Alexandria Engineering Journal 130 (2025) 198-207

journal homepage: www.elsevier.com/locate/aej

Contents lists available at ScienceDirect

Alexandria Engineering Journal

Original article

Check for

LLM-powered database migration: A framework for knowledge graph system [

evolution

Shangging Zhao *®-*, Qifan Zhang?, Man Lan *>¢

aSchool of Computer Science and Technology, East China Normal University, Shanghai, China
b Lab of Artificial Intelligence for Education, East China Normal University, Shanghai, China

¢ Shanghai Institute for AI Education, East China Normal University, Shanghai, China

ARTICLE INFO ABSTRACT

Keywords:

Knowledge graph
Question answering
Large Language Model
In-context learning
Database migration

Database migration, particularly the translation of query languages, remains a significant barrier to mod-
ernizing data infrastructure. This challenge is especially acute as organizations adopt advanced knowledge
graph (KG) technologies to support demanding applications in domains like smart cities and eHealth. This
paper introduces a novel, LLM-powered framework for automated query translation, demonstrated through KG
migration from RDF/SPARQL to LPG/Cypher. Our method leverages in-context learning with strategic exemplar

selection and iterative refinement, achieving up to 89.6% translation accuracy and a 97.3% executable rate
without requiring large parallel corpora or manual rule creation. Experiments on both the KQA Pro and
enterprise-scale DBLP-QUAD datasets validate the approach’s effectiveness and scalability. With migration
costs under $1.50 for thousands of queries, our framework offers an economically viable solution that reduces
migration costs and accelerates the adoption of modern database technologies for next-generation applications.

1. Introduction

Knowledge graphs (KGs) have become foundational to modern
data-driven applications [1-3], powering advanced analytics, question
answering, and intelligent systems across domains such as smart cities,
eHealth, and enterprise knowledge management [4,5]. As the demands
on these systems grow, organizations are increasingly migrating from
traditional RDF-based KGs to more flexible and performant labeled
property graph (LPG) databases like Neo4j [6,7]. This shift promises
improved scalability, developer experience, and support for complex
analytics. However, it also introduces a critical engineering challenge:
migrating not only the underlying data, but also the vast ecosystem of
queries and applications built atop these knowledge graphs.

While data model transformation tools (e.g., Neosemantics) can au-
tomate the conversion of RDF data to LPG formats, the translation
of query languages — specifically from SPARQL to Cypher — re-
mains a major bottleneck. Existing solutions typically rely on hand-
crafted rules or require large parallel corpora of paired queries, both
of which demand significant manual effort and domain expertise [8,9].
These limitations make large-scale, cost-effective migration projects
risky and inaccessible for many organizations, slowing the adoption of
next-generation KG technologies.

To address this gap, we propose a novel, LLM-powered frame-
work for automated query translation. Our approach leverages the

* Corresponding author.

in-context learning capabilities of large language models (LLMs), start-
ing from a small, manually curated set of SPARQL-Cypher exemplar
pairs. By employing semantic retrieval to select the most relevant ex-
emplars for each input and iteratively expanding the exemplar database
with verified translations, our system enables LLMs to master complex
translation patterns—without explicit ontology injection or extensive
parallel data.
This framework offers several key advantages:

+ Minimal manual effort: It eliminates the need for extensive rule
engineering or large annotated corpora, dramatically reducing
migration costs.

Implicit ontology learning: The LLM infers schema and ontol-
ogy mappings directly from exemplars, enabling robust transla-
tion even in the absence of explicit schema information.
Scalability and economic viability: Our experiments on both
the KQA Pro benchmark and the enterprise-scale DBLP-QuUAD
dataset (252M triples) demonstrate high translation accuracy (up
to 89.6%), a 97.3% executable rate, and total migration costs
under $1.50 for thousands of queries.

Our contributions have direct implications for advancing the state-
of-the-art in electronics engineering applications. In smart cities, our

E-mail addresses: sqzhao@stu.ecnu.edu.cn (S. Zhao), gifanwz@gmail.com (Q. Zhang), mlan@cs.ecnu.edu.cn (M. Lan).

https://doi.org/10.1016/j.aej.2025.08.014

Received 8 April 2025; Received in revised form 12 June 2025; Accepted 9 August 2025

Available online 16 September 2025

1110-0168/© 2025 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/aej
https://www.elsevier.com/locate/aej
https://orcid.org/0009-0004-7379-1170
mailto:sqzhao@stu.ecnu.edu.cn
mailto:qifanwz@gmail.com
mailto:mlan@cs.ecnu.edu.cn
https://doi.org/10.1016/j.aej.2025.08.014
https://doi.org/10.1016/j.aej.2025.08.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2025.08.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Zhao et al.

Question
What is the number of O'Neal when he plays for the Cavs?

@ < —)
Knowledge Graph

SELECT ?number WHERE {
?player <pred:name> "Shaquille O'Neal"
?team <pred:name> "Cleveland Cavaliers"

OQ(—?)
-Neodyj

Data Transformation ~ MATCH (h:Player)-[r:member_of_sports_team|->(t:Team)

WHERE h.name = "Shaquille O'Neal"

?player <member_of_sport_team> 2team L .
AND t.name = "Cleveland Cavaliers

[<pred:fact_h> ?player ;
<pred:fact_r> <member_of_sport_team> ;

<pred:fact_t> ?team] <sport_number> ?number AR

Fig. 1. An example of question-answering over knowledge graph. Virtuoso
is commonly used for hosting SPARQL endpoints and Neo4j is a popular
graph database. In this work, question and Cypher pairs are automatically
transformed from existing SPARQL datasets via LLMs to achieve the migration
of QA systems.

framework can facilitate the migration of legacy traffic management
and sensor data systems to modern graph databases, enabling more
sophisticated real-time analytics and cross-domain data integration. For
eHealth applications, it enables seamless evolution of medical knowl-
edge systems, supporting interoperability between different health-
care standards and facilitating advanced analytics for personalized
medicine. In IoT and edge computing environments, where data
schemas and system requirements evolve rapidly, our approach pro-
vides the agility needed to adapt knowledge graph infrastructures
without extensive manual intervention.

The remainder of this paper is organized as follows: Section 2
reviews related work in database migration and knowledge graph ques-
tion answering systems. Section 3 presents the technical preliminaries
and formal problem definition. Section 4 details our LLM-powered
iterative refinement framework. Section 5 provides comprehensive ex-
perimental evaluation on two datasets. Section 6 discusses practical
considerations including cost analysis and limitations. Finally, Section 7
concludes with future research directions and broader implications for
database system evolution.

2. Related work
2.1. Database migration and evolution

Database migration has become increasingly crucial as enterprises
modernize their data infrastructure to meet evolving business needs.
Traditional migration approaches typically focus on schema mapping
and data transformation [10], often requiring substantial manual effort
and domain expertise. While tools like AWS Database Migration Service
and Oracle SQL Developer Migration Workbench have emerged to
facilitate this process, they primarily address structured data migration
between similar database types.

