 × 10− 8 3.473819 × 10− 8

0.7 1.496391 × 10− 8 1.494045 × 10− 8 1.491866 × 10− 8 1.489686 × 10− 8 1.487727 × 10− 8

0.8 2.857702 × 10− 8 2.853505 × 10− 8 2.849083 × 10− 8 2.844660 × 10− 8 2.839946 × 10− 8

0.9 8.524350 × 10− 9 8.511395 × 10− 9 8.499088 × 10− 9 8.486781 × 10− 9 8.475353 × 10− 9

1 1.081357 × 10− 13 1.085798 × 10− 13 1.088018 × 10− 13 1.083577 × 10− 13 9.880984 × 10− 14

Fig. 2. Portrayal of Application 1: the fuzzy approximate solution
[
I n

(
ξj

)]ζη
in Situation 1 and Situation 2, simultaneously as: blue: I 1ζηn

(
ξj

)
and

brown: I 2ζηn

(
ξj

)
.

Table 5
Results of Situation i in Application 2: |Error| in LOP-GS solutions for H1ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 1.988820 × 10− 5 1.491615 × 10− 5 9.944103 × 10− 6 4.972051 × 10− 6 0
0.2 8.403361 × 10− 5 6.302520 × 10− 5 4.201680 × 10− 5 2.100840 × 10− 5 0
0.3 3.484081 × 10− 5 2.613060 × 10− 5 1.742040 × 10− 5 8.710202 × 10− 6 0
0.4 1.083038 × 10− 4 8.122787 × 10− 5 5.415191 × 10− 5 2.707595 × 10− 5 0
0.5 2.142255 × 10− 4 1.606691 × 10− 5 1.071128 × 10− 5 5.355639 × 10− 6 0
0.6 9.981814 × 10− 5 7.486361 × 10− 5 4.990907 × 10− 5 2.495453 × 10− 5 0
0.7 7.024598 × 10− 4 5.268448 × 10− 5 3.512299 × 10− 5 1.756149 × 10− 5 0
0.8 7.547951 × 10− 4 5.660963 × 10− 5 3.773975 × 10− 5 1.886987 × 10− 5 0
0.9 4.172766 × 10− 5 3.129574 × 10− 5 2.086383 × 10− 5 1.043191 × 10− 5 0
1 2.894884 × 10− 8 2.171133 × 10− 8 1.447422 × 10− 8 7.237113 × 10− 9 0
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Table 6
Results of Situation i in Application 2: |Error| in LOP-GS solutions for H2ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 1.988820 × 10− 5 1.491615 × 10− 5 9.944103 × 10− 6 4.972051 × 10− 6 0
0.2 8.403361 × 10− 5 6.302520 × 10− 5 4.201680 × 10− 5 2.100842 × 10− 5 0
0.3 3.484081 × 10− 5 2.613060 × 10− 5 1742040 × 10− 5 8.710203 × 10− 6 0
0.4 1.083038 × 10− 4 8.122787 × 10− 5 5.415191 × 10− 5 2.707595 × 10− 5 0
0.5 2.142255 × 10− 5 1.606691 × 10− 5 1.071127 × 10− 5 5.355639 × 10− 6 0
0.6 9.981814 × 10− 5 7.486361 × 10− 5 4.990907 × 10− 5 2.495453 × 10− 5 0
0.7 7.024598 × 10− 5 5.268448 × 10− 5 3.512299 × 10− 5 1.756149 × 10− 5 0
0.8 7.549516 × 10− 5 5.660963 × 10− 5 3.773975 × 10− 5 1.886987 × 10− 5 0
0.9 4.172766 × 10− 5 3.129574 × 10− 5 2.086383 × 10− 5 1.043191 × 10− 5 0
1 2.894884 × 10− 8 2.171159 × 10− 8 1.447440 × 10− 8 7.237200 × 10− 9 0

