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Abstract 
The integration of artificial intelligence into the development and production 
of mechatronic products offers a substantial opportunity to enhance efficiency, 
adaptability, and system performance. This paper examines the utilization of 
reinforcement learning as a control strategy, with a particular focus on its de-
ployment in pivotal stages of the product development lifecycle, specifically 
between system architecture and system integration and verification. A con-
troller based on reinforcement learning was developed and evaluated in com-
parison to traditional proportional-integral controllers in dynamic and fault-
prone environments. The results illustrate the superior adaptability, stability, 
and optimization potential of the reinforcement learning approach, particu-
larly in addressing dynamic disturbances and ensuring robust performance. 
The study illustrates how reinforcement learning can facilitate the transition 
from conceptual design to implementation by automating optimization pro-
cesses, enabling interface automation, and enhancing system-level testing. 
Based on the aforementioned findings, this paper presents future directions 
for research, which include the integration of domain-specific knowledge into 
the reinforcement learning process and the validation of this process in real-
world environments. The results underscore the potential of artificial intelli-
gence-driven methodologies to revolutionize the design and deployment of 
intelligent mechatronic systems. 
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1. Introduction 

In the context of state-of-the-art automation technology, the control of dynamic 
systems is of paramount importance, as it enables the reliable and precise opera-
tion of machines and devices. The control of complex and dynamically changing 
environments presents a significant challenge. Despite the proven reliability of 
traditional control methods, such as the proportional-integral (PI) controller, they 
are unable to cope with external conditions that are subject to strong fluctuations 
or sudden faults. In such scenarios, the adaptability of conventional controllers is 
constrained by their fixed parameterization, which lacks the flexibility required to 
respond effectively to changing conditions. Methods such as Model Predictive 
Control (MPC) for highly nonlinear systems also require many computations [1] 
[2].  

The advent of reinforcement learning (RL) offers the potential for the development 
of control strategies based on experiential learning. In contrast to a predefined pa-
rameter-based approach, an RL-based controller is capable of continuously adapt-
ing its control strategy, thereby achieving a superior control quality in dynamic 
and fault-prone environments. In this study, the Advantage Actor-Critic (A2C) 
algorithm, a well-established RL method, is employed to train an RL agent to con-
trol a direct current (DC) electric motor. The DC motor provides an illustrative 
example of the types of applications that require precise and robust speed control, 
such as those found in robotics or production plants [3]-[5].  

The objective of this study is to address the critical challenges of dynamic adapt-
ability and system stability in control engineering, with a particular focus on in-
dustrial applications such as robotics, autonomous vehicles, and precision manu-
facturing. By employing reinforcement learning, specifically the Advantage Ac-
tor-Critic algorithm, this study aims to develop a framework for intelligent, adapt-
able control systems that can accommodate the evolving demands of these indus-
tries. 

The novelty of this work lies in its integration of reinforcement learning into 
the structured design of dynamic systems, showcasing its potential to complement 
or even surpass traditional control strategies such as the PI controller. Unlike con-
ventional methods that rely on static parameters and manual tuning, the proposed 
framework dynamically optimizes control actions in response to changing condi-
tions. By applying this methodology to the control of a DC motor, the study pro-
vides a comparative analysis of reinforcement learning and traditional approaches, 
offering new insights into the capabilities of AI-driven control strategies for mech-
atronic applications. 

1.1. Motivation 

The motivation behind the utilization of reinforcement learning in the field of con-
trol engineering can be attributed to the adaptive and robust nature of the learning 
process. Reinforcement learning enables the agent to generate its own experiences, 
learn from them, and continuously refine its control strategy. In contrast to classic 
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PI controllers, which are based on fixed controller parameters, an RL agent is ca-
pable of reacting to changing environmental conditions and adapting dynamically 
to new requirements. The potential of an RL agent is particularly evident in com-
plex systems in which the precise control of target variables, such as the speed of 
a motor, is required in the presence of disturbance variables [6].  

The RL agent developed in this work is trained to maintain a stable speed for a 
DC motor, even in the event of changes to the target specifications or the presence 
of external influences. It is common for conventional PI controllers to respond to 
such conditions with overshoot or prolonged settling times, which is not a viable 
solution in certain applications. The use of the A2C algorithm enables the RL 
agent to learn to minimize overshoots and to compensate for disturbances in a more 
efficient manner. This capacity for adaptability confers a significant advantage upon 
the RL approach in comparison to classical controllers, thereby underscoring the 
importance of this work [4].  