The emergence of NoSQL databases has introduced new challenges
to database migration. Unlike traditional relational databases, NoSQL
systems often have fundamentally different data models and query lan-
guages [11,12]. This heterogeneity makes automated migration partic-
ularly challenging, as it requires not only data transformation but also
query and application adaptation. Recent research has explored various
approaches to this challenge, including schema matching algorithms
and query translation frameworks [8,9]. However, these methods often
rely on rigid rules or patterns, limiting their adaptability to complex
scenarios.

2.2. KGQA

KGQA aims to obtain knowledge from the KG to answer the given
natural language question. In the early stages of research, the answer
to a question can be an entity or relation in the KG. However, with
the emergence of datasets focusing on complex questions, the answer

199

Alexandria Engineering Journal 130 (2025) 198-207

can be a numerical result obtained through intricate aggregation oper-
ations. To solve such complex questions, recent KGQA approaches tend
to generate logical forms through semantic parsing rather than relying
on retrieval-ranking methods. Early approaches focused on building
and converting Query Graphs into logical forms. With the advent of
Pre-trained Models (PTMs) like BART [13], direct generation of logical
forms from natural questions became feasible [14]. Most recently,
Large Language Models (LLMs) have enabled new approaches, such as
discriminative selection of candidate logical forms [15] and few-shot
in-context learning [16,17], though some solutions still face challenges
with computational costs.

A typical KGQA system includes a KG deployed in a Database
Management System (DBMS) and a model that takes questions as input
and outputs logical forms such as SPARQL [18], S-expressions [19],
and CQL [20]. For example, if the model takes SPARQL as the target
logical form, the DBMS should be database software which provides
SPARQL query endpoints like Jena,' Virtuoso,” etc. The evolution of
KGQA systems reflects a broader trend in database technology advance-
ment, where systems need to adapt to new database paradigms while
maintaining their core functionality.

2.3. LLMs in database applications

The emergence of Large Language Models (LLMs) has opened new
possibilities in database management and evolution. Recent research
has demonstrated LLMs’ potential in various database-related tasks,
including natural language to SQL translation, schema design, and data
integration [21,22]. The key advantage of LLMs lies in their ability to
understand both natural language and structured queries, making them
particularly suitable for bridging different database paradigms.

In-context learning, a distinctive capability of LLMs, has shown
promising results in various database applications. Unlike traditional
machine learning approaches that require extensive training data, in-
context learning enables models to adapt to new tasks with just a
few examples [23]. This property is particularly valuable in database
migration scenarios, where parallel training data is often scarce or
expensive to obtain.

3. Preliminaries
3.1. Knowledge base

A typical knowledge base consists of an ontology © and a model
M [24] . The ontology O defines the concepts, relationships, and
constraints within a specific domain of knowledge and M is data model
representing facts. In this work, the RDF graph model and Neo4j’s
labeled property graph (LPG) model are involved.

For RDF, M C (EUR)XRX(CUEUP), where £ is a set of entities, R
is a set of binary relations, C is a set of classes, and V is a set of literal
values. It is noteworthy KQA Pro contains qualifier knowledge so that
a relationship can also be the head of the triple as shown in Fig. 2.

For LPG, M C N X R X P x L, where N is a set of nodes, R
is a set of directed relations, P is a set of properties, and L is a set
of labels. Both nodes and relationships possess distinctive identifiers
and can store properties represented as key-value pairs. Nodes can be
labeled to be grouped. The edges in LPG representing the relationships
always have a start node and an end node, making the graph a directed
graph.

Fig. 2 gives an example of Neo4j’s labeled property graph model and
RDF data model. The two models store the same knowledge, but require
different logical forms to answer the question “What is the number of
O’Neal when he plays for the Cavs?” as shown in Fig. 1 . The evolution

1 https://jena.apache.org/.
2 https://github.com/openlink/virtuoso-opensource.

https://jena.apache.org/
https://github.com/openlink/virtuoso-opensource

S. Zhao et al.

e r: member_of_sports_team{sport_number : "33"} e

:Player{name:" Shaquille O'Neal "} :Team{name:" Cleveland Cavaliers "}
<instance_of>

<instance_of>
-
Q <pred:fact_r> Q
<pred:name} <pred:name>
<pred:fact_h> <pred:fact_t>

[“Shaquill ONeal | | “Clevetand Cavalers |

<member_of_sports_team>

<sport_number>

=

Fig. 2. An example of the LPG model (blue part) and RDF graph model (green
part). sport number is a relation qualifier of relation member of sports team. RDF
graph requires a blank node (BNode) to describe the qualifier knowledge (the
fact that when O’Neal plays as a member of Cleveland Cavaliers, his sport
number is 33).

from RDF to LPG reflects a broader trend in database technology
advancement, where systems adapt to meet changing requirements
for data expressiveness, query performance, and maintenance effi-
ciency. This transition, however, necessitates comprehensive migration
strategies that address both data transformation and query adaptation.

3.2. Query languages

SPARQL (SPARQL Protocol and RDF Query Language) and Cypher
represent two distinct approaches to graph querying, each optimized
for its respective data model. SPARQL, designed for RDF graphs, uses
a pattern-matching approach based on triple structures. A typical
SPARQL query begins with keywords like SELECT or ASK, followed by
graph pattern expressions that can include variables (e.g., ?player,
?team). The language supports complex operations through keywords
such as FILTER, UNION, and EXISTS. Cypher, Neo4j’s query language,
adopts a more visual approach to graph pattern matching. Patterns
in Cypher use ASCII-art style syntax, where nodes are represented by
parentheses and relationships by arrows (e.g., (h:Player)-[:me,
mber_of_sport_team]->(t:Team)). This visual representation
often makes Cypher queries more intuitive for developers, particularly
when dealing with complex graph patterns. The language includes fea-
tures like property access, pattern matching, and aggregation functions,
making it well-suited for modern graph database applications.

The fundamental differences between these query languages reflect
their underlying data models and design philosophies. While SPARQL
excels at handling semantic web data and standardized knowledge rep-
resentations, Cypher provides more intuitive and efficient querying for
property graph applications. This divergence creates unique challenges
for system migration, requiring sophisticated translation mechanisms
that preserve both semantic meaning and query efficiency.

3.3. Task definition

Given a source database system S with its query language L, and
a target database system T with its query language L,, the database
migration task involves: (1) Data Migration: Converting data from .S to
T while preserving data integrity and relationships; (2) Query Transfor-
mation: Transforming queries written in L to equivalent queries in L,;
(3) Application Adaptation: Modifying applications to work with the
new query language and database system.

In this paper, we demonstrate our approach through a knowledge
graph migration scenario, where the source system .S is RDF, the target
system T is Neo4j, and convert D; = {(g;,s;) | i € N} to obtain
D, = {(g;.¢;) | i € N}. For query transformation, D; = {(g;,s;) | i €

200

Alexandria Engineering Journal 130 (2025) 198-207

N} is the original QA pairs with natural language questions g; and
SPARQL queries s;, the goal is to generate equivalent Cypher queries
¢; to obtain D, = {(g;,¢;) | i € N}. While tools like neosemantics
handle the data migration aspect (converting RDF to LPG), the key
challenge lies in query transformation. Traditional approaches often
require extensive manual effort or large parallel corpora for training.
We propose leveraging LLMs through in-context learning to automate
this process, potentially opening new possibilities for broader database
migration scenarios.