Table 7
Results of Situation ii in Application 2: |Error| in LOP-GS solutions for H1ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0.0 0.0 0.0 0.0 0
0.1 4.740907 × 10− 6 3.555680 × 10− 6 2.370453 × 10− 6 1.185226 × 10− 6 0
0.2 1.286366 × 10− 5 9.647746 × 10− 6 6.431831 × 10− 6 3.215915 × 10− 6 0
0.3 8.758031 × 10− 6 6.568523 × 10− 6 4.379015 × 10− 6 2.189507 × 10− 6 0
0.4 1.604316 × 10− 5 1.203237 × 10− 5 8.021582 × 10− 6 4.010791 × 10− 6 0
0.5 1.747763 × 10− 6 1.310822 × 10− 6 8.738819 × 10− 7 4.369409 × 10− 7 0
0.6 1.681086 × 10− 5 1.260815 × 10− 5 8.405434 × 10− 6 4.202717 × 10− 6 0
0.7 5.882519 × 10− 6 4.411889 × 10− 6 2.941259 × 10− 6 1.470629 × 10− 6 0
0.8 1.399371 × 10− 5 1.049528 × 10− 5 6.996856 × 10− 6 3.498428 × 10− 6 0
0.9 3.007249 × 10− 6 2.255437 × 10− 6 1.503624 × 10− 6 7.518123 × 10− 7 0
1 1.510512 × 10− 8 1.132884 × 10− 8 7.552561 × 10− 9 3.776281 × 10− 9 0

Table 8
Results of Situation 2 in Application 2: |Error| in LOP-GS solutions for H2ζηn

(
ξj

)
.

ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0 0 0 0 0 0
0.1 4.740958 × 10− 6 3.555718 × 10− 6 2.370479 × 10− 6 1.185239 × 10− 6 0
0.2 1.286359 × 10− 5 9.647697 × 10− 6 6.431798 × 10− 6 3.215899 × 10− 6 0
0.3 8.758153 × 10− 6 6.568615 × 10− 6 4.379076 × 10− 6 2.189538 × 10− 6 0
0.4 1.604330 × 10− 5 1.203247 × 10− 5 8.021651 × 10− 6 4.010825 × 10− 6 0
0.5 1.747600 × 10− 6 1.310700 × 10− 6 8.738000 × 10− 7 4.369000 × 10− 7 0
0.6 1.681063 × 10− 5 1.260797 × 10− 5 8.405316 × 10− 6 4.202658 × 10− 6 0
0.7 5.882188 × 10− 6 4.411641 × 10− 6 2.941094 × 10− 6 1.470547 × 10− 6 0
0.8 1.399411 × 10− 5 1.049558 × 10− 5 6.997057 × 10− 6 3.498528 × 10− 6 0
0.9 3.007663 × 10− 6 2.255747 × 10− 6 1.503831 × 10− 6 7.519159 × 10− 7 0
1 1.556218 × 10− 8 1.167163 × 10− 8 7.781090 × 10− 9 3.890545 × 10− 9 0

Fig. 3. Portrayal of LOP-GS in Application 2: the fuzzy approximate solution
[
Hn

(
ξj

)]ζη
in Situation 1 and Situation 2, simultaneously as: blue: H1ζηn

(
ξj

)
and

brown: H2ζηn

(
ξj

)
.
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Table 9
Results of LOP-GS against HKS in |Error| even nodal of Situation i in Application 1 for I 1ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 2.6412 × 10− 8 2.6171 × 10− 8 2.4579 × 10− 8 2.5690 × 10− 8 2.5449 × 10− 8

HKS 1.8936 × 10− 6 1.8901 × 10− 6 1.6267 × 10− 6 1.4144 × 10− 6 5.2914 × 10− 7

0.4 LOP-GS 3.4297 × 10− 8 3.4006 × 10− 8 3.2444 × 10− 8 3.3422 × 10− 8 3.3130 × 10− 8

HKS 3.6294 × 10− 6 3.6203 × 10− 6 3.1138 × 10− 6 2.7056 × 10− 6 9.5426 × 10− 7

0.6 LOP-GS 3.5815 × 10− 8 3.5546 × 10− 8 3.3574 × 10− 8 3.5007 × 10− 8 3.4738 × 10− 8

HKS 5.2279 × 10− 6 5.2109 × 10− 6 4.4784 × 10− 6 3.8884 × 10− 6 1.3071 × 10− 6

0.8 LOP-GS 2.9217 × 10− 8 2.9013 × 10− 8 2.8167 × 10− 8 2.8604 × 10− 8 2.8400 × 10− 8

HKS 6.6997 × 10− 6 6.6721 × 10− 6 5.7292 × 10− 6 4.9700 × 10− 6 1.6089 × 10− 6

1 LOP-GS 1.0769 × 10− 13 1.0813 × 10− 13 6.5104 × 10− 10 1.0280 × 10− 13 1.0280 × 10− 13

HKS 8.0485 × 10− 6 8.0072 × 10− 6 6.8686 × 10− 6 5.9523 × 10− 6 1.8732 × 10− 6

Table 10
Results of LOP-GS against HKS in |Error| even nodal of Situation i in Application 1 for I 2ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 2.3937 × 10− 8 2.4300 × 10− 8 2.3915 × 10− 8 2.5002 × 10− 8 2.5449 × 10− 8