1.2. Objectives of the Approach 

The overarching goal of this study is to explore the potential of reinforcement 
learning for enhancing dynamic control systems within the broader context of AI 
applications in mechatronic product development and production. A visual rep-
resentation of this general goal is shown in Figure 1, which illustrates the potential 
deployment of AI across all phases of the product development lifecycle. 

 

 
Figure 1. The V-cycle according to VDI 2206 and extended by the visualization of the possible AI support through the 
author [7]. 

 
The graphic illustrates the six principal phases of product development, which 

are aligned with the VDI/VDE 2206 standard [7]. The utilization of artificial intel-
ligence tools, supported by a knowledge graph architecture, enables the imple-
mentation of functionalities such as risk detection, optimization proposals, design 
automation, and interoperability testing. Such tools facilitate the provision of con-
text-aware and scalable solutions that span disparate disciplines, including soft-
ware, mechanics, and electronics. 
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The methodology proposed in this study is primarily situated between Phase 3 
(“System Architecture”) and Phase 5 (“System Integration and Verification”). 
During this critical transition from architecture definition to implementation and 
validation, reinforcement learning serves as a dynamic tool to optimize system-
level performance. Specifically, the developed RL-based controller complements 
traditional design workflows by: 
• Automating optimization processes during system modelling. 
• Facilitating interface automation through adaptable control strategies. 
• Enhancing testing and verification workflows by enabling dynamic responses 

to varying environmental conditions. 
The study focuses on this pivotal stage of the product development lifecycle 

with the objective of illustrating how reinforcement learning can address specific 
challenges in control engineering, including adaptability, stability, and fault toler-
ance. This approach has the potential to advance the state of the art in mecha-
tronic system development. 

Furthermore, the objective is to utilize Design of Experiments (DoE) to establish 
a structured test environment, thereby optimizing the RL agent in a range of test 
scenarios in future work. The application of DoE enables the RL agent to be trained 
in a manner that ensures consistent control performance under varying condi-
tions, thereby enhancing its flexibility in more complex environments [8] [9]. 

2. Theoretical Background 

In order to gain insight into the control of a DC motor with the help of reinforce-
ment learning, it is essential to first consider the fundamental theoretical princi-
ples that underpin this field of study. This incorporates an examination of the 
functionality and structure of a DC motor, in addition to an investigation of the 
fundamental principles of control engineering and machine learning, with a par-
ticular focus on reinforcement learning and artificial neural networks (ANN). The 
following chapters provide an overview of the relevant concepts that are necessary 
for a comprehensive understanding of this work. 

2.1. DC Motors: Functionality and Design 

A direct current motor is a common electrical drive that converts electrical energy 
into mechanical energy. Due to its straightforward control mechanisms and high 
efficiency, it is employed in a multitude of applications, including those within the 
automotive industry, robotics, and automation technology. 

2.1.1. Operating Principle 
The DC motor operates on the fundamental principle of the Lorentz force, which 
acts upon a conductor carrying an electric current within a magnetic field. The 
generation of a magnetic field by an electric current flowing through the windings 
of the motor results in the exertion of torque on the rotor, whereby the magnetic 
field interacts with the static magnetic field of the motor. This torque causes the 
rotor to rotate, thereby converting electrical energy into mechanical work [10]-
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[12]. 
To better visualize the basic functioning of a DC motor, Figure 2 shows a sim-

plified representation of a conductor rod in a magnetic field, which illustrates the 
principles of the force effect on the current-carrying conductor. 

 

 
Figure 2. Conductor rod in a constant magnetic field [13]. 

 
In this context: 

• U : Applied voltage to the conductor rod, enabling the current flow. 
• 



B : Magnetic flux density representing the constant magnetic field. 
• I : Electric current flowing through the conductor rod, following the conven-

tional current direction from top to bottom. 
• iR : Internal resistance of the conductor rod, affecting the current flow. 
• 



F : Lorentz force resulting from the interaction between the current and the 
magnetic field, accelerating the conductor rod to the right. 

• v : Velocity of the conductor rod, caused by the Lorentz force. 
• qU : Induced voltage in the conductor rod due to its motion in the magnetic 

field. 

