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Abstract

To maintain product reliability and stabilize performance, it is essential to prioritize the
identification and resolution of latent defects. Advanced products such as high-precision
electronic devices and semiconductors are susceptible to performance degradation over
time due to environmental factors and electrical stress. However, conventional performance
testing methods typically evaluate products based solely on predefined acceptable ranges,
making it difficult to predict long-term degradation, even for products that pass initial
testing. In particular, products exhibiting borderline values close to the threshold during
initial inspections are at a higher risk of exceeding permissible limits as time progresses.
Therefore, to ensure long-term product stability and quality, a novel approach is required
that enables the early prediction of potential defects based on test data. In this context, the
present study proposes a machine learning-based framework for predicting latent defects
in products that are initially classified as normal. Specifically, we introduce the Sigma
Deviation Count Labeling (SDCL) method, which utilizes a Gaussian distribution-based
approach. This method involves preprocessing the dataset consisting of initially passed
test samples by removing redundant features and handling missing values, thereby con-
structing a more robust input for defect prediction models. Subsequently, outlier counting
and labeling are performed based on statistical thresholds defined by 2σ and 3σ, which
represent potential anomalies outside the critical boundaries. This process enables the
identification of statistically significant outliers, which are then used for training machine
learning models. The experiments were conducted using two distinct datasets. Although
both datasets share fundamental information such as time, user data, and temperature,
they differ in the specific characteristics of the test parameters. By utilizing these two
distinct test datasets, the proposed method aims to validate its general applicability as a
Predictive Anomaly Testing (PAT) approach. Experimental results demonstrate that most
models achieved high accuracy and geometric mean (GM) at the 3σ level, with maximum
values of 1.0 for both metrics. Among the tested models, the Support Vector Machine
(SVM) exhibited the most stable classification performance. Moreover, the consistency of
results across different models further supports the robustness of the proposed method.
These findings suggest that the SDCL-based PAT approach is not only stable but also highly
adaptable across various datasets and testing environments. Ultimately, the proposed
framework offers a promising solution for enhancing product quality and reliability by
enabling the early detection and prevention of latent defects.
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1. Introduction
Early detection and mitigation of latent defects play a critical role in maintaining

stable product performance. High precision electronic devices, such as semiconductors,
may exhibit performance degradation or failures under actual operating conditions, even
if they have successfully passed initial product testing [1]. Conventional performance
evaluation methods classify products as normal as long as the test results fall within
predefined thresholds. However, products that exhibit results near the boundary values
may initially be deemed acceptable but can drift beyond allowable limits over time [2,3].
The causes of such latent defects are diverse and include inter cell interference caused
by semiconductor miniaturization, inherent limitations in inspection processes, and the
emergence of new types of defects [4]. These factors can lead to increased warranty costs,
reduced product reliability, and damage to the company’s reputation. In severe cases, latent
defects in semiconductors may even pose safety risks to end users [5]. Therefore, to ensure
the long-term performance and reliability of products, a predictive approach is required
one that can identify devices likely to experience future degradation based on their initial
test results [6].

Traditionally, latent defects have been detected through post manufacturing screening
processes such as burn-in testing and Environmental Stress Screening (ESS) [7]. These
methods are primarily designed to eliminate early life failures referred to as infant mortality
which tend to cluster in the initial phase of the failure rate curve, commonly known as
the bathtub curve [8]. By subjecting products to elevated levels of stress, including high
temperature and voltage, these procedures aim to identify and eliminate defective units
prior to deployment [8]. However, such screening techniques are often costly and time
consuming [8]. Furthermore, it is challenging to replicate all possible stress conditions that a
product may encounter in the field. In modern manufacturing environments, the emergence
of novel failure mechanisms makes it increasingly difficult for traditional methods to
effectively capture all latent defects [9]. These limitations highlight the growing need
for data driven approaches in defect detection and reliability assurance. In response to
these challenges, the industry has increasingly adopted the Part Average Test (PAT) as a
complementary strategy to reduce dependency on burn-in testing while improving early
defect detection accuracy [10]. Static and dynamic Part Average Testing (PAT) techniques
are statistical test methodologies employed in semiconductor manufacturing processes
to facilitate early identification of latent defects [11]. Static PAT establishes test limits
based on data from previously tested lots, whereas dynamic PAT calculates these limits
using data derived from the current lot under evaluation. However, conventional PAT
methods exhibit inherent limitations in effectively capturing subtle anomaly signals or
minor process variations. Static PAT is limited in its responsiveness to real time changes
in process conditions, while dynamic PAT tends to be vulnerable to noise and variability
introduced during data collection and analysis [12].

