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 A B S T R A C T

Database migration, particularly the translation of query languages, remains a significant barrier to mod-
ernizing data infrastructure. This challenge is especially acute as organizations adopt advanced knowledge 
graph (KG) technologies to support demanding applications in domains like smart cities and eHealth. This 
paper introduces a novel, LLM-powered framework for automated query translation, demonstrated through KG 
migration from RDF/SPARQL to LPG/Cypher. Our method leverages in-context learning with strategic exemplar 
selection and iterative refinement, achieving up to 89.6% translation accuracy and a 97.3% executable rate 
without requiring large parallel corpora or manual rule creation. Experiments on both the KQA Pro and 
enterprise-scale DBLP-QuAD datasets validate the approach’s effectiveness and scalability. With migration 
costs under $1.50 for thousands of queries, our framework offers an economically viable solution that reduces 
migration costs and accelerates the adoption of modern database technologies for next-generation applications.
1. Introduction

Knowledge graphs (KGs) have become foundational to modern 
data-driven applications [1–3], powering advanced analytics, question 
answering, and intelligent systems across domains such as smart cities, 
eHealth, and enterprise knowledge management [4,5]. As the demands 
on these systems grow, organizations are increasingly migrating from 
traditional RDF-based KGs to more flexible and performant labeled 
property graph (LPG) databases like Neo4j [6,7]. This shift promises 
improved scalability, developer experience, and support for complex 
analytics. However, it also introduces a critical engineering challenge: 
migrating not only the underlying data, but also the vast ecosystem of 
queries and applications built atop these knowledge graphs.

While data model transformation tools (e.g., Neosemantics) can au-
tomate the conversion of RDF data to LPG formats, the translation 
of query languages — specifically from SPARQL to Cypher — re-
mains a major bottleneck. Existing solutions typically rely on hand-
crafted rules or require large parallel corpora of paired queries, both 
of which demand significant manual effort and domain expertise [8,9]. 
These limitations make large-scale, cost-effective migration projects 
risky and inaccessible for many organizations, slowing the adoption of 
next-generation KG technologies.

To address this gap, we propose a novel, LLM-powered frame-
work for automated query translation. Our approach leverages the 
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in-context learning capabilities of large language models (LLMs), start-
ing from a small, manually curated set of SPARQL–Cypher exemplar 
pairs. By employing semantic retrieval to select the most relevant ex-
emplars for each input and iteratively expanding the exemplar database 
with verified translations, our system enables LLMs to master complex 
translation patterns—without explicit ontology injection or extensive 
parallel data.

This framework offers several key advantages:

• Minimal manual effort: It eliminates the need for extensive rule 
engineering or large annotated corpora, dramatically reducing 
migration costs.

• Implicit ontology learning: The LLM infers schema and ontol-
ogy mappings directly from exemplars, enabling robust transla-
tion even in the absence of explicit schema information.

• Scalability and economic viability: Our experiments on both 
the KQA Pro benchmark and the enterprise-scale DBLP-QuAD 
dataset (252M triples) demonstrate high translation accuracy (up 
to 89.6%), a 97.3% executable rate, and total migration costs 
under $1.50 for thousands of queries.

Our contributions have direct implications for advancing the state-
of-the-art in electronics engineering applications. In smart cities, our 
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Fig. 1. An example of question-answering over knowledge graph. Virtuoso 
is commonly used for hosting SPARQL endpoints and Neo4j is a popular 
graph database. In this work, question and Cypher pairs are automatically 
transformed from existing SPARQL datasets via LLMs to achieve the migration 
of QA systems.

framework can facilitate the migration of legacy traffic management 
and sensor data systems to modern graph databases, enabling more 
sophisticated real-time analytics and cross-domain data integration. For 
eHealth applications, it enables seamless evolution of medical knowl-
edge systems, supporting interoperability between different health-
care standards and facilitating advanced analytics for personalized 
medicine. In IoT and edge computing environments, where data
schemas and system requirements evolve rapidly, our approach pro-
vides the agility needed to adapt knowledge graph infrastructures 
without extensive manual intervention.

The remainder of this paper is organized as follows: Section 2 
reviews related work in database migration and knowledge graph ques-
tion answering systems. Section 3 presents the technical preliminaries 
and formal problem definition. Section 4 details our LLM-powered 
iterative refinement framework. Section 5 provides comprehensive ex-
perimental evaluation on two datasets. Section 6 discusses practical 
considerations including cost analysis and limitations. Finally, Section 7 
concludes with future research directions and broader implications for 
database system evolution.

2. Related work

2.1. Database migration and evolution

Database migration has become increasingly crucial as enterprises 
modernize their data infrastructure to meet evolving business needs. 
Traditional migration approaches typically focus on schema mapping 
and data transformation [10], often requiring substantial manual effort 
and domain expertise. While tools like AWS Database Migration Service 
and Oracle SQL Developer Migration Workbench have emerged to 
facilitate this process, they primarily address structured data migration 
between similar database types.

The emergence of NoSQL databases has introduced new challenges 
to database migration. Unlike traditional relational databases, NoSQL 
systems often have fundamentally different data models and query lan-
guages [11,12]. This heterogeneity makes automated migration partic-
ularly challenging, as it requires not only data transformation but also 
query and application adaptation. Recent research has explored various 
approaches to this challenge, including schema matching algorithms 
and query translation frameworks [8,9]. However, these methods often 
rely on rigid rules or patterns, limiting their adaptability to complex 
scenarios.