2.1.2. Structure 
A typical DC motor consists of the following main components: 
• Stator: The stationary part of the motor that generates a constant magnetic 

field. 
• Rotor (armature): The rotating part of the motor that carries current through 

the windings and generates torque. 
• Commutator: A mechanical switch that ensures that the current flow through 

the windings of the rotor is periodically reversed to ensure continuous rotation. 
• Brushes: These transmit the electrical current from an external power source 

to the rotor. 
A significant attribute of a DC motor is its capacity to regulate speed with min-

imal effort, solely through the application of an appropriate voltage. An increase 
in voltage results in an acceleration of the rotational speed of the motor. This di-
rect correlation between voltage and speed renders DC motors a favored option 
for precision control applications. 
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Figure 3 shows the rotational movement of a conductor loop in a magnetic 
field, which illustrates the principle of changing the direction of current in a DC 
motor. This mechanical switching movement forms the basis for the function of 
a commutator in the DC motor. 

 

 
Figure 3. Rotatable conductor loop in the magnetic field [13].  

 
In this context: 

• 


B : Magnetic flux density representing the uniform and constant magnetic 
field acting perpendicularly to the loop. 

• ,a b : Electric current flowing through the conductor rod, following the con-
ventional current direction from top to bottom. 

• I : Electric current flowing through the conductor loop, which is supplied by 
a constant voltage source via the slip rings. 

• α : The angle of rotation of the conductor loop about its axis of symmetry. The 
diagram shows the loop in its initial position where α = 0. 

2.1.3. Motor Data 
In this work, the maxon RE 65, 353297 (24 ma) is used as an example of a DC 
motor. The relevant motor data are shown in Table 1 and form the basis for mod-
elling the motor as part of the simulations. 

 
Table 1. List of the relevant parameters of the motor. 

Parameter/Data Value 

Nominal voltage 48 V 

Nominal speed 3420 min−1 

Nominal current (max. continuous current) 6.8 A 

Terminal resistance 0.365 Ω 

Terminal inductance 0.161 mH 

Torque constant 123 mN·m·A−1 

Speed constant 77.8 min−1·V−1 

Rotor inertia 1.340 g·cm2 
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2.2. Control Theory 

The field of control engineering is concerned with the control of dynamic systems, 
with the objective of achieving desired outcomes by selecting input variables in a 
manner that aligns the system behavior with the desired specifications. In the field 
of automation technology, controllers such as the proportional-integral-deriva-
tive (PID) controller and the PI controller are commonly employed for the control 
of systems including motors. 

Proportional-Integral (PI) Controller 
The PI controller is a simplified version of the PID controller in which the D 
component (derivative) is omitted. This simplifies the calculation but may re-
sult in a reduction in the degree of control that can be achieved in dynamic 
systems. The PI controller selects the control variable proportional to the con-
trol error and its integrated value. This implies that the controller responds to 
both the present error (proportional component) and the accumulated error 
(integral component). This guarantees a swift response to alterations in the con-
trol error, while the integrator component guarantees a reduction in the steady-
state error.  

In the field of DC motor control, the PI (proportional-integral) controller is 
utilized to stabilize the speed of a motor and set it to a desired value. The PI 
controller’s principal advantage is its simplicity; however, adjustments to the 
control parameters are necessary to ensure optimal performance. Such adjust-
ments necessitate a certain degree of expertise and must be adapted on a case-
by-case basis, contingent on the specific environmental context [14].  

3. Modeling of a DC Motor 

Modeling a DC motor is an essential step to enable accurate simulation and con-
trol. This chapter explains the mathematical representation of the motor using the 
state-space model, more specifically a Linear Time Invariant (LTI) model, fol-
lowed by the implementation of the simulation in the Python programming lan-
guage. 

3.1. State-Space Representation 

A state-space representation is a mathematical model that describes the behav-
ior of dynamic systems. In the case of the DC motor, the dynamic equations, 
which represent the relationship between the input variables (voltage) and the 
output variables (angular velocity, current), are converted into state variables. 
The state variables describe the internal state of the system at a specific point 
in time. 

Figure 4 shows the rotational movement of a conductor loop in a magnetic 
field, which illustrates the principle of changing the direction of current in a DC 
motor. This mechanical switching movement forms the basis for the function of 
a commutator in the DC motor. 

https://doi.org/10.4236/cs.2025.161001


A. Nüßgen et al. 
 

 

DOI: 10.4236/cs.2025.161001 8 Circuits and Systems 
 

 
Figure 4. Physical equivalent circuit diagram of a direct current machine. 