To overcome the limitations of traditional statistics-based methods and improve predic-
tive accuracy, recent research has increasingly focused on data driven approaches utilizing
machine learning and deep learning techniques for latent defect prediction. Wang and
Yang proposed a machine learning-based analysis method to address random defects
arising from equipment variability, analyzing the impact of equipment combinations on
production yield [13]. Their method was applied to a real-world DRAM manufacturing
plant, where it successfully identified abnormal equipment combinations and enabled
process engineers to take prompt corrective actions. Kim and Joe introduced a framework
aimed at identifying root cause processes responsible for rare latent defects. By generating
virtual bad wafers and employing large scale data processing techniques, they significantly
improved both the accuracy of defect source identification and the speed of analysis [4]. P.
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Lenhard et al. presented a die level predictive modeling approach utilizing inline defect
inspection data collected during semiconductor manufacturing processes [10]. By com-
bining saliency map clustering with advanced predictive engines, their method was able
to identify dies with latent reliability risks that had passed wafer sort, thereby reducing
defect escapes in post packaging stages and enhancing overall product reliability. Hu et al.
proposed an unsupervised anomaly detection algorithm based on machine learning to
identify and eliminate rare defective semiconductor devices that have passed standard
testing procedures. The method employs a self-labeling technique in which normal data are
transformed using power, Chebyshev, and Legendre polynomials to generate unique labels.
This transformation process facilitates the training of a classifier capable of learning hidden
patterns within the normal dataset, thereby enabling effective identification of latent defects
that exhibit subtle behavioral deviations from normal chips [14].

This study proposes a post process prediction method aimed at mitigating the high cost
and time loss associated with traditional screening techniques, by enabling the detection of
latent defects prior to the execution of screening tests. The proposed Sigma Deviation Count
Labeling (SDCL) method assigns labels to statistically defined outliers and leverages these
labels within a supervised machine learning framework for defect prediction. By identifying
and filtering out products with a high likelihood of performance degradation despite
having passed initial tests as normal the proposed method enables significant savings
in terms of cost, labor, and time typically incurred by subsequent screening procedures.
Furthermore, by ensuring that only products with stable performance are shipped, the
approach contributes to improved long-term quality management and enhanced product
reliability. While the study by Hu et al. [14] shares the common objective of detecting latent
defects at an early stage prior to product shipment, as well as the utilization of data from
devices that have passed standard testing, several distinctions exist in terms of learning
methodology and interpretability. Hu et al. adopt an unsupervised learning approach
based on self-labeling to identify anomalies, whereas the present study assigns weak labels
to statistically defined outliers and employs a supervised learning framework for model
training. From an interpretability standpoint, Hu et al.’s method demonstrates strengths in
representation learning and anomaly scoring, whereas the proposed approach leverages an
intuitive feature namely, anomaly count to facilitate the identification of defective variables
or specific process segments. Furthermore, due to its simplicity in parameter tuning, the
proposed method can be readily adapted to sudden environmental changes in real-world
manufacturing settings through rapid adjustment of threshold values

2. Related Work
In this study, the proposed SDCL method is compared with two widely used statistical

outlier detection approaches in order to extract anomalies from normal datasets and enable
subsequent machine learning training. For this purpose, the Median Absolute Deviation
(MAD) method and the Interquartile Range (IQR) method were selected as benchmarks for
comparison.

2.1. Outlier Detection Based on the Normal Distribution

Assuming that the data follows a normal distribution, the majority of observations are
concentrated within a specific range around the mean. The spread of this distribution is
determined by the standard deviation (σ), and it is well established that the probabilities of
data falling within ±1σ, ±2σ, and ±3σ are 68.27%, 95.45%, and 99.73%, respectively [15].
Based on these statistical properties, thresholds can be defined in terms of σ, whereby
observations exceeding these limits are regarded as statistical outliers [16]. Table 1 presents
the proportions of data located inside and outside each sigma range. Outlier detection
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techniques based on the assumption of a Gaussian distribution inherently rely on the
premise that the underlying data follows a normal distribution. However, in cases where
the actual data distribution is asymmetric, this assumption is violated, increasing the
likelihood of false detections. Moreover, both the mean and standard deviation are highly
sensitive to extreme values the presence of even a small number of outliers can lead
to inflated standard deviation estimates. When the dataset is small, the uncertainty in
estimating σ becomes more pronounced, potentially resulting in biased threshold settings.
Consequently, the relaxation of detection boundaries may hinder the effective identification
of latent anomalies [17].

Table 1. Probability Distribution by Sigma.

Range Probability
Within the Range

Probability
Outside the Range

µ ± 1σ 68.27% 33.73%
µ ± 2σ 95.45% 4.55%
µ ± 3σ 99.73% 0.27%

2.2. Mean Absolute Deviation

The MAD measures the extent to which each observation deviates from the median
of a dataset in absolute terms and subsequently computes the median of these absolute
deviations [7]. The MAD is formally defined as shown in Equations (1) and (2).{

Tmin = median (X)− a × MAD
Tmax = median (X) + a × MAD

(1)

MAD = b ∗ median(|X − median(X)|) (2)

X is a set of observations. When the observations are assumed to follow a normal
distribution, a correction factor of b = 1.4826 is applied. The parameter a denotes a
user defined sensitivity adjustment factor, which is commonly set to a = 3. Although
this method has been reported in previous studies to yield effective results in outlier
detection, its reliability decreases when more than 50% of the dataset consists of outliers,
as the median itself may become distorted, thereby reducing the robustness of MAD [16].
However, the MAD also has limitations, particularly in small datasets, where the variability
of the estimate increases and the robustness of both the median and absolute deviation
diminishes. This issue becomes especially pronounced when the data exhibits strong
skewness or complex clustering structures, in which case the median may fail to adequately
represent the center of the overall distribution, leading to distorted outlier detection.
Furthermore, since MAD is based on deviations from the median, it is relatively insensitive
to subtle shifts in the central tendency of the distribution. As a result, when extreme values
are prevalent, the sensitivity of outlier detection may be significantly reduced [18].