4. In-context data transformation

Our approach leverages in-context learning capabilities of LLMs to
facilitate database query translation. The key idea is to provide LLMs
with carefully selected exemplars of query pairs (SPARQL-Cypher)
that demonstrate the translation patterns. As illustrated in Fig. 3, our
method consists of three main components: (1) Exemplar Creation:
Manual annotation of a small seed set of SPARQL-Cypher query pairs.
(2) Exemplar Selection: Strategic selection of relevant exemplars for
each input query. (3) Iterative Refinement: Continuous expansion of
the exemplar database through verified transformations.

4.1. Prompt design

The effectiveness of in-context learning heavily depends on prompt
design. The ontology information seems to be very important in the
task. However, the ontology information may be too much text, con-
fusing the LLM and also increasing the API cost. We give a simple
instruction and omit the explicit ontology information. Our prompt
template is shown in Fig. 4. We add special tokens < soe > and
< eoe > to represent the start and the end of an exemplar. For the target
question, the LLM will complete the Cypher query which is leaving
empty in the prompt.

4.2. Exemplar selection strategies

As we omit the ontology information in the instruction, LLM has to
capture it from the in-context exemplars. To verify this idea, we explore
two strategies for selecting in-context exemplars:

Random Selection: This baseline strategy randomly samples k
exemplars from the available SPARQL-Cypher pairs. While simple,
this approach helps establish the lower bound of performance and
demonstrates the robustness of LLM-based translation.

Semantic Retrieval: We employ BM25 algorithm [25] to retrieve
exemplars that are semantically similar to the input query. The simi-
larity is computed based on:

score(Q, E) = BM 25(Q.question, E.question)

where Q is the input query and E is a candidate exemplar. This
approach ensures that the selected exemplars demonstrate translation
patterns relevant to the current query. This semantic retrieval can be
replaced or combined with neural retrieval methods, such as BERT [26]
and SentenceTransformers [27].

4.3. Iterative refinement process

To improve the system’s performance over time, we implement an
iterative refinement process as shown in Algorithm 1. The iterative
refinement process consists of four key phases:

Phase 1: Initial Translation. The system generates Cypher queries
for input SPARQL queries using the current exemplar database. Each
translation attempt leverages the in-context learning capabilities of the
LLM with retrieved relevant exemplars.

Phase 2: Verification. Generated Cypher queries undergo rigorous
verification through:

S. Zhao et al.

Alexandria Engineering Journal 130 (2025) 198-207

=

i

J SPARQL Dataset ‘ ‘ Cypher Exemplars }.7

Neosemantics

-Neodqj

| GraphRAG | KG Agent

| Tool Learning |

[In-context Prompter }—*@

Cypher

Iteration

Fig. 3. Overview of our proposed migration pipeline. The KG is transferred from Virtuoso to Neo4j and application dataset is transformed from SPARQL to

Cypher.

Instruction
As a DBMS expert, please rewrite the given SPARQL query in Cypher.

ICL Exemplars | x K

<soe>

Question: What is the number of O'Neal when he plays for the Cavs?

SPARQL: SELECT ?number WHERE { ?player <pred:name> "Shaquille O'Neal"}

Cypher: MATCH (h:Player)-[r:member_of_sports_team]->(t:Team) ... RETURN r.sport_number
<eoe>

Target question

<soe>

Question: What did Harvey Firestein receive the Tony Award for Best Actor in a Play for?
SPARQL: SELECT DISTINCT ?qpv WHERE { ?e_1 <pred:name> "Harvey Fierstein" }
Cypher:

Fig. 4. The prompt design for in-context generation.

Algorithm 1 Iterative Refinement Process

> Initial seed set of SPARQL-Cypher pairs
> New SPARQL queries to translate

Require: Dg..4
Require: Q..

Require: k > Number of exemplars to use
Ensure: Deypanded > Expanded exemplar database
1: function ITERATIVEREFINEMENT(Dgeeds Opews k- 6)
2 Dexpanded - Dseed
3 for each query ¢ in Q,,, do
4: E, « SelectExemplars(Dexpanded: 9- k)
5: ¢ < GenerateTranslation(q, E) > Using LLM
6: result « VerifyTranslation(c,)
7: if result is True then
8: Dexpanded < Dexpanded Y {(g,c,)}
9: end if
10: end for
11: return Deypanded
12: end function

13: function VERIFYTRANSLATION(c,,)

14: Execute c, against target database
15: Compare results with source query execution
16: return result

17: end function

» Syntax validation against Neo4j’s query parser
+ Execution against the target database
» Result comparison with original SPARQL query outputs

201

Phase 3: Exemplar Database Expansion. Successfully verified
translations are incorporated into the exemplar database. A translation
is considered successful when it:

» Maintains syntactic correctness
» Produces equivalent results to the source query
* Preserves the semantic intent of the original query

Phase 4: Iterative Enhancement. The expanded exemplar database
feeds back into the translation process, creating a continuous improve-
ment cycle. We expect this iterative approach to enhance retrieval qual-
ity and form better ICL prompt quality, thus improving the translation
accuracy from accumulated successful patterns.

The effectiveness of this process is demonstrated through empirical
evaluation in Section 5, where we observe consistent improvements
in both translation accuracy and query execution success rates across
iterations.

5. System migration experiment

Our experiments address three key research questions: (1) How ef-
fectively can LLMs translate between database query languages without
extensive training? (2) What impact do different exemplar selection
strategies have on translation quality? (3) How does the iterative
refinement process improve performance over time? To answer these
questions, we designed a comprehensive evaluation framework us-
ing knowledge graph query translation as a representative database
migration task.

5.1. Experimental settings

5.1.1. Datasets
We evaluate our approach on two datasets of varying scale and
complexity to demonstrate its robustness:

KQA Pro: We use KQA Pro [14] as our primary evaluation
benchmark—an open-domain KGQA dataset featuring complex ques-
tions requiring multi-step reasoning. The dataset provides annotated
programs for each question, representing the reasoning steps required
to derive the answer. We use the number of steps in these programs,
which we refer to as “program length”, as a proxy for question com-
plexity in our analysis. The underlying knowledge graph contains
approximately 20,000 entities, 1200 relations, and 900,000 triples
merged from Freebase and Wikidata.

DBLP-QuAD: To validate scalability, we conducted experiments on
DBLP-QuAD [28], built on the significantly larger DBLP scholarly
knowledge graph (2.9 million person entities, 6 million publication
entities, and over 252 million RDF triples).

S. Zhao et al.

CREATE CONSTRAINT n1@s_unique_uri ON (r:Resource)
ASSERT r.uri IS UNIQUE;

CALL nl1@s.graphconfig.init({
handleVocabUris: "SHORTEN",
handleMultival: "ARRAY",
handleRDFTypes: "LABELS_AND_NODES”

D)

CALL n1@s.rdf.import.fetch(
"file:///root/kga_kb.ttl",
"Turtle”

)

Fig. 5. Knowledge graph migration configuration: This Cypher script shows
the initialization process for transferring RDF data to Neo4j using the
neosemantics plugin, illustrating the data transformation component of our
migration framework.

Table 1

Dataset statistics: The answers in KQA Pro are not available, so we take 1000
samples from the validation set for evaluation. The answers in DBLP-QuUAD
are available, so we use the original test set.