 
The DC motor can be described by the state-space representation: 

( ) ( ) ( )= ⋅ + ⋅x t A x t B u t  

( ) ( ) ( )= ⋅ + ⋅y t C x t D u t  

Where: 
• x(t) | is the state vector (e.g. angular velocity, current). 
• u(t) | is the input vector (e.g. applied voltage). 
• A, B, C, D | are state-space matrices that describe the dynamic behavior of the 

motor; with A: system matrix, B: input matrix, C: output matrix, D: feed-
through matrix. 

• y(t) | is the output vector (e.g. measured angular velocity). 
This representation allows for the straightforward description of the motor’s 

dynamic behavior in matrix form, thereby facilitating the design of simulations 
and controls based on this description [15]-[17]. 

3.2. Simulation in Python 

The DC motor simulation was implemented in Python, a robust and widely uti-
lized programming language for scientific calculations. The simulation is based 
on the numerical integration of the state-space presentation described in the pre-
ceding section. In order to ensure the most efficient calculation process, the NumPy 
and SciPy libraries were employed to facilitate matrix operations and to numeri-
cally solve the differential equations [18].  

The initial stage of the simulation involved the implementation of the mathe-
matical model representing the motor. The system matrices A and B were popu-
lated with parameters including resistance, inductance, and the motor’s moment 
of inertia. Subsequently, a discrete-time model of the motor was constructed for 
the purpose of simulating its behavior under different input voltage conditions. 

The selection of a discrete-time model is predicated on the observation that in 
practice, real sensors and actuators frequently operate with fixed sampling rates. 
The process of discretization enables a more realistic mapping of the environ-
ment. A sampling rate of 0.05 seconds was selected for this simulation, which cor-
responds to a frequency of 20 Hz. This provides an optimal balance between com-
putational complexity and accuracy. A discrete-time model enables the realistic 
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simulation of the controller’s behavior, thereby providing a robust foundation for 
subsequent reinforcement learning agent training [19].  

The simulation results include both the step response of the motor and the re-
action to a specified reference trajectory. The results presented here serve as the 
basis for subsequent analysis and comparison between the PI controller and the 
RL agent. 

4. Methodology 

The methodology of this study outlines the development and evaluation of two 
distinct control strategies for a DC motor: a conventional PI controller and a RL-
based agent. The PI controller, widely recognized for its simplicity and reliability 
in industrial applications, serves as the baseline for comparison. Its performance 
provides a benchmark to assess the potential advantages of RL techniques, which 
promise enhanced adaptability and robustness in dynamic environments. 

This chapter first details the design and implementation of the PI controller, fo-
cusing on parameter selection and performance evaluation through simulations. 
Subsequently, the reinforcement learning methodology is introduced, including the 
algorithmic framework, training environment, and evaluation metrics. Together, 
these approaches enable a comprehensive comparison of traditional and modern 
control strategies, highlighting the strengths and limitations of each. 

4.1. Conventional PI Controller as a Reference 

The PI controller is frequently employed in industrial contexts, offering a straight-
forward and resilient solution to a multitude of control issues. A comparison with 
the reinforcement learning agent is employed to ascertain whether contemporary 
machine learning techniques offer advantages over conventional control strate-
gies. 

4.1.1. Design and Implementation 
The proportional-integral controller is one of the most frequently used control 
structures in automation technology. The PI controller is made up of two compo-
nents: 

Proportional component (P component): This component of the controller 
responds in a proportional manner to the discrepancy between the desired set-
point and the actual system value, or control deviation. A high proportional com-
ponent ensures rapid system response but can also result in instability. 

Integral component (I component): The integral component calculates the 
accumulated control deviation over time, thereby ensuring that the system no 
longer exhibits a steady-state deviation over the long term. This enhances the pre-
cision of the system, although it may result in a slight reduction in the system’s 
responsiveness. 

The controller equation for the PI controller is: 

( ) ( ) ( )= ⋅ + ⋅ ∫p iu t K e t K e t dt  
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Where:  
• u(t) is the controlled variable, e.g. voltage.  
• e(t) is the control error difference between the reference variable and con-

trolled variable.  
• Kp is the proportional gain factor.  
• Ki is the integral gain factor. 