2.3. The Interquartile Range

The IQR is defined as the difference between the third quartile (Q3) and the first
quartile (Q1) of a dataset, and it is calculated according to Equations (3) and (4) [19].{

Tmin = Q1 − 1.5 × IQR
Tmax = Q3 + 1.5 × IQR

(3)

IQR = Q3 − Q1 (4)
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In the IQR method, the threshold is determined by multiplying the interquartile range
by 1.5. Specifically, the lower bound is defined as Q1 − 1.5 × IQR while the upper bound
is defined as Q3 + 1.5 × IQR Any observations falling outside this range are classified as
outliers. However, a limitation of this approach is that extreme outliers can influence the
values of Q1 or Q3, thereby distorting the threshold calculation itself [20]. However, the
IQR method also presents several limitations. First, when the data distribution is highly
skewed or contains a large number of extreme values, the actual variability may be over
or underestimated, leading to distorted outlier detection boundaries. Second, in the case
of small sample sizes, quantile estimates may become unreliable and yield inaccurate
thresholds. Third, similar to the aforementioned methods, IQR does not account for the
structural characteristics of multimodal distributions, making it less effective in detecting
outliers when multiple clusters are present [8,21].

3. Data Set
The datasets used in this study were provided by StatsChippackKorea (SCK) and

consist of two distinct sets: a primary dataset and a secondary dataset, both derived from
products that initially passed defect screening tests. The primary dataset contains a total of
14,140 samples, each described by 1804 features including timestamp, user information,
temperature, and signal values. Due to the variability of test items across different products
in actual manufacturing processes, the secondary dataset was constructed with different
test features in order to evaluate the robustness and generalizability of the proposed model.
Specifically, it is designed to verify whether the model trained on the primary dataset can
maintain stable performance when applied to a dataset with altered test conditions. The
secondary dataset comprises 80,819 samples, sharing common basic information such as
time, user data, and temperature with the primary dataset, but differing in test related
features. It includes a total of 454 features.

4. Data Preprocessing
In this study, the preprocessing procedure for latent defect detection using machine

learning is illustrated in Figure 1. The process begins with data cleaning, in which missing
values and irrelevant features for model training are removed from the normal dataset.
Subsequently, in the outlier counting step, the number of anomalies for each sample is
calculated across individual features based on the normal distribution, and this count is
introduced as a new feature. Finally, the computed outlier counts are re-evaluated using
the same normal distribution–based outlier detection method, through which products are
relabeled as either normal or abnormal.

Figure 1. Data preprocessing procedures for potential flaws in a normal dataset.

Since the assumption of normality may not always hold, this study applied not
only the normal distribution–based method but also the median-based MAD approach
and the quartile-based IQR method during the threshold setting and labeling processes.
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These additional methods were incorporated to enable comparative analysis. Through
this design, the performance of each outlier detection technique can be evaluated across
datasets exhibiting different distributional characteristics.

4.1. Data Cleaning

During the data collection phase, missing values may arise due to a variety of technical
and environmental factors, such as sensor malfunctions, network latency, and external
fluctuations [22]. These missing values can distort the distribution of the training data,
potentially degrading prediction performance or, in extreme cases, rendering model training
infeasible. As such, data cleaning becomes an essential preprocessing step. Common
strategies for handling missing data include deletion, simple imputation, and the use
of predictive models. However, deletion methods may introduce bias due to the loss of
sample size and the potential elimination of meaningful patterns. Predictive modeling
approaches, while more sophisticated, may result in biased estimations or overfitting if
the models used for imputation are poorly trained [23]. Simple imputation techniques
also carry the risk of compromising the data’s variance and covariance structure, thereby
weakening the model’s generalization capability [24]. In this study, variables containing
missing values were removed without applying dimensionality reduction or complex
feature selection procedures, with priority given to maintaining data quality. Furthermore,
variables composed of constant values or those lacking informative variability such as user
identification fields were excluded, as they were deemed irrelevant for meaningful model
training [25].

As a result of this preprocessing step, the number of features in the 1st dataset was
reduced from 1804 to 1664, while the 2nd dataset was reduced from 454 to 374 features. The
overall number of samples and features for each dataset is summarized in Table 2.

Table 2. Characteristics and data counts of the different datasets provided by SCK.

Dataset Total
Samples

Features
(Before Cleaning)

Features
(After Cleaning)

1st Dataset 14,140 1804 1664
2nd Dataset 80,819 454 374

4.2. Outiler Count and Labeling

As a method for latent defect prediction, a statistical outlier detection approach based
on standard deviation thresholding is applied. With input from domain experts, thresholds
are defined using the ±2σ and ±3σ ranges, and the number of features in each sample
that exceed these threshold boundaries is counted. Figure 2 illustrates the results of outlier
counting in the first dataset under the ±2σ and ±3σ criteria. The majority of samples are
concentrated around relatively low outlier counts, indicating that most observations fall
within the normal range. In contrast, a subset of samples exhibits comparatively high outlier
counts and is located in the tail regions of the distribution. Such samples correspond to
statistical outliers, lying outside the distributional boundaries, and may therefore represent
potential risk factors or early signs of abnormality.