HKS 1.8390 × 10− 6 1.8491 × 10− 6 1.6032 × 10− 6 1.4042 × 10− 6 5.2914 × 10− 7

0.4 LOP-GS 3.1428 × 10− 8 3.1855 × 10− 8 2.99594 × 10− 8 3.2780 × 10− 8 3.3130 × 10− 8

HKS 3.5081 × 10− 6 3.5294 × 10− 6 3.06156 × 10− 6 2.6829 × 10− 6 9.5426 × 10− 7

0.6 LOP-GS 3.2892 × 10− 8 3.33614 × 10− 8 2.8876 × 10− 8 3.4177 × 10− 8 3.4738 × 10− 8

HKS 5.0252 × 10− 6 5.0589 × 10− 6 4.3910 × 10− 6 3.8503 × 10− 6 1.3071 × 10− 6

0.8 LOP-GS 2.7237 × 10− 8 2.7519 × 10− 8 2.2365 × 10− 8 2.8255 × 10− 8 2.8400 × 10− 8

HKS 6.3976 × 10− 6 6.4455 × 10− 6 5.5989 × 10− 6 4.9133 × 10− 6 1.6089 × 10− 6

1 LOP-GS 2.9970 × 10− 10 2.2537 × 10− 10 4.7669 × 10− 10 3.0060 × 10− 10 1.0280 × 10− 13

HKS 7.6248 × 10− 6 7.6895 × 10− 6 6.6859 × 10− 6 5.8728 × 10− 6 1.8732 × 10− 6

Table 11
Results of LOP-GS against HKS in |Error| even nodal of Situation ii in Application 1 for I 2ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 2.4812 × 10− 8 2.4972 × 10− 8 2.5131 × 10− 8 2.5291 × 10− 8 2.5450 × 10− 8

HKS 5.1903 × 10− 7 5.2156 × 10− 7 5.2409 × 10− 7 5.2662 × 10− 7 5.2914 × 10− 7

0.4 LOP-GS 3.2305 × 10− 8 3.2512 × 10− 8 3.2718 × 10− 8 3.2925 × 10− 8 3.3131 × 10− 8

HKS 9.3851 × 10− 7 9.4245 × 10− 7 9.4638 × 10− 7 9.5032 × 10− 7 9.5426 × 10− 7

0.6 LOP-GS 3.3869 × 10− 8 3.4086 × 10− 8 3.4303 × 10− 8 3.4520 × 10− 8 3.4738 × 10− 8

HKS 1.2890 × 10− 6 1.2935 × 10− 6 1.2980 × 10− 6 1.3025 × 10− 6 1.3071 × 10− 6

0.8 LOP-GS 2.7692 × 10− 8 2.7868 × 10− 8 2.8045 × 10− 8 2.8222 × 10− 8 2.8399 × 10− 8

HKS 1.5912 × 10− 6 1.5956 × 10− 6 1.6000 × 10− 6 1.6044 × 10− 6 1.6089 × 10− 6

1 LOP-GS 1.0635 × 10− 13 9.6811 × 10− 14 9.7477 × 10− 14 9.8143 × 10− 14 9.8809 × 10− 14

HKS 1.8578 × 10− 6 1.8616 × 10− 6 1.8655 × 10− 6 1.8694 × 10− 6 1.8732 × 10− 6

Table 12
Results of LOP-GS against HKS in |Error| even nodal of Situation ii in Application 1 for I 2ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 2.5609 × 10− 8 2.5567 × 10− 8 2.5527 × 10− 8 2.5487 × 10− 8 2.5450 × 10− 8