To implement the PI controller, the parameters Kp and Ki were selected based 
on the dynamic characteristics of the DC motor. The selection of these parameters 
is decisive for the control quality and is optimized by several simulations. The 
objectives for the parameter selection were a low steady-state control error, a fast 
response time, and a high stability of the system. These criteria make it possible 
to achieve the desired control behavior of the DC motor and ensure precise adap-
tation to the specified target speed [20].  

4.1.2. Simulation Results 
The simulation results of the PI controller show a fast response of the motor to 
setpoint changes with minimal overshoot. The controller was able to maintain the 
speed of the motor in a steady state. 

The main results of the simulation include: 
• Steady-state behavior: The PI controller was able to completely eliminate the 

steady-state control deviation, allowing the motor to reach the exact desired 
speed. 

• Dynamic behavior: In the event of sudden changes in the target specifications, 
the PI controller was able to restore the target speed within a short time, min-
imizing overshoot. 

• Disturbance suppression: The controller demonstrated a high degree of sta-
bility by effectively compensating for disturbances and quickly restoring the 
system to the desired setpoint. 

The results demonstrate the potential of reinforcement learning to minimize 
overshoot and stabilize control, as well as to address the unpredictability of dy-
namic environments. This adaptability positions reinforcement learning as a cru-
cial enabling technology for the transition from rigid, parameter-driven approaches 
to flexible, context-sensitive control strategies. 

Moreover, these findings align with broader industry demands for adaptive and 
scalable control systems in applications such as robotics, autonomous vehicles, 
and smart manufacturing. By demonstrating stable performance across a range of 
scenarios, the proposed approach provides a foundation for integrating reinforce-
ment learning into real-world systems with diverse operational requirements. 

4.2. Reinforcement Learning as a Controller 

Reinforcement learning is a method by which agents can learn optimal control 
strategies through interaction with their environment and receipt of feedback in 
the form of rewards or penalties. This work employs the Advantage Actor-Critic al-
gorithm, which integrates artificial neural networks to approximate value functions 
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and optimize control policies. The dual architecture of the algorithm, which sep-
arates the decision-making process (Actor) from the evaluation process (Critic), 
enables dynamic adaptation to environmental changes. Furthermore, the combi-
nation of RL and ANN enables the system to handle high-dimensional states and 
complex control tasks, which is difficult to achieve with traditional methods [21] 
[22]. 

The following section outlines the implementation details, including the train-
ing process and reward function [6].  

The A2C algorithm splits the learning process into two main components: the 
Actor, which selects actions, and the Critic, which evaluates these actions. This 
division enables more precise control and more efficient adaptation of the control 
strategy. 
• Actor: The Actor makes the control decisions by selecting the optimal voltage 

based on the current state of the system to influence the angular velocity ω. 
The Actor continuously adapts its strategy to minimize the deviation from the 
target speed ωtarget. 

• Critic: The Critic evaluates each action of the Actor by calculating the Ad-
vantage of a particular action compared to the expected performance. The ad-
vantage represents the difference between the actual reward and the expected 
estimated reward and provides information on how effective an action is. This 
process supports the actor in the selection of future actions that contribute to 
the optimization of the control quality. 

Figure 5 shows the control structure of the training process for the RL agent. 
This figure shows how the RL agent perceives the environment, what feedback 
(reward Rt and state St) it receives, and how it influences the motor through the 
normalized manipulated variables. The control is performed by the agent, while 
the critic evaluates the feedback and determines the learning progress. 

 

 
Figure 5. Control structure for training the RL agent. 

 
The RL agent uses artificial neural networks to approximate both the actor’s 

policy and the critic’s value function. This architecture allows the RL agent to han-
dle complex control tasks such as controlling a DC motor. The inputs to the neural 
network consist of the current states of the system (e.g. angular velocity, current), 
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while the outputs represent a Gaussian probability density function for possible 
control actions for different control actions. 

The advantage of the A2C algorithm is that the actor and the critic are trained 
simultaneously. This leads to a more stable and efficient training process, espe-
cially for continuous control tasks such as the control of a motor [23] [24].  

4.3. Training the RL Agent 

The training process takes place in a simulated environment that reproduces the 
behavior of the DC motor. The RL agent runs through several training cycles in 
which it selects the voltage as the action and receives the current angular velocity 
ω as feedback. This feedback loop allows the agent to get to know the behavior of 
the motor and adapt the control strategy to minimize the control error of the an-
gular velocity Δω with Δω = ωtarget − ω. 