Defined in addition, to account for cases where the data do not follow a normal
distribution, outlier detection methods based on MAD and IQR were also employed. These
two approaches are advantageous in that they are less sensitive to extreme values and are
effective for non-normally distributed datasets [15,16]. For the MAD method, the threshold
was set according to the commonly used criterion of Z − score ≥ 3, while for the IQR
method, the threshold was defined as ±1.5 × IQR. The subsequent labeling process was
performed using the same detection methods and thresholds applied during the outlier
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counting stage, with final outlier designations determined based on the precomputed
counts. For example, when outlier counting was conducted using the ±2σ criterion,
labeling was likewise assigned according to the number of outliers identified under the
±2σ threshold. Table 3 summarizes the processes and labeling outcomes for each outlier
detection method, along with their respective proportions.

  
(a) (b) 

Figure 2. (a) Histogram of Outlier Counts Using 2σ Rule on First Dataset (b) Histogram of Outlier
Counts Using 3σ Rule on First Dataset.

Table 3. Clustering Results of 1st and 2nd Datasets Based on σ Thresholds.

Process Dataset Counting Threshold Label 0 Label 1

1 1st Dataset MAD 3 12,453 (88.09%) 1687 (11.91%)
2 2nd Dataset MAD 3 72,818 (90.10%) 8001 (9.89%)
3 1st Dataset IQR 1.5 13,103 (92.67%) 1037 (7.33%)
4 2nd Dataset IQR 1.5 76,866 (95.10%) 3953 (4.89%)
5 1st Dataset Sigma 2σ 13,490 (95.40%) 650 (4.60%)
6 2nd Dataset Sigma 2σ 77,231 (95.56%) 3588 (4.44%)
7 1st Dataset Sigma 3σ 13,045 (99.73%) 35 (0.27%)
8 2nd Dataset Sigma 3σ 28,895 (99.74%) 76 (0.26%)

5. Performance Results
In this study, the 1st and 2nd datasets were utilized to perform outlier detection based

on Sigma, IQR, and MAD methods. These detection techniques were further combined with
various scaling approaches (None, Normalization, Min–Max scaling, and Standardization)
and machine learning models, including Logistic Regression, Support Vector Machine,
Extreme Gradient Boosting, Adaptive Boosting, Decision Tree, and K-Nearest Neighbors.
The selection of models in this study is supported by prior research demonstrating their
effectiveness on similar datasets. In the case of Logistic Regression (LR), Jizat et al. reported
a classification accuracy of approximately 86.9% in wafer defect classification, outperform-
ing Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) under identical
experimental conditions [26]. SVM achieved a maximum accuracy of around 70–72% in a
study by Hu et al., which applied an optimized Radial Basis Function kernel and feature
selection techniques to high-dimensional semiconductor process data [27]. XGBoost 3.0.5
demonstrated outstanding performance in Taha’s wafer defect pattern classification experi-
ment, achieving approximately 94.8% accuracy and an F1-score of 92.6%, while maintaining
a relatively short training time compared to traditional classifiers [28]. In addition, Ad-
aBoost, Decision Tree (DT), and k-NN models also showed competitive predictive accuracy
reporting RMSE values ranging from 0.65 to 0.71 alongside Random Forest in the wafer
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yield prediction study by Lee and Roh [29]. These previous findings collectively support
the suitability and competitiveness of the models adopted in this study, particularly in han-
dling high dimensional datasets. To effectively evaluate the trade-off between sensitivity
and specificity in the test results, Geometric Mean (GM) [30] and accuracy are adopted as
the primary performance metrics. Sensitivity and specificity, which are required for GM
calculation, are defined as shown in Equations (5) and (6), respectively [31]. These metrics
are computed based on the confusion matrix elements: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). Specifically, TP refers to correctly pre-
dicted positive cases, TN to correctly predicted negative cases, while FP and FN represent
incorrectly predicted positive and negative cases, respectively. By applying these defini-
tions, the model’s ability to accurately predict both positive and negative instances can be
quantitatively assessed. The final GM is then computed as shown in Equation (7). objective
is to predict latent defective products, the evaluation emphasizes balanced performance
between normal and potentially defective samples. Therefore, the final experimental results
are reported based on the top performing model combination, selected according to the
highest GM achieved by each model.

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

GM =
√

Sensitivity × Speci f icity (7)

Table 4 presents the results obtained for Process 1 and Process 2 when both outlier
counting and labeling were conducted using the MAD method. A comparative analysis of
the GM values across the two datasets indicates that, for most models, Process 2 exhibits
a decline in GM relative to Process 1. Notably, the KNN model demonstrated the largest
decrease, with GM dropping from 88.2% in Process 1 to 75.5% in Process 2, representing a
reduction of 12.7pp. By contrast, the other models showed smaller declines ranging from
1.4 to 3.8% producing relatively consistent outcomes. These findings suggest that, with the
exception of KNN, the models were able to achieve stable detection performance using the
MAD-based approach.

Table 4. Results of Processes 1 and 2 Using MAD 1.