Train Validation Test
KQA Pro 94,376 11,797 11,797
KQA Mini 50 - 1000
DBLP-QuAD 7000 1000 2000
DBLP Mini 90 - 2000

For data migration, we used neosemantics to convert RDF data to
Neo4j’s LPG format, with the configuration shown in Fig. 5. This config-
uration defines the ontology mapping rules from RDF to LPG. For query
translation evaluation, we created KQA Mini—a dataset containing
50 samples from the training set and 1000 from the validation set
(SPARQL-Cypher pairs are available), maintaining the distribution of
12 question types from the original dataset (Table 1). For DBLP-QuAD,
we created a smaller dataset DBLP Mini containing 90 samples from the
training set with manually annotated SPARQL~Cypher pairs and use the
original test set (no Cypher annotations are available) for evaluation.

5.1.2. Evaluation metrics
We employ four complementary metrics to assess query translation
quality from multiple perspectives:

Answer Accuracy/F1: The primary metric measuring whether the
translated query produces the same answer as the original query when
executed against the respective databases. For KQA Pro, where answers
are typically single values, we use accuracy:

N

Acc = % Z 1(q; = G;) (€8}
i=1

where g; is the expected answer and 4; is the answer produced by the

translated query. For DBLP-QUAD, where answers can contain multiple

values, we use F1 score to measure the overlap between predicted and

golden answer sets following the DBLP-QuAD paper [28]:

_ 2 Precision - Recall
" Precision + Recall

F1 2

.. | ApreaNAgotal [ApredNAgoral
where Precision = —24""¢4" and Recall = L‘T’M. Here, A

and
[Apreal [Agola d

pre
Agoa are the sets of predicted and gold standard answers respectively.
Translation Fidelity (BLEU-4): Measures syntactic similarity between
the generated and reference translations [29]:

N
BLEU = min(1,1 - %) - exp(Y. w, log p,)
C
n=1

3

202

Alexandria Engineering Journal 130 (2025) 198-207

where r is reference length, ¢ is candidate length, and p, is n-gram
precision.

Tree Edit Distance (Tree-ED): Measures structural similarity between
the generated and reference Cypher queries by comparing their Ab-
stract Syntax Trees (ASTs). We first parse the Cypher queries into ASTs
and then calculate the tree edit distance [30,31]. The similarity score
is normalized using:

edit_distance

Tree — ED = exp(— @

max_distance

where edit_distance is the minimum number of operations required to
transform one AST into another, and max_distance is the maximum pos-
sible edit distance between the trees. If generated query is syntactically
incorrect (cannot be parsed into an AST), the Tree-ED score is 0. If
edit_distance equals to 0, the Tree-ED score is 1. This metric helps assess
how well the generated query matches the reference query in terms of
the query structure.

Executable Rate (ER): Measures syntactic correctness—the percentage
of translated queries that can be parsed and executed by the target
database:
1 X
ER=— i 5
~ Z,f(y,))
where f(y,) returns 1 if query y; is executable and 0 otherwise.
These metrics provide a comprehensive assessment of both func-

tional correctness (Acc/F1), structural similarity (Tree-ED), syntactic
correctness (ER), and translation quality (BLEU-4).

5.1.3. Implementation details

All experiments used OpenAl’'s GPT-4o0-mini model with tempera-
ture set to O for deterministic outputs. For the retrieval component,
we implemented both BM25 and vector-based retrieval using Sen-
tenceTransformers.> The initial exemplar database contained 50/90
manually created SPARQL-Cypher translation pairs derived from the
KQA Pro/DBLP-QuAD training set.

For the BART baseline, we fine-tuned a BART-large model [13]
on our translation task, treating it as a sequence-to-sequence problem
where SPARQL queries serve as input sequences and Cypher queries as
target sequences. The model was fine-tuned using the train set used
for the LLM exemplar database to ensure fair comparison. We used
standard hyperparameters for sequence-to-sequence fine-tuning with a
learning rate of 3e—5, batch size of 8, and trained for 50 epochs. This
baseline represents a traditional neural machine translation approach
to query translation, requiring explicit fine-tuning on parallel data.

5.2. Results on KQA

Table 2 presents our main experimental results on KQA:

Limitations of Traditional Seq2Seq Models The BART seq2seq
model [13], despite achieving reasonable BLEU scores (71.22%), shows
severe limitations in executable rate (38.30%) and answer accuracy
(5.70%). The Tree-ED score of 70.72% indicates that while the model
can generate structurally similar queries, it struggles to maintain the
correct query grammar. This stark performance gap highlights the
fundamental challenge traditional seq2seq models face with complex
query translations, likely due to their inability to effectively capture the
semantic intricacies and syntactically requirements of different query
languages without substantial parallel training data.

Impact of In-Context Learning The substantial performance gap
between zero-shot (13.20% Acc, 75.00% Tree-ED) and in-context learn-
ing with randomly selected examples (47.00% Acc, 85.04% Tree-ED)
demonstrates that even basic exemplars significantly improve both

3 The model used is all-MiniLM-L6-v2.

S. Zhao et al.

Table 2

Performance comparison across methods on KQA: The table shows progressive
improvement in all metrics from zero-shot to iterative refinement approaches,
with semantic retrieval (BM25) consistently outperforming random selection.

Alexandria Engineering Journal 130 (2025) 198-207

Table 3

DBLP-QuAD results: Performance metrics on the larger DBLP scholarly knowl-
edge graph (252M triples) showing consistent improvements across iterations,
validating the approach’s scalability to enterprise-scale knowledge bases.

Method BLEU Tree-ED ER (%) Ans Acc (%) Method F1 score (%) Executable (%) Improvement (%)
bart [13] 71.22 70.72 38.30 5.70 bart [13] 21.41 90.00 -

zeroshot 39.25 75.00 91.00 13.20 zeroshot 11.65 92.00 -

random k5 79.03 85.04 83.80 47.00 random k5 35.66 84.40 +24.01

vector k5 83.90 88.75 88.00 63.20 vector k5 37.16 86.40 +25.51

bm25 k5 86.79 89.91 88.80 66.80 bm25 k5 45.60 89.55 +33.95

bm25 k5_iterl 88.24 89.91 94.30 82.90 bm25 k5_iterl 66.07 92.15 +54.42

bm25 k5_iter2 88.42 89.91 96.10 86.70 bm25 Kk5_iter2 69.59 92.80 +57.94

bm25 k5 _iter3 88.68 89.91 97.30 88.80 bm25 k5_iter3 70.56 92.30 +58.91

bm25 k5_iter4 88.58 89.91 96.90 89.60 bm25 Kk5_iter4 70.91 92.05 +59.26

Performance Metrics vs. k Values for BM25

Score

—e— BLEU

Executable Rate
== Tree Edit Distance
=&~ Answer Accuracy

0 1 2 3 4 5
k value

Fig. 6. The results on KQA when provided with different in-context exemplars.

translation quality and structural preservation. This confirms our hy-
pothesis that LLMs can effectively learn database-specific patterns from
a small set of examples, making them particularly suitable for database
migration scenarios where parallel data is limited.