2.2. KGQA

KGQA aims to obtain knowledge from the KG to answer the given 
natural language question. In the early stages of research, the answer 
to a question can be an entity or relation in the KG. However, with 
the emergence of datasets focusing on complex questions, the answer 
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can be a numerical result obtained through intricate aggregation oper-
ations. To solve such complex questions, recent KGQA approaches tend 
to generate logical forms through semantic parsing rather than relying 
on retrieval-ranking methods. Early approaches focused on building 
and converting Query Graphs into logical forms. With the advent of 
Pre-trained Models (PTMs) like BART [13], direct generation of logical 
forms from natural questions became feasible [14]. Most recently, 
Large Language Models (LLMs) have enabled new approaches, such as 
discriminative selection of candidate logical forms [15] and few-shot 
in-context learning [16,17], though some solutions still face challenges 
with computational costs.

A typical KGQA system includes a KG deployed in a Database 
Management System (DBMS) and a model that takes questions as input 
and outputs logical forms such as SPARQL [18], S-expressions [19], 
and CQL [20]. For example, if the model takes SPARQL as the target 
logical form, the DBMS should be database software which provides 
SPARQL query endpoints like Jena,1 Virtuoso,2 etc. The evolution of 
KGQA systems reflects a broader trend in database technology advance-
ment, where systems need to adapt to new database paradigms while 
maintaining their core functionality.

2.3. LLMs in database applications

The emergence of Large Language Models (LLMs) has opened new 
possibilities in database management and evolution. Recent research 
has demonstrated LLMs’ potential in various database-related tasks, 
including natural language to SQL translation, schema design, and data 
integration [21,22]. The key advantage of LLMs lies in their ability to 
understand both natural language and structured queries, making them 
particularly suitable for bridging different database paradigms.

In-context learning, a distinctive capability of LLMs, has shown 
promising results in various database applications. Unlike traditional 
machine learning approaches that require extensive training data, in-
context learning enables models to adapt to new tasks with just a 
few examples [23]. This property is particularly valuable in database 
migration scenarios, where parallel training data is often scarce or 
expensive to obtain.

3. Preliminaries

3.1. Knowledge base

A typical knowledge base consists of an ontology  and a model 
 [24] . The ontology  defines the concepts, relationships, and 
constraints within a specific domain of knowledge and  is data model 
representing facts. In this work, the RDF graph model and Neo4j’s 
labeled property graph (LPG) model are involved.

For RDF,  ⊆ ( ∪)××(∪ ∪), where  is a set of entities, 
is a set of binary relations,  is a set of classes, and  is a set of literal 
values. It is noteworthy KQA Pro contains qualifier knowledge so that 
a relationship can also be the head of the triple as shown in Fig.  2.

For LPG,  ⊆  ×  ×  × , where   is a set of nodes, 
is a set of directed relations,  is a set of properties, and  is a set 
of labels. Both nodes and relationships possess distinctive identifiers 
and can store properties represented as key–value pairs. Nodes can be 
labeled to be grouped. The edges in LPG representing the relationships 
always have a start node and an end node, making the graph a directed 
graph.

Fig.  2 gives an example of Neo4j’s labeled property graph model and 
RDF data model. The two models store the same knowledge, but require 
different logical forms to answer the question ‘‘What is the number of 
O’Neal when he plays for the Cavs?’’ as shown in Fig.  1 . The evolution 

1 https://jena.apache.org/.
2 https://github.com/openlink/virtuoso-opensource.

https://jena.apache.org/
https://github.com/openlink/virtuoso-opensource
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Fig. 2. An example of the LPG model (blue part) and RDF graph model (green 
part). sport_number is a relation qualifier of relation member_of_sports_team. RDF 
graph requires a blank node (BNode) to describe the qualifier knowledge (the 
fact that when O’Neal plays as a member of Cleveland Cavaliers, his sport 
number is 33).

from RDF to LPG reflects a broader trend in database technology 
advancement, where systems adapt to meet changing requirements 
for data expressiveness, query performance, and maintenance effi-
ciency. This transition, however, necessitates comprehensive migration 
strategies that address both data transformation and query adaptation.

3.2. Query languages

SPARQL (SPARQL Protocol and RDF Query Language) and Cypher 
represent two distinct approaches to graph querying, each optimized 
for its respective data model. SPARQL, designed for RDF graphs, uses 
a pattern-matching approach based on triple structures. A typical 
SPARQL query begins with keywords like SELECT or ASK, followed by 
graph pattern expressions that can include variables (e.g., ?player, 
?team). The language supports complex operations through keywords 
such as FILTER, UNION, and EXISTS. Cypher, Neo4j’s query language, 
adopts a more visual approach to graph pattern matching. Patterns 
in Cypher use ASCII-art style syntax, where nodes are represented by 
parentheses and relationships by arrows (e.g., (h:Player)-[:me

⌋

mber_of_sport_team]->(t:Team)). This visual representation 
often makes Cypher queries more intuitive for developers, particularly 
when dealing with complex graph patterns. The language includes fea-
tures like property access, pattern matching, and aggregation functions, 
making it well-suited for modern graph database applications.

The fundamental differences between these query languages reflect 
their underlying data models and design philosophies. While SPARQL 
excels at handling semantic web data and standardized knowledge rep-
resentations, Cypher provides more intuitive and efficient querying for 
property graph applications. This divergence creates unique challenges 
for system migration, requiring sophisticated translation mechanisms 
that preserve both semantic meaning and query efficiency.