HKS 5.3167 × 10− 7 5.3104 × 10− 7 5.3041 × 10− 7 5.2978 × 10− 7 5.2914 × 10− 7

0.4 LOP-GS 3.3337 × 10− 8 3.3284 × 10− 8 3.3232 × 10− 8 3.3181 × 10− 8 3.3131 × 10− 8

HKS 9.5819 × 10− 7 9.5721 × 10− 7 9.5622 × 10− 7 9.5524 × 10− 7 9.5426 × 10− 7

0.6 LOP-GS 3.4955 × 10− 8 3.4902 × 10− 8 3.4848 × 10− 8 3.4793 × 10− 8 3.4738 × 10− 8

HKS 1.3116 × 10− 6 1.3104 × 10− 6 1.3093 × 10− 6 1.3082 × 10− 6 1.3071 × 10− 6

0.8 LOP-GS 2.8577 × 10− 8 2.8535 × 10− 8 2.8490 × 10− 8 2.8446 × 10− 8 2.8399 × 10− 8

HKS 1.6133 × 10− 6 1.6122 × 10− 6 1.6111 × 10− 6 1.6100 × 10− 6 1.6089 × 10− 6

1 LOP-GS 1.0813 × 10− 13 1.0857 × 10− 13 1.0880 × 10− 13 1.0835 × 10− 13 9.8809 × 10− 14

HKS 1.8771 × 10− 6 1.8761 × 10− 6 1.8752 × 10− 6 1.8742 × 10− 6 1.8732 × 10− 6
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perior performance of the LOP-GS in certain cases can be attributed to its
spectral accuracy and the global nature of the basis functions. The LOPs,
being orthogonal, allow for efficient approximation of smooth solutions
with fewer terms, leading to rapid convergence. In contrast, the HKS,
while highlyflexible and effective for scattereddata or irregular domains,
may involvedenser systemmatrices andhigher computational cost. Thus,
for problemswith smooth solutions on regular domains, theLOP-GS tends
to be more accurate and computationally efficient.

Ultimately, we analyze the time complexity of the proposed LOP-GS.
The implemented instructions are organized into conventional steps
designed to minimize the algorithm’s overall execution time. The code
contains a single loop, resulting in a linear time complexity of O(N),
which is considered efficient. Tables 17 and 18 present the execution
times (in seconds) for the two utilized applications corresponding to the
previously discussed data. Here, RT denotes the running time in seconds
(LOP-GS) or minutes (HKS).

Table 15
Results of LOP-GS against HKS in |Error| even nodal of Situation ii in Application 2 for H1ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 1.2863 × 10− 5 9.6477 × 10− 6 6.4318 × 10− 6 3.2159 × 10− 6 0
HKS 9.3727 × 10− 6 7.0295 × 10− 6 4.6863 × 10− 6 2.3432 × 10− 6 0

0.4 LOP-GS 1.6043 × 10− 5 1.2032 × 10− 5 8.0215 × 10− 6 4.0107 × 10− 6 0
HKS 9.9756 × 10− 6 7.4817 × 10− 6 4.9878 × 10− 6 2.4939 × 10− 6 0

0.6 LOP-GS 1.6810 × 10− 5 1.2608 × 10− 5 8.4054 × 10− 6 4.2027 × 10− 6 0
HKS 1.1531 × 10− 5 8.6483 × 10− 6 5.7655 × 10− 6 2.8827 × 10− 6 0

0.8 LOP-GS 1.3993 × 10− 5 1.0495 × 10− 5 6.9968 × 10− 6 3.4984 × 10− 6 0
HKS 1.4784 × 10− 5 1.1088 × 10− 5 7.3922 × 10− 6 3.6961 × 10− 6 0

1 LOP-GS 1.5105 × 10− 8 1.1328 × 10− 8 7.5525 × 10− 9 3.7762 × 10− 9 0
HKS 2.1025 × 10− 5 1.5769 × 10− 5 1.0512 × 10− 5 5.2564 × 10− 6 0

Table 13
Results of LOP-GS against HKS in |Error| even nodal of Situation i in Application 2 for H1ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 8.4033 × 10− 5 6.3025 × 10− 5 4.2016 × 10− 5 2.1008 × 10− 5 0
HKS 6.7801 × 10− 6 5.0851 × 10− 6 3.3900 × 10− 6 1.6950 × 10− 6 0

0.4 LOP-GS 1.0830 × 10− 4 8.1227 × 10− 5 5.4151 × 10− 5 2.7075 × 10− 5 0
HKS 1.3698 × 10− 5 1.0274 × 10− 5 6.8493 × 10− 6 3.4246 × 10− 6 0

0.6 LOP-GS 9.9818 × 10− 5 7.4863 × 10− 5 4.9909 × 10− 5 2.4954 × 10− 5 0
HKS 2.1348 × 10− 5 1.6011 × 10− 5 1.0674 × 10− 5 5.3370 × 10− 6 0