Process Model Scaler Accuracy (%) GM (%) 2 Sensitivity (%) Specificity (%)

Process 1
XGB

Normalize 97.5 86.4 75.5 98.8

Process 2 MinMax 96.3 84.9 72.8 98.9

Process 1
SVM

MinMax 97.2 86.7 76.4 98.4

Process 2 MinMax 92.1 84.5 76.1 93.9

Process 1
LR

None 91.2 88.6 85.8 91.5

Process 2 Standard 87.4 84.8 81.7 88.0

Process 1
KNN

None 87.3 88.2 89.3 87.2

Process 2 None 76.4 75.5 74.4 76.6

Process 1
DT

None 93.9 80.2 67.4 95.4

Process 2 None 90.8 78.8 66.3 93.5

Process 1
ADA

None 94.4 84.3 74.2 95.6

Process 2 None 92.6 80.0 67.1 95.4
1 MAD = Median Absolute Deviation. Outliers were defined as |x − M| > 3 × MAD. 2 GM = Geometric Mean,
define as

√
(Sensitivity × Specificity).
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Table 5 presents the results obtained for Process 3 and Process 4 when both outlier
counting and labeling were conducted using the IQR method. Compared with Process 3,
Process 4 demonstrates either an improvement or maintenance of GM performance. In
particular, the SVM, XGB, and LR models exhibit increases in GM of 8.8, 6.1, and 3.5pp,
respectively. These results indicate that, despite Process 4 having fewer features, stable
detection performance can still be achieved.

Table 5. Results of Processes 1 and 2 Using IQR 1.

Process Model Scaler Accuracy (%) GM (%) 2 Sensitivity (%) Specificity (%)

Process 3
XGB

MinMax 96.7 82.3 68.5 98.9

Process 4 MinMax 98.4 88.4 78.5 99.5

Process 3
SVM

MinMax 95.8 82.8 70.1 97.8

Process 4 MinMax 96.8 91.6 86.3 97.3

Process 3
LR

None 88.3 85.0 81.4 88.9

Process 4 MinMax 91.3 88.5 85.5 91.6

Process 3
KNN

None 81.8 82.0 82.3 81.8

Process 4 MinMax 81.4 87.8 95.5 80.7

Process 3
DT

None 91.3 77.5 64.3 93.5

Process 4 None 96.3 83.8 71.9 97.6

Process 3
ADA

Normalize 91.8 81.7 71.4 93.5

Process 4 Normalize 94.9 83.8 73.1 96.0
1 IQR = Interquartile Range. Outliers were defined as observations lying outside the interval
[Q1 − 1.5 × IQR, Q3 + 1.5 × IQR] where IQR = Q3 − Q1. 2 GM = Geometric Mean, define as

√
(Sensitivity ×

Specificity).

Table 6 presents the results for Processes 5 and 6, where both outlier counting and
labeling were conducted using the ±2σ criterion. Like the trends observed in Table 4, most
models exhibited a decline in GM performance in Process 6 compared with Process 5. In
particular, the XGB, LR, and DT models showed substantial decreases of 49.8, 44.8, and
17.9pp in GM, respectively, indicating that these models are unable to maintain stable
performance under the ±2σ detection setting. By contrast, the SVM, KNN, and ADA
models displayed only minor decreases of 4.4, 6.2, and 4.9pp, respectively, suggesting that
these models can maintain relatively stable results when applying the ±2σ criterion.

Table 7 presents the results for Processes 7 and 8, where outlier counting and labeling
were conducted using the ±3σ criterion. Like the trend observed in Table 5, most models in
Process 8 exhibited either an improvement or maintenance of GM performance compared
with Process 7. Notably, the XGB, LR, and KNN models achieved GM increases of 8.1,
8.3, and 6.2%p, respectively, which contrasts with the declines reported in Table 4. These
results indicate that under the ±3σ setting, the majority of models are able to sustain stable
and consistent performance. However, the DT model showed a decrease of 0.074 in GM,
suggesting that its ability to maintain stable performance is relatively limited compared
with the other models.

Table 7 presents the highest classification performance among the experiments re-
ported in Tables 4–6. The results empirically confirm that higher outlier detection thresholds,
ranging from MAD to IQR to Sigma-based methods, lead to improved accuracy. This sug-
gests that even among products that passed the initial screening, those suspected of latent
defects may form distinguishable clusters. It is important to note that these findings are spe-
cific to the dataset used in this study. For practical application in real-world manufacturing
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environments, appropriate threshold conditions must be validated and calibrated based on
domain specific characteristics. Based on these observations, the confusion matrix of the
SVM model identified as the most stable across all experiments in Tables 4–7 is illustrated
in Figure 3. The matrix demonstrates the model’s effectiveness in predicting products
suspected of latent defects.

Table 6. Results of Processes 1 and 2 Using 2σ 1.

Process Model Scaler Accuracy (%) GM (%) 2 Sensitivity (%) Specificity (%)

Process 5
XGB

MinMax 99.0 94.5 89.8 99.4

Process 6 None 99.8 44.7 20.0 100

Process 5
SVM

MinMax 98.5 92.7 86.7 99.1

Process 6 None 97.4 95.7 93.8 97.5

Process 5
LR

None 92.5 90.5 88.3 92.7

Process 6 Normalize 87.8 72.6 60.0 87.8

Process 5
KNN

None 96.3 95.5 94.5 96.4

Process 6 None 99.6 89.3 80.0 99.6

Process 5
DT

MinMax 97.7 89.5 81.3 98.5

Process 6 None 99.7 44.7 20.0 99.8

Process 5
ADA

None 98.6 94.3 89.8 99.0

Process 6 Normalize 100 89.4 80.0 100
1 Outliers were defined as values outside the interval [µ − 2σ, µ + 2σ], where µ is the mean and σ is the standard
deviation. 2 GM = Geometric Mean, define as

√
(Sensitivity × Specificity).

Table 7. Results of Processes 1 and 2 Using 3σ 1.