3.3. Task definition

Given a source database system 𝑆 with its query language 𝐿𝑠 and 
a target database system 𝑇  with its query language 𝐿𝑡, the database 
migration task involves: (1) Data Migration: Converting data from 𝑆 to 
𝑇  while preserving data integrity and relationships; (2) Query Transfor-
mation: Transforming queries written in 𝐿𝑠 to equivalent queries in 𝐿𝑡; 
(3) Application Adaptation: Modifying applications to work with the 
new query language and database system.

In this paper, we demonstrate our approach through a knowledge 
graph migration scenario, where the source system 𝑆 is RDF, the target 
system 𝑇  is Neo4j, and convert 𝐷𝑠 = {(𝑞𝑖, 𝑠𝑖) ∣ 𝑖 ∈ 𝑁} to obtain 
𝐷 = {(𝑞 , 𝑐 ) ∣ 𝑖 ∈ 𝑁}. For query transformation, 𝐷 = {(𝑞 , 𝑠 ) ∣ 𝑖 ∈
𝑐 𝑖 𝑖 𝑠 𝑖 𝑖
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𝑁} is the original QA pairs with natural language questions 𝑞𝑖 and 
SPARQL queries 𝑠𝑖, the goal is to generate equivalent Cypher queries 
𝑐𝑖 to obtain 𝐷𝑐 = {(𝑞𝑖, 𝑐𝑖) ∣ 𝑖 ∈ 𝑁}. While tools like neosemantics
handle the data migration aspect (converting RDF to LPG), the key 
challenge lies in query transformation. Traditional approaches often 
require extensive manual effort or large parallel corpora for training. 
We propose leveraging LLMs through in-context learning to automate 
this process, potentially opening new possibilities for broader database 
migration scenarios.

4. In-context data transformation

Our approach leverages in-context learning capabilities of LLMs to 
facilitate database query translation. The key idea is to provide LLMs 
with carefully selected exemplars of query pairs (SPARQL–Cypher) 
that demonstrate the translation patterns. As illustrated in Fig.  3, our 
method consists of three main components: (1) Exemplar Creation: 
Manual annotation of a small seed set of SPARQL–Cypher query pairs. 
(2) Exemplar Selection: Strategic selection of relevant exemplars for 
each input query. (3) Iterative Refinement: Continuous expansion of 
the exemplar database through verified transformations.

4.1. Prompt design

The effectiveness of in-context learning heavily depends on prompt 
design. The ontology information seems to be very important in the 
task. However, the ontology information may be too much text, con-
fusing the LLM and also increasing the API cost. We give a simple 
instruction and omit the explicit ontology information. Our prompt 
template is shown in Fig.  4. We add special tokens < 𝑠𝑜𝑒 > and 
< 𝑒𝑜𝑒 > to represent the start and the end of an exemplar. For the target 
question, the LLM will complete the Cypher query which is leaving 
empty in the prompt.

4.2. Exemplar selection strategies

As we omit the ontology information in the instruction, LLM has to 
capture it from the in-context exemplars. To verify this idea, we explore 
two strategies for selecting in-context exemplars:

Random Selection: This baseline strategy randomly samples k 
exemplars from the available SPARQL–Cypher pairs. While simple, 
this approach helps establish the lower bound of performance and 
demonstrates the robustness of LLM-based translation.

Semantic Retrieval: We employ BM25 algorithm [25] to retrieve 
exemplars that are semantically similar to the input query. The simi-
larity is computed based on:
𝑠𝑐𝑜𝑟𝑒(𝑄,𝐸) = 𝐵𝑀25(𝑄.𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝐸.𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛)

where Q is the input query and E is a candidate exemplar. This 
approach ensures that the selected exemplars demonstrate translation 
patterns relevant to the current query. This semantic retrieval can be 
replaced or combined with neural retrieval methods, such as BERT [26] 
and SentenceTransformers [27].

4.3. Iterative refinement process

To improve the system’s performance over time, we implement an 
iterative refinement process as shown in Algorithm 1. The iterative 
refinement process consists of four key phases:

Phase 1: Initial Translation. The system generates Cypher queries 
for input SPARQL queries using the current exemplar database. Each 
translation attempt leverages the in-context learning capabilities of the 
LLM with retrieved relevant exemplars.

Phase 2: Verification. Generated Cypher queries undergo rigorous 
verification through:
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Fig. 3. Overview of our proposed migration pipeline. The KG is transferred from Virtuoso to Neo4j and application dataset is transformed from SPARQL to 
Cypher.
 

Fig. 4. The prompt design for in-context generation.