Retrieval Strategy Effectiveness Semantic retrieval using BM25
(66.80% Acc, 89.91% Tree-ED) outperforms random selection (47.00%
Acc, 85.04% Tree-ED) by a substantial margin (+19.80% Acc, +4.87%
Tree-ED), highlighting the importance of presenting relevant examples
to the model. This improvement suggests that even simple lexical
similarity-based retrieval methods can significantly enhance both trans-
lation quality and structural preservation in in-context learning for
database query translation.

Number of ICL Exemplars The quantity of exemplars provided in
the context is an intuitive factor that affects the final performance
for in-context learning. We retrieve the K most similar samples to the
question using BM25 [25] to form context, where K ranges from 1 to
5. The experimental results are illustrated in Fig. 6. The BLEU score
shows consistent improvement as K increases, from 39.25% (zero-shot)
to 86.79% (K = 5), indicating that additional examples help LLMs
better understand the query translation patterns. The most significant
jump occurs between zero-shot and K = 1 (from 39.25% to 67.32%),
suggesting that even a single well-chosen example can substantially
improve translation quality. The executable rate remains consistently
high (around 89%) across different K values, with slight fluctuations.
The Tree-ED starts from 75% and plateaus at around 89%. This suggests
that LLMs maintain strong syntactic understanding regardless of the
number of examples, likely due to their pre-training on programming
languages. The answer accuracy shows significant improvement from
zero-shot (13.2%) to K = 4 (65.4%), but plateaus afterwards. This
pattern suggests that while more examples generally help, there might
be a point of diminishing returns, possibly due to context window
limitations or increased complexity in processing multiple examples.
These findings have important implications for database migration
applications: while more examples generally improve performance,

203

practitioners should balance the benefits of additional examples against
computational costs and context window limitations. The high ER and
Tree-ED across all settings also suggests that LLMs could be reliable
tools for maintaining syntactic correctness in database query translation
tasks.

Iterative Refinement Benefits The progressive improvement across
iterations (66.80% — 82.90% — 86.70% — 88.80% — 89.60% for
Acc, while maintaining Tree-ED at 89.91%) validates our iterative
refinement approach. Each iteration contributes meaningfully to perfor-
mance, with the system becoming increasingly effective as the exemplar
database expands with verified translations. Notably, the executable
rate reaches 97.30% after three iterations, indicating high syntactic
reliability suitable for production environments. The stable Tree-ED
score across iterations suggests that our approach consistently preserves
query structure while improving translation accuracy.

5.3. Results on DBLP-QuUAD

Results on the DBLP-QuUAD dataset (Table 3) demonstrate the ap-
proach’s effectiveness on larger knowledge graphs. Despite DBLP con-
taining approximately 100 times more entities than KQA Pro, our
system achieves consistent improvements across iterations, with F1
scores increasing from 11.65% (zero-shot) to 70.91% (after four itera-
tions). The executable rate remains high (>90%) throughout, indicating
robust syntactic understanding regardless of knowledge graph scale.

Interestingly, BART achieves a relatively high executable rate
(90.00%) but modest F1 score (21.41%) on DBLP-QuAD, suggesting
that while it can produce syntactically valid queries for this dataset, it
struggles with semantic correctness. This contrasts with its performance
on KQA Pro, where it fails on both executable rate and answer accu-
racy, highlighting how dataset characteristics can significantly impact
traditional seq2seq performance.

It is worth noting that the F1 scores on DBLP-QuUAD are notably
lower than the accuracy scores achieved on KQA Pro. This performance
gap can be attributed to several fundamental challenges. First, DBLP-
QuAD presents significant scale challenges with its 252M triples and
approximately 9M entities, including numerous namesake scholars who
share identical names but represent different academic entities, making
precise entity disambiguation considerably more difficult. Second, the
scholarly domain requires more complex schema and query structures,
demanding specialized domain knowledge about academic relation-
ships between authors, publications, venues, and citations that may be
underrepresented in the GPT-40-mini model’s pre-training data. Third,
according to the DBLP-QuAD paper [28], the test set is not inde-
pendently and identically distributed with the training set, containing
question types and patterns entirely absent from the training data. This
non-IID setting creates additional difficulties for our GPT-40-mini model
when handling novel query structures and relationships. Using more
powerful language models with stronger generalization capabilities

S. Zhao et al.
DBLP : Iteration Performance Progression
1.0
& —
00] g——m—"
0.8 1
o 70% 71% 71%
g 071 66%
192}
0.6 q
051 .
46% —&— F1 Score
~#— Executable Rate
0.4 T T T T T
KQA : Iteration Performance Progression
1.00
0.95 4
0.90 4 ——
05 | 89% 90%
° 87%
o
S 080 1 83%
(2]
0.75 4
0.70 4
—8— BLEU Score
0.65 4 5 —#— Executable Rate
61% —#— Answer Accuracy
0.60 T T

Iter 2 Iter 4

Iteration

Baseline Iter 1 Iter 3

Fig. 7. Progressive performance improvement: This figure shows the con-
sistent growth in both datasets across iterations, demonstrating the system’s
ability to continuously improve through feedback and exemplar database
expansion.

might yield improved results on these challenging out-of-distribution
questions. Despite these obstacles, the consistent improvement pattern
across iterations demonstrates our approach’s effectiveness even for
complex, large-scale knowledge graphs, validating its potential for
enterprise database migration scenarios.

The progressive improvement visualized in Fig. 7 demonstrates the
system’s continuous learning capability through the iterative feedback
cycle, with each iteration contributing meaningfully to overall per-
formance. It is noted that the rate of change in answer accuracy/F1
score does not align with that of Executable rate and BLEU score.
When in-context learning is applied, both the Executable rate and
BLEU score already achieve high performance, consistent with the Tree-
ED results in Table 2, which remain at around 89.91%. During the
iterative process, the LLM is able to acquire more ontology knowledge
by retrieving new content from an updated exemplar pool, enabling it
to make fine-grained adjustments to the generated queries so that they
can yield correct answers upon execution.

6. Discussion

Our experiments demonstrate that an LLM-powered, iterative frame-
work can effectively automate the complex task of query translation
for database migration. The following sections explore the underly-
ing reasons for its success, analyze a representative failure case, and
discuss practical considerations such as cost and security. This analy-
sis provides deeper insights into the method’s mechanics, its current
limitations, and its potential for real-world deployment in demanding
application contexts like smart cities and eHealth.

6.1. Why and how our method works
To find out why and how our proposed method works, we grouped

the samples in the KQA dataset into three groups based on the complex-
ity of the question. The annotated program uses several functional step

204

Alexandria Engineering Journal 130 (2025) 198-207

Accuracy by program length under different k

0.8 - [oos
0.6 - - - . bm25_k0
> o1 o6 N bm25 k1
@ . bm25_k2
3 0.4 . N bas = bm25_k3
g : = bm25 k4
bm25_k5

0.2 1 - - --

012 o.10

len=<3 4<len<6 len > 6

Program Length Category

Fig. 8. Accuracy improvements across number of in-context exemplars (k
value). bm25_kO refers to zeroshot setting in Table 2.