Process Model Scaler Accuracy (%) GM (%) 2 Sensitivity (%) Specificity (%)

Process 7
XGB

None 98.7 91.9 85.0 99.3

Process 8 None 100 100 100 100

Process 7
SVM

Standard 97.4 88.3 80.0 97.4

Process 8 Standard 99.3 99.6 100 99.2

Process 7
LR

Standard 93.0 91.7 90.4 93.1

Process 8 MinMax 99.9 100 100 99.9

Process 7
KNN

None 94.4 93.7 92.9 94.4

Process 8 Standard 99.8 99.9 100 99.8

Process 7
DT

Normalize 97.2 86.4 76.0 98.3

Process 8 Standard 100 79.0 62.5 100

Process 7
ADA

MinMax 98.3 94.3 90.1 98.7

Process 8 None 100 93.5 87.5 100
1 Outliers were defined as values outside the interval [µ – 3σ, µ + 3σ], where µ is the mean and σ is the standard
deviation. 2 GM = Geometric Mean, define as

√
(Sensitivity × Specificity).

The comparison of machine learning model performance revealed noticeable varia-
tions in both accuracy and GM depending on the applied preprocessing methods. Among
the models, the SVM consistently demonstrated relatively stable and robust performance
across different outlier detection methods, including MAD, IQR, and SDCL, as well as
under various scaling techniques and process condition changes. When evaluating the
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preprocessing effects across datasets and processes, the KNN model exhibited instability
under certain conditions. For instance, a substantial decrease in GM was observed with the
MAD-based detection, while performance improved under the 3σ-based detection. This
indicates sensitivity to the chosen outlier thresholding method. These results suggest that
the selection of outlier detection criteria (e.g., MAD, IQR, SDCL) and data preprocessing
strategies (e.g., scaling) significantly affects classification performance. Furthermore, the
impact of these factors varies depending on the model architecture.

 
(a) (b) 

Figure 3. (a) Confusion matrix of a SVM after 3σ preprocessing of the 1st dataset. (b) Confusion
matrix of a SVM after 3σ preprocessing of the 2nd dataset.

6. Conclusions
Latent defects in high-precision electronic devices and semiconductors are exposed

to performance degradation risks when subjected to environmental factors and electrical
stress during real-world operation. To ensure the reliability of products prior to shipment,
it is therefore essential to conduct high-intensity stress testing that closely mimics actual
operating conditions an approach that has a direct impact on manufacturing yield. In
response to these challenges, this study proposes a post process prediction method utilizing
various machine learning models to detect latent defects prior to screening tests. Data were
obtained from devices that passed standard testing at SCK and subsequently subjected to
preprocessing and SDCL. The results indicate that, under ±3σ preprocessing, all models
except the DT achieved over 90% accuracy and GM. Notably, the SVM model consistently
maintained the most stable performance across all preprocessing conditions. The proposed
SDCL method labels devices based on the number of statistical outliers in their test features.
Specifically, for each feature, device-level test results that fall outside the ±2σ or ±3σ range
assuming a normal distribution are counted as anomalies. The total count of such feature-
level anomalies is then used to label devices as either normal or potentially defective, based
on threshold values again set at ±2σ or ±3σ. Furthermore, to accommodate the possibility
of non-normal data distributions, additional labeling was performed using anomaly counts
derived from the MAD and IQR methods.

Experimental results using both the primary and secondary datasets demonstrated
that the proposed SDCL method achieved more generalized and stable performance com-
pared to MAD and IQR approaches. Unlike methods that are sensitive to specific dataset
characteristics, SDCL exhibited stronger potential for broad applicability. These findings
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indicate that SDCL effectively captures the characteristics of the data and offers a promising
approach for the early prediction of performance degradation in initially normal products.

7. Discussion
This study proposed the SDCL method, a machine learning-based approach for the

detection of latent defects. Experiments were conducted using two datasets provided by
SCK, designed to verify whether the model could maintain consistent performance even
when the product test parameters were altered. Experimental results showed that the SVM
model exhibited the most stable performance regardless of preprocessing techniques or
changes in dataset composition. Notably, data preprocessing based on the ±3σ threshold
led to overall improvements in model accuracy. Furthermore, increasing the strictness
of the outlier detection threshold resulted in better model performance across all models.
These findings suggest that even among products that have passed initial screening, cer-
tain devices suspected of latent defects may form distinguishable clusters. The proposed
SDCL-based machine learning methodology offers practical utility for anomaly detection
and quality management automation. However, successful deployment in real-world
manufacturing environments requires sufficient prior efforts in data collection, preprocess-
ing, and the configuration of context specific threshold parameters. In the early stages of
implementation, additional investment is needed for infrastructure capable of collecting
and analyzing process data, as well as time and expert resources for model training.