Algorithm 1 Iterative Refinement Process
Require: 𝐷seed ⊳ Initial seed set of SPARQL–Cypher pairs
Require: 𝑄new ⊳ New SPARQL queries to translate
Require: 𝑘 ⊳ Number of exemplars to use
Ensure: 𝐷expanded ⊳ Expanded exemplar database
1: function IterativeRefinement(𝐷seed, 𝑄new, 𝑘, 𝜃)
2:  𝐷expanded ← 𝐷seed
3:  for each query 𝑞 in 𝑄new do
4:  𝐸𝑞 ← SelectExemplars(𝐷expanded, 𝑞, 𝑘)
5:  𝑐𝑞 ← GenerateTranslation(𝑞, 𝐸𝑞) ⊳ Using LLM
6:  𝑟𝑒𝑠𝑢𝑙𝑡 ← VerifyTranslation(𝑐𝑞)
7:  if 𝑟𝑒𝑠𝑢𝑙𝑡 is True then
8:  𝐷expanded ← 𝐷expanded ∪ {(𝑞, 𝑐𝑞)}
9:  end if
10:  end for
11:  return 𝐷expanded
12: end function
13: function VerifyTranslation(𝑐𝑞)
14:  Execute 𝑐𝑞 against target database
15:  Compare results with source query execution
16:  return result
17: end function

• Syntax validation against Neo4j’s query parser
• Execution against the target database
• Result comparison with original SPARQL query outputs
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Phase 3: Exemplar Database Expansion. Successfully verified 
translations are incorporated into the exemplar database. A translation 
is considered successful when it:

• Maintains syntactic correctness
• Produces equivalent results to the source query
• Preserves the semantic intent of the original query
Phase 4: Iterative Enhancement. The expanded exemplar database

feeds back into the translation process, creating a continuous improve-
ment cycle. We expect this iterative approach to enhance retrieval qual-
ity and form better ICL prompt quality, thus improving the translation 
accuracy from accumulated successful patterns.

The effectiveness of this process is demonstrated through empirical 
evaluation in Section 5, where we observe consistent improvements 
in both translation accuracy and query execution success rates across 
iterations.

5. System migration experiment

Our experiments address three key research questions: (1) How ef-
fectively can LLMs translate between database query languages without 
extensive training? (2) What impact do different exemplar selection 
strategies have on translation quality? (3) How does the iterative 
refinement process improve performance over time? To answer these 
questions, we designed a comprehensive evaluation framework us-
ing knowledge graph query translation as a representative database 
migration task.

5.1. Experimental settings

5.1.1. Datasets
We evaluate our approach on two datasets of varying scale and 

complexity to demonstrate its robustness:
KQA Pro: We use KQA Pro [14] as our primary evaluation
benchmark—an open-domain KGQA dataset featuring complex ques-
tions requiring multi-step reasoning. The dataset provides annotated 
programs for each question, representing the reasoning steps required 
to derive the answer. We use the number of steps in these programs, 
which we refer to as ‘‘program length’’, as a proxy for question com-
plexity in our analysis. The underlying knowledge graph contains 
approximately 20,000 entities, 1200 relations, and 900,000 triples 
merged from Freebase and Wikidata.
DBLP-QuAD: To validate scalability, we conducted experiments on 
DBLP-QuAD [28], built on the significantly larger DBLP scholarly 
knowledge graph (2.9 million person entities, 6 million publication 
entities, and over 252 million RDF triples).
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Fig. 5. Knowledge graph migration configuration: This Cypher script shows 
the initialization process for transferring RDF data to Neo4j using the 
neosemantics plugin, illustrating the data transformation component of our 
migration framework.

Table 1
Dataset statistics: The answers in KQA Pro are not available, so we take 1000 
samples from the validation set for evaluation. The answers in DBLP-QuAD 
are available, so we use the original test set.
 Train Validation Test  
 KQA Pro 94,376 11,797 11,797 
 KQA Mini 50 – 1000  
 DBLP-QuAD 7000 1000 2000  
 DBLP Mini 90 – 2000  

For data migration, we used neosemantics to convert RDF data to 
Neo4j’s LPG format, with the configuration shown in Fig.  5. This config-
uration defines the ontology mapping rules from RDF to LPG. For query 
translation evaluation, we created KQA Mini—a dataset containing 
50 samples from the training set and 1000 from the validation set 
(SPARQL–Cypher pairs are available), maintaining the distribution of 
12 question types from the original dataset (Table  1). For DBLP-QuAD, 
we created a smaller dataset DBLP Mini containing 90 samples from the 
training set with manually annotated SPARQL–Cypher pairs and use the 
original test set (no Cypher annotations are available) for evaluation.

5.1.2. Evaluation metrics
We employ four complementary metrics to assess query translation 

quality from multiple perspectives:
Answer Accuracy/F1: The primary metric measuring whether the 
translated query produces the same answer as the original query when 
executed against the respective databases. For KQA Pro, where answers 
are typically single values, we use accuracy: 

𝐴𝑐𝑐 = 1
𝑁

𝑁
∑

𝑖=1
𝟏(𝑎𝑖 = 𝑎𝑖) (1)

where 𝑎𝑖 is the expected answer and 𝑎𝑖 is the answer produced by the 
translated query. For DBLP-QuAD, where answers can contain multiple 
values, we use F1 score to measure the overlap between predicted and 
golden answer sets following the DBLP-QuAD paper [28]: 

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(2)

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |𝐴𝑝𝑟𝑒𝑑∩𝐴𝑔𝑜𝑙𝑑 |

|𝐴𝑝𝑟𝑒𝑑 |
 and 𝑅𝑒𝑐𝑎𝑙𝑙 = |𝐴𝑝𝑟𝑒𝑑∩𝐴𝑔𝑜𝑙𝑑 |

|𝐴𝑔𝑜𝑙𝑑 |
. Here, 𝐴𝑝𝑟𝑒𝑑 and 

𝐴𝑔𝑜𝑙𝑑 are the sets of predicted and gold standard answers respectively.
Translation Fidelity (BLEU-4): Measures syntactic similarity between 
the generated and reference translations [29]: 

𝐵𝐿𝐸𝑈 = 𝑚𝑖𝑛(1,1 − 𝑟 ) ⋅ exp(
𝑁
∑

𝑤𝑛 log 𝑝𝑛) (3)

𝑐 𝑛=1
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where 𝑟 is reference length, 𝑐 is candidate length, and 𝑝𝑛 is n-gram 
precision.