An essential part of the training process is the min-max scaling of the state val-
ues that serve as inputs to the neural network. The scaling normalizes the values 
of ω and i to reduce fluctuations and create a stable basis for training. This nor-
malization makes the neural network more robust against extreme input values, 
which improves the stability and efficiency of the learning process. 

The training process is illustrated in Figure 6, which shows the program flow 
chart according to DIN 66001. 

The initial state (S₀) is defined first and the agent receives feedback in the form 
of a reward value (R₀) based on their action (A₀). This value indicates how well 
the agent has reached the desired angular velocity. In each step, the critic evaluates 
the agent’s action and calculates the advantage, which is used to update the neural 
network. 

The A2C algorithm combines the advantages of Temporal Difference Learning 
(TD Learning) and the Policy Gradient method. Here, the actor learns the strategy 
using the Policy Gradient method and executes new actions accordingly during 
training. In contrast, the critic evaluates the current state using the value function 
forced by the actor’s actions. Similar to the actor, the critic learns the value func-
tion through TD-Learning. The goal, identical to TD-Learning, is to apply the ac-
tor-critic method to continuous problems. For a continuous domain, it is a com-
mon idea to choose a Gaussian probability density function for the actor’s strategy 
π: 

( )
( )( )
( )

2

2

,1( | , ) (
, 2 2 ,

−
= −

a μ s θ
π a s θ exp

σ s θ π σ s θ
 

The advantage function At (not to be mixed up with the action At) is character-
ized by the adaptation to the baseline v (St, wt) in order to limit the variance for the 
weighting of the gradients (w are the weights of the neural network of the critic): 

( ) ( )1 1, ,+ += + −t t t t t tA R γυ S w υ S w  

This function is necessary for updating the weights θ of the actor’s neural net-
work (with a specific learning rate α): 
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( )( )1 | ,+  = + ∇  t t t θ t t tθ θ αA ln π A S θ  

To update the weights of the critic, the following equation must be imple-
mented (with a certain learning rate α): 

( )1 ,+  = + ∇  t t t w t tw w αA υ S w  

The training process is comprised of numerous episodes, during which the 
agent develops an enhanced control strategy through the provision of continuous 
feedback. By means of repeated simulations, the RL agent is able to discern which 
actions are optimal for motor control, thereby reducing the discrepancy between 
the actual and desired speed [25] [26].  

 

 
Figure 6. Program flow chart according to DIN 66001 of the RL agent. 

4.4. Reward Function 

The reward function plays a pivotal role in the training process, as it serves to 
motivate the RL agent to reinforce specific behaviors and suppress others. In this 
instance, the objective of the reward function is to minimize the discrepancy be-
tween the actual and target speeds, which serves as an indicator of the quality of 
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control. The mathematical formulation of the reward function, established for this 
particular application, is as follows: 

( )2
= ⋅ −targetR c ω ω  

Here, c is a penalty value that determines the extent to which deviations from 
the target velocity are penalized [27] [28].  

4.5. Optimization and Performance Analysis of the RL Agent 

The successful training of a reinforcement learning agent heavily depends on the 
careful selection of hyperparameters and training settings. These parameters gov-
ern the agent’s learning process, influencing both its efficiency and effectiveness 
in achieving optimal control performance. Setting appropriate values for key pa-
rameters, such as the learning rate, discount factor, and episode count, is essential 
to ensure stability and convergence during training [29] [30].  

This section outlines the chosen hyperparameters, explains their significance, 
and discusses how they were optimized to suit the dynamic control requirements 
of the DC motor system. Table 2 shows the most important hyperparameters and 
their values. 

 
Table 2. Overview of hyperparameters and values. 

Hyperparameter Value Meaning 

Learning rate Actor 0.00006 Adaption speed of the Actor 
Learning rate Critic 0.00025 Adaption speed of the Critic 

Discount factor 0.5 Weight of future rewards 
Number of episodes 2000 Number of training episodes 

Penalty value −0.95 Penalty for deviation from the rule 

 
The learning rate of the actor and the critic determine the rate of adaptation of 

the control strategy employed by the agent. An excessive value may result in er-
ratic behavior, whereas an insufficient value may impede the training process. The 
discount factor determines the relative weight given to future rewards, enabling 
the agent to consider both short-term and long-term objectives. The value of c 
determines the degree of penalty applied to deviations from the target speed. An 
elevated value for c engenders a heightened focus on precise tracking on the part 
of the agent, whereas a diminished value permits greater flexibility. By modifying 
the structure in this manner, the agent is able to learn to minimize the control 
error Δω while maintaining stable control. 