This study employed traditional machine learning models in combination with the
SDCL technique, leveraging various algorithms to account for the high dimensionality
of the data and the potential linear and nonlinear relationships with the target variable.
Nonetheless, several limitations remain. First, the study is based on a specific experimental
dataset, and its application in actual manufacturing processes necessitates the careful cali-
bration of boundary conditions that reflect process characteristics. Threshold values such
as those derived from MAD, IQR, ±2σ, and ±3σ must be appropriately tuned according to
process variability and required quality levels. For instance, in industries demanding high
reliability such as automotive semiconductors stricter thresholds (e.g., ±2σ or ±3σ) are
typically required, whereas in less precision sensitive domains, looser bounds (e.g., ±3σ or
±4σ) may be more appropriate. Second, the presence of high dimensional input features
and process variability may hinder model generalization, thereby limiting the transferabil-
ity of trained models across different production lines. To address this, future work will
focus on incorporating ensemble learning methods and advanced hyperparameter opti-
mization techniques to enhance model stability and performance. Moreover, the extension
of this approach to deep learning models is recommended. In manufacturing scenarios
where defect data are limited and imbalanced, the application of deep learning architectures
such as Convolutional Neural Networks (CNN) or autoencoders is expected to enable the
extraction of high-level features, suppression of noise, and more precise identification of
latent defect patterns. Furthermore, for real time deployment, especially at the chip level,
future studies must investigate methods for handling large scale data streams, enabling
timely and efficient anomaly detection within high throughput production environments.

Author Contributions: Conceptualization, C.-s.N.; methodology, C.-s.N.; software, Y.-s.K., W.-c.S.,
H.-j.P. and H.-y.Y.; validation, C.-s.N., Y.-s.K. and W.-c.S.; formal analysis, Y.-s.K., W.-c.S.; investigation,
W.-c.S.; resources, C.-s.N.; data curation, Y.-s.K., W.-c.S., H.-j.P. and H.-y.Y.; writing—original draft
preparation, Y.-s.K. and W.-c.S.; writing—review and editing, Y.-s.K., W.-c.S., H.-j.P., H.-y.Y. and
C.-s.N.; visualization, Y.-s.K. and W.-c.S.; supervision, C.-s.N.; project administration, C.-s.N.; funding
acquisition, C.-s.N. All authors have read and agreed to the published version of the manuscript.



Electronics 2025, 14, 3912 13 of 14

Funding: This work was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP)-Innovative Human Resource Development for Local Intel-
lectualization program grant funded by the Korea government (MSIT) (IITP-2025-RS-2023-00259678,
50%) and by INHA UNIVERSITY Research Grant (70477-1, 50%).

Data Availability Statement: The data that support the findings of this study are not publicly avail-
able because of a confidentiality agreement with SCK. Access to the data is restricted in accordance
with the terms of this agreement to protect proprietary information.

Acknowledgments: This work was supported by data provided by STATS ChipPAC Korea (SCK).
We are grateful to SCK for their valuable contribution to this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nguyen, M.H.; Kwak, S. Enhance Reliability of Semiconductor Devices in Power Converters. Electronics 2020, 9, 2068. [CrossRef]
2. Liao, H.T. Reliability prediction and testing plan based on an accelerated degradation testing model. Int. J. Mater. Prod. Technol.

Technol. 2004, 21, 402–422. [CrossRef]
3. Julitz, T.M.; Schlüter, N.; Löwer, M. Scenario-Based Failure Analysis of Product Systems and their Environment. arXiv 2023,

arXiv:2306.15694. [CrossRef]
4. Kim, J.; Joe, I. Chip-Level Defect Analysis with Virtual Bad Wafers Based on Huge Big Data Handling for Semiconductor

Production. Electronics 2024, 13, 2205. [CrossRef]
5. Price, D.W.; Sutherland, D.G.; Rathert, J. Process Watch: The (Automotive) Problem with Semiconductors. Solid State Technol.

2018, 15, 1–5.
6. Qiao, X.; Jauw, V.L.; Seong, L.C.; Banda, T. Advances and limitations in machine learning approaches applied to remaining useful

life predictions: A critical review. Int. J. Adv. Manuf. Technol. 2024, 133, 4059–4076. [CrossRef]
7. Ooi, M.P.-L.; Kassim, Z.A.; Demidenko, S. Shortening Burn-in Test: Application of Weibull Statistical Analysis & HVST. In

Proceedings of the 2005 IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 16–19 May 2005;
Volume 1, pp. 1–6. [CrossRef]

8. Suhir, E. To Burn-In, or Not to Burn-In: That’s the Question. Aerospace 2019, 6, 29. [CrossRef]
9. Wang, M. A Review of Reliability in Gate-All-Around Nanosheet Devices. Micromachines 2024, 15, 269. [CrossRef]
10. Lenhard, P.; Kovalenko, A.; Lenhard, R. Die Level Predictive Modeling to Reduce Latent Reliability Defect Escapes. Microelectron.

Reliab. 2023, 148, 115139. [CrossRef]
11. Moreno-Lizaranzu, M.J.; Cuesta, F. Improving Electronic Sensor Reliability by Robust Outlier Screening. Sensors 2013, 13,

13521–13542. [CrossRef] [PubMed]
12. Pihlaja, D. Real Time Dynamic Application of Part Average Testing (PAT) at Final Test. In Proceedings of the CS MANTECH

Conference, New Orleans, LA, USA, 13–16 May 2013; pp. 165–167.
13. Wang, C.-C.; Yang, Y.-Y. A Machine Learning Approach for Improving Wafer Acceptance Testing Based on an Analysis of Station

and Equipment Combinations. Mathematics 2023, 11, 1569. [CrossRef]
14. Hu, H.; Patel, S.; Hsiao, H.; Tretz, F.; Volk, T.; Arslan, M.; Nix, R.; Jindal, S.; Archambeault, B. Advanced Outlier Detection Using

Unsupervised Learning for Screening Potential Customer Returns. In Proceedings of the 2020 IEEE International Test Conference,
Washington, DC, USA, 2–5 November 2020; pp. 1–10. [CrossRef]

15. van Selst, M.; Jolicoeur, P. A Solution to the Effect of Sample Size on Outlier Elimination. Q. J. Exp. Psychol. Sect. 1994, 50, 386–393.
[CrossRef]

16. Yang, J.; Rahardja, S.; Fränti, P. Outlier Detection: How to Threshold Outlier Scores? In Proceedings of the International
Conference on Artificial Intelligence, Information Processing and Cloud Computing, New York, NY, USA, 19–21 December 2019;
pp. 1–6.

17. Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range
and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [CrossRef]

18. Dhwani, D.; Varma, T. A Review of Various Statistical Methods for Outlier Detection. Int. J. Comput. Sci. Eng. Technol. 2014, 5,
137–140.

19. Wickham, H.; Stryjewski, L. 40 Years of Boxplots. Am. Stat. 2011, 65, 1–6.
20. Jones, P.R. A Note on Detecting Statistical Outliers in Psychophysical Data. Atten. Percept. Psychophys. 2019, 81, 1189–1196.

[CrossRef] [PubMed]
21. Atif, M.; Farooq, M.; Shafiq, M.; Alballa, T.; Alhabeeb, S.A.; Khalifa, H.A.-E.-W. Uncovering the Impact of Outliers on Clusters’

Evolution in Temporal Data-Sets: An Empirical Analysis. Sci. Rep. 2024, 14, 30674. [CrossRef]

https://doi.org/10.3390/electronics9122068
https://doi.org/10.1504/IJMPT.2004.004998
https://doi.org/10.48550/arXiv.2306.15694
https://doi.org/10.3390/electronics13112205
https://doi.org/10.1007/s00170-024-14000-0
https://doi.org/10.1109/IMTC.2005.1604066
https://doi.org/10.3390/aerospace6030029
https://doi.org/10.3390/mi15020269
https://doi.org/10.1016/j.microrel.2023.115139
https://doi.org/10.3390/s131013521
https://www.ncbi.nlm.nih.gov/pubmed/24113682
https://doi.org/10.3390/math11071569
https://doi.org/10.1109/ITC44778.2020.9325225
https://doi.org/10.1080/14640749408401131
https://doi.org/10.1186/1471-2288-14-135
https://doi.org/10.3758/s13414-019-01726-3
https://www.ncbi.nlm.nih.gov/pubmed/31089976
https://doi.org/10.1038/s41598-024-75928-7


Electronics 2025, 14, 3912 14 of 14

22. França, C.M.; Couto, R.S.; Velloso, P.B. Missing Data Imputation in Internet of Things Gateways. Information 2021, 12, 425.
[CrossRef]

23. Emmanuel, T.; Tlamelo, M.; Phaneendra, B.; Das, D.; Epule, E. A Survey on Missing Data in Machine Learning. J. Big Data 2021,
8, 140. [CrossRef]

24. Kang, H. The Prevention and Handling of the Missing Data. Korean J. Anesth. 2013, 64, 402–406. [CrossRef]
25. Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
26. Jizat, J.A.M.; Ahmad, N.; Alwi, N.H.; Nor, M.I.; Salleh, N.M.; Kamal, M.M. Evaluation of the Machine Learning Classifier in Wafer

Defects Classification. ICT Express 2021, 7, 535–539. [CrossRef]
27. Hu, J.; Zhou, Z.; Chen, J.; Wang, Z.; Lin, S.; Li, Y. A Novel Quality Prediction Method Based on Feature Selection Considering

High Dimensional Product Quality Data. J. Ind. Manag. Optim. 2022, 18, 2715–2735. [CrossRef]
28. Taha, K. Observational and Experimental Insights into Machine Learning-Based Defect Classification in Wafers. J. Intell. Manuf.

2025, 020502. [CrossRef]
29. Lee, Y.; Roh, Y. An Expandable Yield Prediction Framework Using Explainable Artificial Intelligence for Semiconductor Manufac-

turing. Appl. Sci. 2023, 13, 2660. [CrossRef]
30. Barandela, R.; Valdovinos, R.M.; Sánchez, J.S.; Ferri, F.J. The Imbalanced Training Sample Problem: Under or Over Sampling? In

Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition, Lisbon, Portugal, 18–20 August 2004; Structural,
Syntactic, and Statistical Pattern Recognition. Springer: Berlin/Heidelberg, Germany, 2004; Volume 3138, pp. 806–814.

31. García, V.; Sánchez, J.S.; Mollineda, R.A. On the Effectiveness of Preprocessing Methods When Dealing with Different Levels of
Class Imbalance. Knowl.-Based Syst. 2012, 25, 13–21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/info12100425
https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/10.4097/kjae.2013.64.5.402
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.icte.2021.04.007
https://doi.org/10.3934/jimo.2021099
https://doi.org/10.1007/s10845-024-02521-0
https://doi.org/10.3390/app13042660
https://doi.org/10.1016/j.knosys.2011.06.013

	Introduction 
	Related Work 
	Outlier Detection Based on the Normal Distribution 
	Mean Absolute Deviation 
	The Interquartile Range 

	Data Set 
	Data Preprocessing 
	Data Cleaning 
	Outiler Count and Labeling 

	Performance Results 
	Conclusions 
	Discussion 
	References