Accuracy by program length under different iteration
1.0

0.8 1

bm25_k5
bm25_k5_iterl
bm25_k5_iter2
bm25_k5_iter3
bm25_k5_iter4

0.6

Accuracy
il

0.0 -

len > 6

4<len=<6

len =3
Program Length Category

Fig. 9. Accuracy improvements across iterations.

to solve the question, the more steps, the more complex and difficult
the question is. We group the samples into three groups based on
the program length. Fig. 8 shows the accuracy improvements across
different number of in-context exemplars (k value). Fig. 9 shows the
accuracy improvements across iterations.

As shown in Fig. 8, the more complex a question is, the lower its
accuracy tends to be. Across all three groups, the trend of accuracy
(acc) as k varies is similar to that observed in Fig. 6. As k increases,
performance improves across questions of varying difficulty levels—not
just for simple questions. This indicates that the in-context learning ap-
proach demonstrates strong generalization across problems of different
difficulty levels.

From Fig. 9, it can be seen that as the number of iterations in-
creases, performance improves for questions of all difficulty levels,
with a more pronounced improvement observed for difficult questions.
This suggests that under the 5-shot in-context learning setting using
the BM25 algorithm, most simple questions already achieve relatively
high initial performance. Our iterative refinement process, however, is
particularly effective in enhancing the model’s performance on complex
and long-form questions.

6.2. Exemplar selection methods

The selection of in-context exemplars plays a crucial role in few-
shot learning performance. Our experiments demonstrate that different
sets of exemplars can lead to significant variations in model perfor-
mance, with observed accuracy differentials reaching 47.7% between
random sampling and fourth iteration results. This observation aligns
with recent findings in research [32,33], suggesting that the quality
and relevance of in-context exemplars are as important as the model
capabilities themselves.

S. Zhao et al.

Alexandria Engineering Journal 130 (2025) 198-207

{ Question: When was the rock band that Gene Simmons was in created?
SPARQL: SELECT DISTINCT ?pv WHERE { ?e <pred:instance_of> ?c . ?c <pred:name> "rock band" . ?e_1 <member_of> ?e . ?e_1 <pred:name> "Gene Simmons" . ?e <work_period_(start)> ?pv . }
Cypher : match (e)-[:instance_of]->(c:Resource(name:"rock band")) match (e)-[:'work_period_(start)']->(pv) match (e_1:Resource(name:"Gene Simmons"))-[:member_of]->(e) return distinct pv
Zero-shot: MATCH (e)-[:INSTANCE_OF]->(c {name: "rock band"}), (e_1)-[:MEMBER_OF]->(e), (e)<-[: WORK_PERIOD_START]-(pv) WHERE e_1.name = "Gene Simmons" RETURN DISTINCT pv
Random: match (e:Resource)-[:instance_of]->(c:Resource(name:"rock band")) match (e_1:Resource(name:"Gene Simmons"))-[:member_of]l->(e) match (e)-[:work_period_start]->(pv) return distinct pv
Vector: match (e:Resource)-[:instance_of]->(c:Resource(name:"rock band")), (e_1:Resource(name:"Gene Simmons"))-[:member_of]->(e) return distinct e.work_period_start as pv
BM25: match (e)-[:instance_of]->(c:Resource(name:"rock band")) match (e_1:Resource(name:"Gene Simmons"))-[:member_of]->(e),(e)-[:work_period_(start)]->(pv) return distinct pv
Iteration 1: MATCH (e)-[:instance_of]->(c:Resource(name:"rock band")) MATCH (e_1:Resource(name:"Gene Simmons"))-[:member_of]->(e),(e)<-[:work_period_(start)]-(pv) RETURN DISTINCT pv
Iteration 2: match (e)-[:instance_of]->(c:Resource(name:"rock band"))<~[:member_of]-(e_1:Resource(name:"Gene Simmons")) match (e)-[:work_period_start]->(pv) return distinct pv
Iteration 3: match (e)-[:instance_of]->(c:Resource(name:"rock band"))<-[:member_of]-(e_1:Resource(name:"Gene Simmons")) match (e)-[:work_period_start]->(pv) return distinct pv

Iteration 4:

MATCH (e)-[:instance_of]->(c:Resource(name:"rock band")) MATCH (e_1:Resource(name:"Gene Simmons"))-[:member_of]->(e) MATCH (e)-[:work_period_start]->(pv) RETURN DISTINCT pv

Fig. 10. A representative failure case. With in-context exemplars, the LLM performs well but fails to enclose the relation identifier in backticks (e.g.,

tion"), a syntactic requirement it has not seen in the exemplars.

Currently, our approach employs a simple similarity-based retrieval
method using traditional BM25. While this method shows promising
results, there remains substantial room for improvement. Future work
could explore more sophisticated example selection strategies, such as:

» Hybrid Retrieval: Combining semantic similarity with structural
matching of question patterns and knowledge graph topology.

+ Dynamic Selection: Adaptively choosing examples based on the
complexity and characteristics of the input question.

- Diversity-aware Sampling: Ensuring selected examples cover
different reasoning patterns while maintaining relevance.

These observations point to an important direction for future re-
search: developing more principled approaches to example selection
that consider both semantic relevance and structural characteristics of
KGQA tasks. Such improvements could lead to more robust and efficient
few-shot learning systems for complex reasoning tasks.

6.3. Case study

To better illustrate the working mechanism and limitations of our
proposed method, we present a detailed analysis of a representative
failure case, as shown in Fig. 10. We compare the outputs of all
baseline methods for this specific example to reveal the strengths and
weaknesses of each approach.

When directly prompting the LLM to generate a Cypher query
for the migrated graph database (zero-shot setting), the model lacks
knowledge of the ontology mapping from RDF to Neo4j. As a result, it
incorrectly generates all relation identifiers in uppercase, which does
not conform to the actual schema of the target database. This high-
lights the necessity of providing ontology-related information, either
explicitly or implicitly, for accurate query translation.

With the random exemplar selection strategy, the LLM is able to
produce a structurally correct Cypher query. This demonstrates that
even randomly chosen in-context examples can help the model capture
essential translation patterns, though the quality and relevance of the
exemplars are not guaranteed.

In the dense vector retrieval setting, the LLM makes a different
type of error: it incorrectly treats work_period_start as a node
property rather than a relation identifier. This suggests that while dense
retrieval can surface semantically similar examples, it may not always
retrieve structurally appropriate ones, leading to subtle but critical
mistakes in the generated queries.

The BM25-based retrieval setting yields results that largely preserve
the correct structure of the Cypher query. However, both the BM25 and
the first iteration of the iterative refinement process exhibit a common
issue: the relation identifiers contain parentheses, which is not the

205

‘rela-

Table 4
The costs of the experiments. The price of gpt-4o-mini is $0.15 per million
input token and $0.6 per million output token.

Experiment Samples Avg input Avg output Total input Total output
KQA total cost: $0.41

BM25 k = 5 1000 1195.8 88.9 1,195,759 88,889
Iteration 1 332 1166.5 103.0 387,277 34,209
Iteration 2 171 1181.7 99.7 202,069 17,050
Iteration 3 133 1202.2 108.5 159,895 14,425
Iteration 4 112 1203.4 102.9 134,783 11,526
Total 1748 1189.8 95.0 2,079,783 166,099
DBLP total cost: $1.04

BM25 k = 5 2000 1016.8 79.1 2,033,644 158,254
Iteration 1 1112 1063.7 79.2 1,182,794 88,078
Iteration 2 703 1072.6 85.4 754,015 60,064
Iteration 3 632 1071.0 85.1 676,877 53,755
Iteration 4 614 1073.7 88.9 659,227 54,570
Total 5061 1048.5 82.0 5,306,557 414,721

correct Cypher syntax. Moreover, in the first iteration, the direction
of the relation is generated incorrectly, further affecting the query’s
correctness.