0.8 LOP-GS 7.5479 × 10− 4 5.6609 × 10− 5 3.7739 × 10− 5 1.8869 × 10− 5 0
HKS 3.0556 × 10− 5 2.2917 × 10− 5 1.5278 × 10− 5 7.6391 × 10− 6 0

1 LOP-GS 2.8948 × 10− 8 2.1711 × 10− 8 1.4474 × 10− 8 7.2371 × 10− 9 0
HKS 4.2419 × 10− 5 3.1814 × 10− 5 2.1209 × 10− 5 1.0604 × 10− 5 0

Table 14
Results of LOP-GS against HKS in |Error| even nodal of Situation i in Application 2 for H2ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 8.4033 × 10− 5 6.3025 × 10− 5 4.2016 × 10− 5 2.1008 × 10− 5 0
HKS 6.7801 × 10− 6 5.0851 × 10− 6 3.3900 × 10− 6 1.6950 × 10− 6 0

0.4 LOP-GS 1.0830 × 10− 4 8.1227 × 10− 5 5.4151 × 10− 5 2.7075 × 10− 5 0
HKS 1.3698 × 10− 5 1.0274 × 10− 5 6.8493 × 10− 6 3.4246 × 10− 6 0

0.6 LOP-GS 9.9818 × 10− 5 7.4863 × 10− 5 4.9909 × 10− 5 2.4954 × 10− 5 0
HKS 2.1348 × 10− 5 1.6011 × 10− 5 1.0674 × 10− 5 5.3370 × 10− 6 0

0.8 LOP-GS 7.5495 × 10− 5 5.6609 × 10− 5 3.7739 × 10− 5 1.8869 × 10− 5 0
HKS 3.0556 × 10− 5 2.2917 × 10− 5 1.5278 × 10− 5 7.6391 × 10− 6 0

1 LOP-GS 2.8948 × 10− 8 2.1711 × 10− 8 1.4474 × 10− 8 7.2372 × 10− 9 0
HKS 4.2419 × 10− 5 3.1814 × 10− 5 2.1209 × 10− 5 1.0604 × 10− 5 0

Table 16
Results of LOP-GS against HKS in |Error| even nodal of Situation ii in Application 2 for H2ζηn

(
ξj

)
.

Strategy ζ0 = 0 ζ1 = 0.25 ζ3 = 0.5 ζ3 = 0.75 ζ4 = 1

0.2 LOP-GS 1.2863 × 10− 5 9.6476 × 10− 6 6.4317 × 10− 6 3.2158 × 10− 6 0
HKS 9.3727 × 10− 6 7.0295 × 10− 6 4.6863 × 10− 6 2.3432 × 10− 6 0

0.4 LOP-GS 1.6043 × 10− 5 1.2032 × 10− 5 8.0216 × 10− 6 4.0108 × 10− 6 0
HKS 9.9756 × 10− 6 7.4817 × 10− 6 4.9878 × 10− 6 2.4939 × 10− 6 0

0.6 LOP-GS 1.6810 × 10− 5 1.2607 × 10− 5 8.4053 × 10− 6 4.2026 × 10− 6 0
HKS 1.1531 × 10− 5 8.6483 × 10− 6 5.7655 × 10− 6 2.8827 × 10− 6 0

0.8 LOP-GS 1.3994 × 10− 5 1.0495 × 10− 5 6.9970 × 10− 6 3.4985 × 10− 6 0
HKS 1.4784 × 10− 5 1.1088 × 10− 5 7.3922 × 10− 6 3.6961 × 10− 6 0

1 LOP-GS 1.5562 × 10− 8 1.1671 × 10− 8 7.7810 × 10− 9 3.8905 × 10− 9 0
HKS 2.1025 × 10− 5 1.5769 × 10− 5 1.0512 × 10− 6 5.2564 × 10− 6 0
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Therewith, time complexity is crucial in numerical analysis because
it measures the efficiency of algorithms in terms of execution time as the
input size grows. Efficient time complexity ensures that numerical
methods remain practical and scalable for solving large-scale problems,
especially in scientific computing, engineering, and data-intensive
applications.

Concluding remarks
The FTDMs are an extension of CTDMs used to represent models that

involve uncertainty or inaccuracy in the initial values or model pa-
rameters. These models are of great importance in many engineering
and scientific applications, and their most prominent benefits are as
follows:

• More realistic analysis of dynamic models: FTDMs provide powerful
tools for modeling systems that contain ambiguity or noise.

• Engineering and physical applications: FTDMs are used to analyze
electrical, mechanical, and hydraulic systems that contain uncertain
or time-varying parameters.