The simulation results show that after several training cycles, the RL agent can 
control the DC motor efficiently and achieve sufficient control quality. Important 
observations from the simulations include:  
• Adaptability: The RL agent demonstrated enhanced capacity for adaptation to 

diverse operational scenarios throughout the training period. Although the se-
lection of voltage at the outset of the training period was uncertain, the RL 
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agent was able to make increasingly stable decisions and achieve the angular 
velocity as the training progressed. 

• Reduction in control deviation: As the training period increased, the RL 
agent reduced the deviation between target and actual speed. This shows that 
the agent optimized the control strategy and continuously improved the con-
trol quality, which is also reflected in the increasing reward values. 

• Stability: At the end of the training, the RL agent showed a control deviation 
of less than 10%, even with nominal voltages. The agent shows a sufficient dy-
namic behavior regarding step responses and was able to minimize overshoots. 

These findings underscore the potential of reinforcement learning for the con-
trol of dynamic systems, such as the DC motor. The RL agent was able to achieve 
the desired outcomes and respond effectively to external influences, suggesting 
that it may offer a viable alternative to traditional control methods. 

4.6. Training Results, Challenges and Observations 

The training process of the RL agent presented several challenges that influenced 
the learning progress. The main challenges include: 
• Stability issues: Fluctuations in rule performance occurred at the beginning of 

training, which were addressed by adjusting the hyperparameters, particularly 
the learning rate and discount factor. These adjustments improved the stability 
of the learning process and led to more consistent results. 

• Fine-tuning the reward function: The choice of the penalty value c proved to 
be critical for balancing precision and flexibility. Excessive punishment of large 
deviations initially led to overfitting, where the actor initially behaves explor-
atively before developing an optimized control strategy. By fine-tuning the 
value c, these effects could be corrected. 

• Slow learning curve: In the initial training phases, the agent’s learning pro-
gress was slower than expected. Increasing the number of episodes and fine-
tuning the hyperparameters improved the control quality and accelerated the 
learning process. 

Figure 7 illustrates that during the preliminary training stages, the agent’s ad-
vancement was less rapid than anticipated. This was attributed to suboptimal ini-
tial hyperparameter configurations and the intrinsic exploration phase necessi-
tated by reinforcement learning. During these initial stages, the agent demon-
strated erratic behavior, at times selecting actions that deviated considerably from 
optimal control strategies. By increasing the number of training episodes and re-
fining key hyperparameters, such as the learning rate, discount factor, and reward 
function penalties, the agent was able to gradually stabilize its learning process. 
These adjustments not only improved the control quality but also accelerated con-
vergence, enabling the agent to adapt more effectively to dynamic environmental 
conditions. These results highlight the critical role of hyperparameter tuning in 
reinforcement learning, particularly in applications where precise and robust con-
trol is essential. 
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Figure 7. Training progress of the RL agent. 

5. Research Results 

This chapter presents a comparative analysis of the performance of the reinforce-
ment learning agent (RL agent) and the conventional PI controller. The compar-
ison is based on simulations in which both controllers are tested for different input 
signals and disturbances. The objective of this analysis is to examine the behavior 
of the two control strategies in different scenarios and to identify the advantages 
offered by reinforcement learning compared to classical control. 

5.1. Step-Shaped Input Signal 

In the initial simulation, an abrupt input signal was employed. This signal sim-
ulates a sudden change in the target speed of the motor from 0, which is a common 
occurrence in real-world applications where rapid motor responses are necessary. 
The simulation demonstrates the response of the RL agent and the PI controller 
to step responses. 
• RL agent: The RL agent reacts with a time delay to the change in the input 

signal. There is no significant overshoot—stability is ensured in steady-state 
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operation. 
• PI controller: The PI controller reacts very quickly to the sudden change in 

target speed. It achieves the specification precisely in the steady state by fully 
compensating for the control deviation. During the transition phase, however, 
a clear overshoot is noticeable, which only stabilizes after several oscillations. 