Tree Edit Distance (Tree-ED): Measures structural similarity between 
the generated and reference Cypher queries by comparing their Ab-
stract Syntax Trees (ASTs). We first parse the Cypher queries into ASTs 
and then calculate the tree edit distance [30,31]. The similarity score 
is normalized using: 

𝑇 𝑟𝑒𝑒 − 𝐸𝐷 = exp(− 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ) (4)

where 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the minimum number of operations required to 
transform one AST into another, and 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the maximum pos-
sible edit distance between the trees. If generated query is syntactically 
incorrect (cannot be parsed into an AST), the Tree-ED score is 0. If 
𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 equals to 0, the Tree-ED score is 1. This metric helps assess 
how well the generated query matches the reference query in terms of 
the query structure.
Executable Rate (ER): Measures syntactic correctness—the percentage 
of translated queries that can be parsed and executed by the target 
database: 

𝐸𝑅 = 1
𝑁

𝑁
∑

𝑖=1
𝑓 (𝒚𝑖) (5)

where 𝑓 (𝒚𝑖) returns 1 if query 𝒚𝑖 is executable and 0 otherwise.
These metrics provide a comprehensive assessment of both func-

tional correctness (Acc/F1), structural similarity (Tree-ED), syntactic 
correctness (ER), and translation quality (BLEU-4).

5.1.3. Implementation details
All experiments used OpenAI’s GPT-4o-mini model with tempera-

ture set to 0 for deterministic outputs. For the retrieval component, 
we implemented both BM25 and vector-based retrieval using Sen-
tenceTransformers.3 The initial exemplar database contained 50/90 
manually created SPARQL–Cypher translation pairs derived from the 
KQA Pro/DBLP-QuAD training set.

For the BART baseline, we fine-tuned a BART-large model [13] 
on our translation task, treating it as a sequence-to-sequence problem 
where SPARQL queries serve as input sequences and Cypher queries as 
target sequences. The model was fine-tuned using the train set used 
for the LLM exemplar database to ensure fair comparison. We used 
standard hyperparameters for sequence-to-sequence fine-tuning with a 
learning rate of 3e−5, batch size of 8, and trained for 50 epochs. This 
baseline represents a traditional neural machine translation approach 
to query translation, requiring explicit fine-tuning on parallel data.

5.2. Results on KQA

Table  2 presents our main experimental results on KQA:
Limitations of Traditional Seq2Seq Models  The BART seq2seq 
model [13], despite achieving reasonable BLEU scores (71.22%), shows 
severe limitations in executable rate (38.30%) and answer accuracy 
(5.70%). The Tree-ED score of 70.72% indicates that while the model 
can generate structurally similar queries, it struggles to maintain the 
correct query grammar. This stark performance gap highlights the 
fundamental challenge traditional seq2seq models face with complex 
query translations, likely due to their inability to effectively capture the 
semantic intricacies and syntactically requirements of different query 
languages without substantial parallel training data.
Impact of In-Context Learning  The substantial performance gap 
between zero-shot (13.20% Acc, 75.00% Tree-ED) and in-context learn-
ing with randomly selected examples (47.00% Acc, 85.04% Tree-ED) 
demonstrates that even basic exemplars significantly improve both 

3 The model used is all-MiniLM-L6-v2.
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Table 2
Performance comparison across methods on KQA: The table shows progressive 
improvement in all metrics from zero-shot to iterative refinement approaches, 
with semantic retrieval (BM25) consistently outperforming random selection.
 Method BLEU Tree-ED ER (%) Ans Acc (%) 
 bart [13] 71.22 70.72 38.30 5.70  
 zeroshot 39.25 75.00 91.00 13.20  
 random_k5 79.03 85.04 83.80 47.00  
 vector_k5 83.90 88.75 88.00 63.20  
 bm25_k5 86.79 89.91 88.80 66.80  
 bm25_k5_iter1 88.24 89.91 94.30 82.90  
 bm25_k5_iter2 88.42 89.91 96.10 86.70  
 bm25_k5_iter3 88.68 89.91 97.30 88.80  
 bm25_k5_iter4 88.58 89.91 96.90 89.60  

Fig. 6. The results on KQA when provided with different in-context exemplars.