• Medical and biological applications: FTDMs help in studying the
spread of epidemics, physiological changes, and cell growth models,
where data is often inaccurate or constantly changing.

The LOP-GS is an effective semi-analytical method for solving
FTDMs, particularly for problems with moderate complexity. However,
like many spectral or polynomial-based methods, it has several limita-
tions, especially when applied to more challenging scenarios like high-
dimensional systems or highly nonlinear FTDMs. Here are the main
limitations:

1. Scalability to high-dimensional systems:

• Curse of dimensionality: the method’s computational complexity
grows rapidly with the number of dimensions, due to the need for
multidimensional polynomial expansions.

• Memory and computational load: representing the solution as a sum
of LOPs in multiple variables requires significant memory and can be
computationally expensive.

• Basis function explosion: in higher dimensions, the number of basis
functions increases combinatorially, making the Galerkin system
very large and harder to solve.

2. Handling highly nonlinear fuzzy systems:

• Nonlinearity treatment: GS, especially with orthogonal polynomials
like Lucas, can struggle with strongly nonlinear terms due to diffi-
culty in projecting nonlinear terms onto the basis space and possible
loss of orthogonality or approximation accuracy.

• Fuzzy arithmetic complexity: nonlinear fuzzy operations introduce
additional complexity, especially when using ζ-cut formation or
Hukuhara derivatives.

• Error accumulation: in nonlinear systems, approximation errors from
truncation or projection may amplify over time or space, leading to
reduced reliability.

Anyhow, this article presents an innovative LOP-GS that utilizes LOPs
as basis functions in the weighted residual GS to approximate the fuzzy
solutions of FTDMs. These models are first transformed into two corre-
sponding situations as CTDM forms. For each situation, the required
functions are expressed in terms of LOPs, and the residual function is
computed to formulate a set of transcendental equations. By solving the
resulting set, numerical approximations are obtained. The LOP-GS is
applied under the constraints of SGD to efficiently produce fuzzy approx-
imations for specific FTDMs. The approach is particularly advantageous
due to its high accuracy, especially in nonhomogeneous cases, evenwith a
small number of iterations. The gained results support the convergence,
demonstrating that the approximation error shrinks monotonically as the
measure of terms increases. Furthermore, we discuss error estimation in
LOP-GSwith comparisonswith the HKS. In a future study, wemay explore
the approximation of conformable FTDMs using the LOP-GS.
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Table 17
Time complexity analysis concerning varying values of ζη across all situations in Application 1.

Table 9 Table 10 Table 11 Table 12

ζ-cut LOP-GS HKS LOP-GS HKS LOP-GS HKS LOP-GS HKS

ζη RT (s) RT (m) RT (s) RT (m) RT (s) RT (m) RT (s) RT (m)
0 3.5 6 3.5 6 3 5 3 5
0.25 3 5.5 3 5.5 2.5 4.5 2.5 4.5
0.5 2.5 5.5 2.5 5.5 2.5 4.5 2.5 4.5
0.75 2.5 5.5 2.5 5.5 2 4.5 2 4.5
1 2 4.5 2 4.5 1.5 3.5 1.5 3.5

Table 18
Time complexity analysis concerning varying values of ζη across all situations in Application 2.

Table 9 Table 10 Table 11 Table 12

ζ-cut LOP-GS HKS LOP-GS HKS LOP-GS HKS LOP-GS HKS

ζη RT (s) RT (m) RT (s) RT (m) RT (s) RT (m) RT (s) RT (m)
0 2.5 5.5 2.5 5.5 3 6 3 6
0.25 2.5 5 2.5 5 2.5 5.5 2.5 5.5
0.5 2.5 4.5 2.5 4.5 2 5.5 2 5.5
0.75 2.5 4.5 2.5 4.5 2 5.5 2 5.5
1 2 4 2 4 1.5 4 1.5 4
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[19] E. Özkan, I. Altun, Generalized Lucas polynomials and relationships between the
Fibonacci polynomials and Lucas polynomials, Commun. Algebra 47 (2019)
4020–4030.

[20] W.M. Abd-Elhameed, A. Napoli, Some novel formulas of Lucas polynomials via
different approaches, Symmetry. (Basel) 15 (2013).

[21] S. Haq, I. Ali, Approximate solution of two-dimensional Sobolev equation using a
mixed Lucas and Fibonacci polynomials, Eng. Comput. 38 (2022) 2059–2068.
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