Notably, the outputs of Iteration 2 and Iteration 3 are identical.
This is because the exemplar pool did not change significantly between
these iterations, resulting in BM25 retrieving the same top-5 examples
for in-context learning. In Iteration 4, the model makes further fine-
grained adjustments, recognizing that parentheses are not appropriate
for relation identifiers in Cypher. However, it still fails to enclose the
relation identifier in backticks ('), which is required for certain special
identifiers in Cypher. This oversight is likely due to the absence of
such cases in the initial seed pairs; the LLM has not seen an exemplar
demonstrating the use of backticks for relation identifiers.

This case study underscores the importance of high-quality, diverse
exemplars in the seed pool. Including a seed pair that demonstrates the
use of backticks for special relation identifiers would likely enable the
LLM to generalize this pattern to similar cases. Alternatively, employing
a more powerful language model with stronger generalization capabil-
ities could also address this issue. Overall, this analysis highlights both
the promise and the current limitations of LLM-based query translation,
and points to concrete directions for future improvement, such as
targeted exemplar augmentation and model enhancement.

6.4. Migration cost

The cost analysis (see Table 4) reveals several important insights
about the economic feasibility of our approach:

S. Zhao et al.

Total Costs: The total cost for the KQA Pro experiments was $0.41,
while the DBLP-QuAD experiments cost $1.04. These costs are reason-
able considering the complexity of the task and the quality of results
achieved.

Cost Distribution: For both datasets, the initial BM25 k = 5 phase
accounts for the largest portion of the total cost, as it processes all
samples. Subsequent iterations process fewer samples that failed to
yield correct answers in the previous iteration.

Token Usage: The average input tokens per sample remain rela-
tively stable across iterations (around 1200 for KQA Pro and 1050 for
DBLP-QuAD), while output tokens show some variation but generally
stay within a reasonable range (80-110 tokens per sample). The context
length is far less than the limit of current powerful LLMs.

These cost statistics demonstrate that our approach is economically
viable for real-world database migration scenarios, given that the cost
of LLMs is decreasing rapidly.

6.5. Privacy and security considerations

While LLMs show promising capabilities in database migration
tasks, their deployment in production environments raises important
privacy and security concerns. The use of external LLM services re-
quires sending database queries and schema information to third-party
providers, potentially exposing sensitive business logic and data pat-
terns. Our current approach partially mitigates these risks by only
sharing query structures rather than actual data. However, even query
patterns could reveal sensitive information about database design and
business operations. Future implementations should consider several
security measures: First, on-premise deployment of smaller, specialized
LLMs could provide a more secure alternative to cloud-based services.
These models could be fine-tuned specifically for database migration
tasks while maintaining data sovereignty. Second, privacy-preserving
techniques such as query anonymization and schema obfuscation could
be integrated into the translation pipeline. Finally, access control
mechanisms could be implemented to ensure that only authorized per-
sonnel can utilize the migration tools. The balance between leveraging
LLM capabilities and maintaining data security presents an important
challenge for future research. As these technologies mature, developing
standardized security protocols for LLM-assisted database operations
will become increasingly critical.

7. Conclusion

This paper introduces a novel LLM-powered framework for au-
tomated database query translation, a critical step in modernizing
data systems. By combining in-context learning with iterative refine-
ment, our approach effectively translates queries between different
KG paradigms (SPARQL and Cypher) with high accuracy (89.6%),
reliability (97.3% executable rate), and structural fidelity. We have
demonstrated that this method is not only scalable to enterprise-level
datasets but is also highly cost-effective, offering a practical path for or-
ganizations to overcome the significant barriers of traditional database
migration.

The key innovation of our work lies in its ability to bridge the
semantic and structural gaps between query languages without large
parallel corpora or manually engineered rules. This capability is es-
sential for enabling the adoption of modern database technologies,
such as Neo4j, which are increasingly favored for building sophis-
ticated applications in domains like smart cities and eHealth. Our
framework empowers organizations to evolve their data infrastructure
while preserving valuable investments in existing business logic and
applications.

While the results are strong, future work can extend this frame-
work. Exploring advanced hybrid retrieval methods, developing ro-
bust domain adaptation techniques for out-of-distribution KGs, and

Alexandria Engineering Journal 130 (2025) 198-207

extending the approach to other query language pairs are promis-
ing research directions. Furthermore, addressing privacy and security
concerns through on-premise models and data anonymization will be
crucial for production deployments.

In conclusion, our research establishes a new paradigm for database
evolution. It provides a foundation for more agile, automated, and
accessible migration processes, enabling data systems to keep pace with
the rapid advancements in technology and application demands.

CRediT authorship contribution statement

Shangqing Zhao: Writing — original draft, Software, Project admin-
istration, Investigation, Conceptualization, Visualization, Resources,
Methodology, Data curation. Qifan Zhang: Visualization, Writing —
review & editing, Validation. Man Lan: Supervision, Conceptualization,
Writing — review & editing, Funding acquisition.

Declaration of Generative AI and Al-assisted technologies in the
writing process

During the preparation of this work, the author(s) used claude and
writefull to check grammar and expressions. After using this tool/ser-
vice, the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the content of the publication.

Funding

This work was supported by National Natural Science Founda-
tion of China [grant numbers 72192820, 72192824]; Pudong New
Area Science & Technology Development Fund, China [grant number
PKX2021-R0O5].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
Zachary Ives, DBpedia: A nucleus for a web of open data, in: The Semantic Web,
2007, pp. 722-735.

[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, Jamie Taylor, Free-
base: A collaboratively created graph database for structuring human knowledge,
in: Proc. of SIGMOD, 2008, p. 1247.

[3]1 Denny Vrandeci¢, Markus Krotzsch, Wikidata: A free collaborative knowledge-
base, Commun. ACM (2014) 78-85.

[4] Siyu Duan, Yang Zhao, Knowledge graph analysis of artificial intelligence
application research in nursing field based on visualization technology, Alex.
Eng. J. 76 (2023) 651-667.

[5] Xiaotong Wu, Jiaquan Gao, Muhammad Bilal, Fei Dai, Xiaolong Xu, Lianyong Qi,
Wanchun Dou, Federated learning-based private medical knowledge graph for
epidemic surveillance in internet of things, Expert Syst. 42 (1) (2025) e13372.

[6] Philipp Seifer, Johannes Hirtel, Martin Leinberger, Ralf Lidmmel, Steffen Staab,
Empirical study on the usage of graph query languages in open source java
projects, in: Proceedings of the 12th ACM SIGPLAN International Conference on
Software Language Engineering, 2019, pp. 152-166.

[7] DB-Engines, DB-engines ranking: Graph DBMS, 2023.

[8] Lakshya A. Agrawal, Nikunj Singhal, Raghava Mutharaju, A SPARQL to cypher
transpiler: Proposal and initial results, in: Proc. of KDD, 2022, pp. 312-313.