translation quality and structural preservation. This confirms our hy-
pothesis that LLMs can effectively learn database-specific patterns from 
a small set of examples, making them particularly suitable for database 
migration scenarios where parallel data is limited.
Retrieval Strategy Effectiveness  Semantic retrieval using BM25 
(66.80% Acc, 89.91% Tree-ED) outperforms random selection (47.00% 
Acc, 85.04% Tree-ED) by a substantial margin (+19.80% Acc, +4.87% 
Tree-ED), highlighting the importance of presenting relevant examples 
to the model. This improvement suggests that even simple lexical 
similarity-based retrieval methods can significantly enhance both trans-
lation quality and structural preservation in in-context learning for 
database query translation.
Number of ICL Exemplars  The quantity of exemplars provided in 
the context is an intuitive factor that affects the final performance 
for in-context learning. We retrieve the K most similar samples to the 
question using BM25 [25] to form context, where K ranges from 1 to 
5. The experimental results are illustrated in Fig.  6. The BLEU score 
shows consistent improvement as K increases, from 39.25% (zero-shot) 
to 86.79% (K = 5), indicating that additional examples help LLMs 
better understand the query translation patterns. The most significant 
jump occurs between zero-shot and K = 1 (from 39.25% to 67.32%), 
suggesting that even a single well-chosen example can substantially 
improve translation quality. The executable rate remains consistently 
high (around 89%) across different K values, with slight fluctuations. 
The Tree-ED starts from 75% and plateaus at around 89%. This suggests 
that LLMs maintain strong syntactic understanding regardless of the 
number of examples, likely due to their pre-training on programming 
languages. The answer accuracy shows significant improvement from 
zero-shot (13.2%) to K = 4 (65.4%), but plateaus afterwards. This 
pattern suggests that while more examples generally help, there might 
be a point of diminishing returns, possibly due to context window 
limitations or increased complexity in processing multiple examples.

These findings have important implications for database migration 
applications: while more examples generally improve performance, 
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Table 3
DBLP-QuAD results: Performance metrics on the larger DBLP scholarly knowl-
edge graph (252M triples) showing consistent improvements across iterations, 
validating the approach’s scalability to enterprise-scale knowledge bases.
 Method F1 score (%) Executable (%) Improvement (%) 
 bart [13] 21.41 90.00 –  
 zeroshot 11.65 92.00 –  
 random_k5 35.66 84.40 +24.01  
 vector_k5 37.16 86.40 +25.51  
 bm25_k5 45.60 89.55 +33.95  
 bm25_k5_iter1 66.07 92.15 +54.42  
 bm25_k5_iter2 69.59 92.80 +57.94  
 bm25_k5_iter3 70.56 92.30 +58.91  
 bm25_k5_iter4 70.91 92.05 +59.26  

practitioners should balance the benefits of additional examples against 
computational costs and context window limitations. The high ER and 
Tree-ED across all settings also suggests that LLMs could be reliable 
tools for maintaining syntactic correctness in database query translation 
tasks.

Iterative Refinement Benefits  The progressive improvement across 
iterations (66.80% → 82.90% → 86.70% → 88.80% → 89.60% for 
Acc, while maintaining Tree-ED at 89.91%) validates our iterative 
refinement approach. Each iteration contributes meaningfully to perfor-
mance, with the system becoming increasingly effective as the exemplar 
database expands with verified translations. Notably, the executable 
rate reaches 97.30% after three iterations, indicating high syntactic 
reliability suitable for production environments. The stable Tree-ED 
score across iterations suggests that our approach consistently preserves 
query structure while improving translation accuracy.

5.3. Results on DBLP-QuAD

Results on the DBLP-QuAD dataset (Table  3) demonstrate the ap-
proach’s effectiveness on larger knowledge graphs. Despite DBLP con-
taining approximately 100 times more entities than KQA Pro, our 
system achieves consistent improvements across iterations, with F1 
scores increasing from 11.65% (zero-shot) to 70.91% (after four itera-
tions). The executable rate remains high (>90%) throughout, indicating 
robust syntactic understanding regardless of knowledge graph scale.

Interestingly, BART achieves a relatively high executable rate
(90.00%) but modest F1 score (21.41%) on DBLP-QuAD, suggesting 
that while it can produce syntactically valid queries for this dataset, it 
struggles with semantic correctness. This contrasts with its performance 
on KQA Pro, where it fails on both executable rate and answer accu-
racy, highlighting how dataset characteristics can significantly impact 
traditional seq2seq performance.

It is worth noting that the F1 scores on DBLP-QuAD are notably 
lower than the accuracy scores achieved on KQA Pro. This performance 
gap can be attributed to several fundamental challenges. First, DBLP-
QuAD presents significant scale challenges with its 252M triples and 
approximately 9M entities, including numerous namesake scholars who 
share identical names but represent different academic entities, making 
precise entity disambiguation considerably more difficult. Second, the 
scholarly domain requires more complex schema and query structures, 
demanding specialized domain knowledge about academic relation-
ships between authors, publications, venues, and citations that may be 
underrepresented in the GPT-4o-mini model’s pre-training data. Third, 
according to the DBLP-QuAD paper [28], the test set is not inde-
pendently and identically distributed with the training set, containing 
question types and patterns entirely absent from the training data. This 
non-IID setting creates additional difficulties for our GPT-4o-mini model 
when handling novel query structures and relationships. Using more 
powerful language models with stronger generalization capabilities 
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Fig. 7. Progressive performance improvement: This figure shows the con-
sistent growth in both datasets across iterations, demonstrating the system’s 
ability to continuously improve through feedback and exemplar database 
expansion.

might yield improved results on these challenging out-of-distribution 
questions. Despite these obstacles, the consistent improvement pattern 
across iterations demonstrates our approach’s effectiveness even for 
complex, large-scale knowledge graphs, validating its potential for 
enterprise database migration scenarios.

The progressive improvement visualized in Fig.  7 demonstrates the 
system’s continuous learning capability through the iterative feedback 
cycle, with each iteration contributing meaningfully to overall per-
formance. It is noted that the rate of change in answer accuracy/F1 
score does not align with that of Executable rate and BLEU score. 
When in-context learning is applied, both the Executable rate and 
BLEU score already achieve high performance, consistent with the Tree-
ED results in Table  2, which remain at around 89.91%. During the 
iterative process, the LLM is able to acquire more ontology knowledge 
by retrieving new content from an updated exemplar pool, enabling it 
to make fine-grained adjustments to the generated queries so that they 
can yield correct answers upon execution.