[9] Zihao Zhao, Xiaodong Ge, Zhihong Shen, Chuan Hu, Huajin Wang, S2CTrans:
Building a bridge from SPARQL to cypher, in: International Conference on
Database and Expert Systems Applications, 2023, pp. 424-430.

[10] Pavel Shvaiko, Jérome Euzenat, Ontology matching: State of the art and future
challenges, IEEE Trans. Knowl. Data Eng. 25 (1) (2013) 158-176.

[11] Hongyu Lei, Chunhua Li, Ke Zhou, Jianping Zhu, Kezhou Yan, Fen Xiao, Ming
Xie, Jiang Wang, Shiyu Di, X-Stor: A cloud-native NoSQL database service with
multi-model support, Proc. VLDB Endow. 17 (12) (2024) 4025-4037.

http://refhub.elsevier.com/S1110-0168(25)00884-1/sb1
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb1
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb1
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb1
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb1
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb2
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb2
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb2
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb2
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb2
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb3
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb3
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb3
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb4
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb4
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb4
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb4
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb4
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb5
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb5
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb5
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb5
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb5
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb6
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb7
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb8
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb8
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb8
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb9
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb9
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb9
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb9
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb9
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb10
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb10
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb10
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb11
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb11
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb11
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb11
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb11

S. Zhao et al.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jianjun Chen, Rui Shi, Heng Chen, Li Zhang, Ruidong Li, Wei Ding, Liya Fan,
Hao Wang, Mu Xiong, Yuxiang Chen, Benchao Dong, Kuankuan Guo, Yuanjin
Lin, Xiao Liu, Haiyang Shi, Peipei Wang, Zikang Wang, Yemeng Yang, Junda
Zhao, Dongyan Zhou, Zhikai Zuo, Yuming Liang, Krypton: Real-time serving
and analytical SQL engine at ByteDance, Proc. VLDB Endow. 16 (12) (2023)
3528-3542.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, Luke Zettlemoyer, BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension, in: Proc. of ACL, 2020, pp. 7871-7880.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie, Yutong Xiang, Lei Hou,
Juanzi Li, Bin He, Hanwang Zhang, KQA Pro: A dataset with explicit composi-
tional programs for complex question answering over knowledge base, in: Proc.
of ACL, 2022, pp. 6101-6119.

Yu Gu, Xiang Deng, Yu Su, Don’t generate, discriminate: A proposal for
grounding language models to real-world environments, in: Proc. of ACL, 2023,
pp. 4928-4949.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, Wenhu Chen, Few-shot
in-context learning on knowledge base question answering, in: Proc. of ACL,
2023, pp. 6966-6980.

Yantao Liu, Zixuan Li, Xiaolong Jin, Yucan Guo, Long Bai, Saiping Guan, Jiafeng
Guo, Xueqi Cheng, An in-context schema understanding method for knowledge
base question answering, in: Proc. of KSEM, 2024, pp. 419-434.

Jorge Pérez, Marcelo Arenas, Claudio Gutierrez, Semantics and complexity of
SPARQL, ACM Trans. Database Syst. (2009) 1-45.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, Yu Su,
Beyond LI.D.: Three levels of generalization for question answering on knowledge
bases, in: Proc. of WWW, 2021, pp. 3477-3488.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, Andrés
Taylor, Cypher: An evolving query language for property graphs, in: Proceedings
of the 2018 International Conference on Management of Data, 2018, pp.
1433-1445.

Victor Zhong, Caiming Xiong, Richard Socher, Seq2SQL: Generating structured
queries from natural language using reinforcement learning, 2017.

Kuan Xu, Yongbo Wang, Yongliang Wang, Zihao Wang, Zujie Wen, Yang Dong,
SeaD: End-to-end text-to-SQL generation with schema-aware denoising, in: Proc.
of ACL Findings, 2022, pp. 1845-1853.

207

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Alexandria Engineering Journal 130 (2025) 198-207

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario
Amodei, Language models are few-shot learners, in: Proc. of NeurIPS, 2020, pp.
1877-1901.

Yu Gu, Vardaan Pahuja, Gong Cheng, Yu Su, Knowledge base question answering:
A semantic parsing perspective, 2022.

Stephen Robertson, Hugo Zaragoza, et al., The probabilistic relevance framework:
BM25 and beyond, Found. Trends® Inf. Retr. (2009) 333-389.

Jacob Devlin, Ming Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-
training of deep bidirectional transformers for language understanding, in:
NAACL HLT 2019 - 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies -
Proceedings of the Conference, 2019, pp. 4171-4186.

Nils Reimers, Iryna Gurevych, Making monolingual sentence embeddings multi-
lingual using knowledge distillation, in: Bonnie Webber, Trevor Cohn, Yulan He,
Yang Liu (Eds.), Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP, Association for Computational Linguistics,
Online, 2020, pp. 4512-4525.

Debayan Banerjee, Sushil Awale, Ricardo Usbeck, Chris Biemann, DBLP-QuAD:
A question answering dataset over the DBLP scholarly knowledge graph, in:
BIR@ECIR, 2023, pp. 37-51.

Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu, Bleu: a method for
automatic evaluation of machine translation, in: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, 2002, pp. 311-318.
Mateusz Pawlik, Nikolaus Augsten, Efficient computation of the tree edit
distance, ACM Trans. Database Syst. 40 (1) (2015) 1-40.

Mateusz Pawlik, Nikolaus Augsten, Tree edit distance: Robust and memory-
efficient, Inf. Syst. 56 (2016) 157-173.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, Luke Zettlemoyer, Rethinking the role of demonstrations: What makes
in-context learning work? in: Proc. of EMNLP, 2022, pp. 11048-11064.
Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, Weizhu
Chen, What makes good in-context examples for GPT-3?, 2021.

http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb12
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb13
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb14
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb15
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb15
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb15
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb15
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb15
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb16
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb16
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb16
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb16
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb16
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb17
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb17
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb17
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb17
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb17
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb18
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb18
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb18
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb19
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb19
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb19
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb19
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb19
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb20
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb21
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb21
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb21
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb22
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb22
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb22
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb22
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb22
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb23
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb24
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb24
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb24
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb25
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb25
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb25
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb26
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb27
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb28
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb28
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb28
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb28
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb28
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb29
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb29
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb29
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb29
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb29
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb30
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb30
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb30
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb31
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb31
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb31
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb32
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb32
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb32
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb32
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb32
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb33
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb33
http://refhub.elsevier.com/S1110-0168(25)00884-1/sb33

	LLM-powered database migration: A framework for knowledge graph system evolution
	Introduction
	Related Work
	Database Migration and Evolution
	KGQA
	LLMs in Database Applications

	Preliminaries
	Knowledge Base
	Query Languages
	Task Definition

	In-Context Data Transformation
	Prompt Design
	Exemplar Selection Strategies
	Iterative Refinement Process

	System Migration Experiment
	Experimental Settings
	Datasets
	Evaluation Metrics
	Implementation Details

	Results on KQA
	Results on DBLP-QuAD

	Discussion
	Why and How Our Method Works
	Exemplar Selection Methods
	Case Study
	Migration Cost
	Privacy and Security Considerations

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Funding
	Declaration of competing interest
	References