6. Discussion

Our experiments demonstrate that an LLM-powered, iterative frame-
work can effectively automate the complex task of query translation 
for database migration. The following sections explore the underly-
ing reasons for its success, analyze a representative failure case, and 
discuss practical considerations such as cost and security. This analy-
sis provides deeper insights into the method’s mechanics, its current 
limitations, and its potential for real-world deployment in demanding 
application contexts like smart cities and eHealth.

6.1. Why and how our method works

To find out why and how our proposed method works, we grouped 
the samples in the KQA dataset into three groups based on the complex-
ity of the question. The annotated program uses several functional step 
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Fig. 8. Accuracy improvements across number of in-context exemplars (k 
value). bm25_k0 refers to zeroshot setting in Table  2.

Fig. 9. Accuracy improvements across iterations.

to solve the question, the more steps, the more complex and difficult 
the question is. We group the samples into three groups based on 
the program length. Fig.  8 shows the accuracy improvements across 
different number of in-context exemplars (k value). Fig.  9 shows the 
accuracy improvements across iterations.

As shown in Fig.  8, the more complex a question is, the lower its 
accuracy tends to be. Across all three groups, the trend of accuracy 
(acc) as k varies is similar to that observed in Fig.  6. As k increases, 
performance improves across questions of varying difficulty levels—not 
just for simple questions. This indicates that the in-context learning ap-
proach demonstrates strong generalization across problems of different 
difficulty levels.

From Fig.  9, it can be seen that as the number of iterations in-
creases, performance improves for questions of all difficulty levels, 
with a more pronounced improvement observed for difficult questions. 
This suggests that under the 5-shot in-context learning setting using 
the BM25 algorithm, most simple questions already achieve relatively 
high initial performance. Our iterative refinement process, however, is 
particularly effective in enhancing the model’s performance on complex 
and long-form questions.

6.2. Exemplar selection methods

The selection of in-context exemplars plays a crucial role in few-
shot learning performance. Our experiments demonstrate that different 
sets of exemplars can lead to significant variations in model perfor-
mance, with observed accuracy differentials reaching 47.7% between 
random sampling and fourth iteration results. This observation aligns 
with recent findings in research [32,33], suggesting that the quality 
and relevance of in-context exemplars are as important as the model 
capabilities themselves.
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Fig. 10. A representative failure case. With in-context exemplars, the LLM performs well but fails to enclose the relation identifier in backticks (e.g.,  ̀ rela-
tion`), a syntactic requirement it has not seen in the exemplars.
Currently, our approach employs a simple similarity-based retrieval 
method using traditional BM25. While this method shows promising 
results, there remains substantial room for improvement. Future work 
could explore more sophisticated example selection strategies, such as:

• Hybrid Retrieval: Combining semantic similarity with structural 
matching of question patterns and knowledge graph topology.

• Dynamic Selection: Adaptively choosing examples based on the 
complexity and characteristics of the input question.

• Diversity-aware Sampling: Ensuring selected examples cover 
different reasoning patterns while maintaining relevance.

These observations point to an important direction for future re-
search: developing more principled approaches to example selection 
that consider both semantic relevance and structural characteristics of 
KGQA tasks. Such improvements could lead to more robust and efficient 
few-shot learning systems for complex reasoning tasks.

6.3. Case study

To better illustrate the working mechanism and limitations of our 
proposed method, we present a detailed analysis of a representative 
failure case, as shown in Fig.  10. We compare the outputs of all 
baseline methods for this specific example to reveal the strengths and 
weaknesses of each approach.

When directly prompting the LLM to generate a Cypher query 
for the migrated graph database (zero-shot setting), the model lacks 
knowledge of the ontology mapping from RDF to Neo4j. As a result, it 
incorrectly generates all relation identifiers in uppercase, which does 
not conform to the actual schema of the target database. This high-
lights the necessity of providing ontology-related information, either 
explicitly or implicitly, for accurate query translation.

With the random exemplar selection strategy, the LLM is able to 
produce a structurally correct Cypher query. This demonstrates that 
even randomly chosen in-context examples can help the model capture 
essential translation patterns, though the quality and relevance of the 
exemplars are not guaranteed.

In the dense vector retrieval setting, the LLM makes a different 
type of error: it incorrectly treats work_period_start as a node 
property rather than a relation identifier. This suggests that while dense 
retrieval can surface semantically similar examples, it may not always 
retrieve structurally appropriate ones, leading to subtle but critical 
mistakes in the generated queries.

The BM25-based retrieval setting yields results that largely preserve 
the correct structure of the Cypher query. However, both the BM25 and 
the first iteration of the iterative refinement process exhibit a common 
issue: the relation identifiers contain parentheses, which is not the 
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Table 4
The costs of the experiments. The price of gpt-4o-mini is $0.15 per million 
input token and $0.6 per million output token.
 Experiment Samples Avg input Avg output Total input Total output
 KQA total cost: $0.41
 BM25 k = 5 1000 1195.8 88.9 1,195,759 88,889
 Iteration 1 332 1166.5 103.0 387,277 34,209
 Iteration 2 171 1181.7 99.7 202,069 17,050
 Iteration 3 133 1202.2 108.5 159,895 14,425
 Iteration 4 112 1203.4 102.9 134,783 11,526

 Total 1748 1189.8 95.0 2,079,783 166,099

 DBLP total cost: $1.04
 BM25 k = 5 2000 1016.8 79.1 2,033,644 158,254
 Iteration 1 1112 1063.7 79.2 1,182,794 88,078
 Iteration 2 703 1072.6 85.4 754,015 60,064
 Iteration 3 632 1071.0 85.1 676,877 53,755
 Iteration 4 614 1073.7 88.9 659,227 54,570

 Total 5061 1048.5 82.0 5,306,557 414,721

correct Cypher syntax. Moreover, in the first iteration, the direction 
of the relation is generated incorrectly, further affecting the query’s 
correctness.

Notably, the outputs of Iteration 2 and Iteration 3 are identical. 
This is because the exemplar pool did not change significantly between 
these iterations, resulting in BM25 retrieving the same top-5 examples 
for in-context learning. In Iteration 4, the model makes further fine-
grained adjustments, recognizing that parentheses are not appropriate 
for relation identifiers in Cypher. However, it still fails to enclose the 
relation identifier in backticks (`), which is required for certain special 
identifiers in Cypher. This oversight is likely due to the absence of 
such cases in the initial seed pairs; the LLM has not seen an exemplar 
demonstrating the use of backticks for relation identifiers.

This case study underscores the importance of high-quality, diverse 
exemplars in the seed pool. Including a seed pair that demonstrates the 
use of backticks for special relation identifiers would likely enable the 
LLM to generalize this pattern to similar cases. Alternatively, employing 
a more powerful language model with stronger generalization capabil-
ities could also address this issue. Overall, this analysis highlights both 
the promise and the current limitations of LLM-based query translation, 
and points to concrete directions for future improvement, such as 
targeted exemplar augmentation and model enhancement.

6.4. Migration cost

The cost analysis (see Table  4) reveals several important insights 
about the economic feasibility of our approach:
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Total Costs: The total cost for the KQA Pro experiments was $0.41, 
while the DBLP-QuAD experiments cost $1.04. These costs are reason-
able considering the complexity of the task and the quality of results 
achieved.

Cost Distribution: For both datasets, the initial BM25 k = 5 phase 
accounts for the largest portion of the total cost, as it processes all 
samples. Subsequent iterations process fewer samples that failed to 
yield correct answers in the previous iteration.

Token Usage: The average input tokens per sample remain rela-
tively stable across iterations (around 1200 for KQA Pro and 1050 for 
DBLP-QuAD), while output tokens show some variation but generally 
stay within a reasonable range (80–110 tokens per sample). The context 
length is far less than the limit of current powerful LLMs.

These cost statistics demonstrate that our approach is economically 
viable for real-world database migration scenarios, given that the cost 
of LLMs is decreasing rapidly.

6.5. Privacy and security considerations

While LLMs show promising capabilities in database migration 
tasks, their deployment in production environments raises important 
privacy and security concerns. The use of external LLM services re-
quires sending database queries and schema information to third-party 
providers, potentially exposing sensitive business logic and data pat-
terns. Our current approach partially mitigates these risks by only 
sharing query structures rather than actual data. However, even query 
patterns could reveal sensitive information about database design and 
business operations. Future implementations should consider several 
security measures: First, on-premise deployment of smaller, specialized 
LLMs could provide a more secure alternative to cloud-based services. 
These models could be fine-tuned specifically for database migration 
tasks while maintaining data sovereignty. Second, privacy-preserving 
techniques such as query anonymization and schema obfuscation could 
be integrated into the translation pipeline. Finally, access control 
mechanisms could be implemented to ensure that only authorized per-
sonnel can utilize the migration tools. The balance between leveraging 
LLM capabilities and maintaining data security presents an important 
challenge for future research. As these technologies mature, developing 
standardized security protocols for LLM-assisted database operations 
will become increasingly critical.

7. Conclusion

This paper introduces a novel LLM-powered framework for au-
tomated database query translation, a critical step in modernizing 
data systems. By combining in-context learning with iterative refine-
ment, our approach effectively translates queries between different 
KG paradigms (SPARQL and Cypher) with high accuracy (89.6%), 
reliability (97.3% executable rate), and structural fidelity. We have 
demonstrated that this method is not only scalable to enterprise-level 
datasets but is also highly cost-effective, offering a practical path for or-
ganizations to overcome the significant barriers of traditional database 
migration.

The key innovation of our work lies in its ability to bridge the 
semantic and structural gaps between query languages without large 
parallel corpora or manually engineered rules. This capability is es-
sential for enabling the adoption of modern database technologies, 
such as Neo4j, which are increasingly favored for building sophis-
ticated applications in domains like smart cities and eHealth. Our 
framework empowers organizations to evolve their data infrastructure 
while preserving valuable investments in existing business logic and 
applications.

While the results are strong, future work can extend this frame-
work. Exploring advanced hybrid retrieval methods, developing ro-
bust domain adaptation techniques for out-of-distribution KGs, and 
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extending the approach to other query language pairs are promis-
ing research directions. Furthermore, addressing privacy and security 
concerns through on-premise models and data anonymization will be 
crucial for production deployments.

In conclusion, our research establishes a new paradigm for database 
evolution. It provides a foundation for more agile, automated, and 
accessible migration processes, enabling data systems to keep pace with 
the rapid advancements in technology and application demands.
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