Figure 8 shows the results of the step response for both controllers. The curve 
of the PI controller shows a faster initial response, while the RL agent is charac-
terized by a more stable but slightly delayed adaptation. 

 

 
Figure 8. Results of the step responses. 

5.2. Reference Trajectory 

In the second simulation, a reference trajectory is used that consists of several 
gradual changes in the target velocity. This trajectory simulates a scenario in which 
the angular velocity of the motor is changed at fixed intervals to test the reaction 
and adaptability of both controllers to a dynamic input variable. 
• RL agent: The RL agent shows adaptability to the gradual changes in the target 

speed. With each change, the RL agent adapts and can follow the trajectory 
with a time delay. It should be emphasized that there is no significant over-
shoot.  
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• PI controller: In this scenario, the PI controller also reacts quickly to any 
change in the target speed. However, an overshoot is noticeable with each step-
wise adjustment, which impairs the stability of the system. Although the con-
troller reaches the target speed after a certain time, the repeated fluctuations 
lead to reduced control quality. In applications with dynamic requirements, 
this behavior can be inefficient as it delays the stabilization of the system. 

Figure 9 shows the simulation results for the reference trajectory. The differ-
ence in the control quality is particularly clear here: While the RL agent reaches 
the angular velocity with minimal deviations at each stage, the PI controller shows 
greater fluctuations with each change. 

 

 

 
Figure 9. Simulation of the reference trajectory. 

5.3. Comparison of the Control Strategies 

The results of the simulations indicate that, in all scenarios considered, the RL 
agent exhibits sufficient control quality compared to the PI controller. The results 
demonstrate that the RL agent exhibits superior stability and precision, particu-
larly in dynamic and complex environments. The discrepancies between the two 
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control strategies can be encapsulated as follows: 
• Response time: The PI controller demonstrates a more rapid response to al-

terations in the angular velocity, achieving precise stabilization in the steady 
state. However, this rapid response is frequently accompanied by a considera-
ble overshoot during the transition phases, which compromises the stability of 
the system. In comparison, the RL agent exhibits a somewhat slower reaction 
time but provides a markedly more stable adaptation, as it completely avoids 
overshoot. This characteristic renders it especially well-suited to applications 
where fluctuations are a significant issue. 

• Stability: The RL agent demonstrates superior stability across all scenarios, ex-
hibiting a capacity to act without overshooting and to adapt with precision to 
designated targets. This is particularly advantageous in scenarios involving 
gradual changes or dynamic requirements, as the RL agent develops a robust 
control strategy due to its continuous learning ability, which yields reliable re-
sults even in complex environments. In contrast, the PI controller demon-
strates deficiencies in stability, particularly in scenarios characterized by fre-
quent changes. However, this could be countered by changes to the draft reg-
ulation. 

• Adaptability: A principal benefit of the RL agent is its capacity to adaptively 
respond to evolving circumstances and external disturbances. By continuously 
optimizing its control strategy, the RL agent is able to achieve a high level of 
precision even when faced with complex trajectories. In contrast, the PI con-
troller is reliant on fixed parameters, which renders it susceptible to deficien-
cies in the event of unforeseen alterations. Its inability to adapt flexibly to novel 
conditions represents a notable limitation. 

The advantages of reinforcement learning observed in this study are particu-
larly relevant for applications where precision, adaptability, and fault tolerance 
are of paramount importance. For example, the capacity to adapt control strate-
gies in real-time, without excessive overshoot, makes reinforcement learning an 
optimal choice for precision robotics, where minor discrepancies can result in 
substantial operational errors. 

Similarly, industries such as aerospace and medical technology could benefit 
from the RL agent’s capability to maintain stability under unexpected disturbances, 
as these fields often face stringent safety and reliability requirements. By situating 
the reinforcement learning methodology within this broader industrial context, 
the study demonstrates its potential for advancing control engineering. 

In conclusion, it can be stated that reinforcement learning, as applied to the RL 
agent, represents a promising alternative to traditional control strategies such as 
the PI controller. In scenarios where stability, adaptability, and precision are re-
quired, the RL agent has advantages, although improvements to the controller 
would again improve these. The capacity of the RL agent to operate without over-
shooting and with consistently high control quality makes it particularly well-
suited to dynamic and complex applications. 
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Potential for Optimization through Design of Experiments 
One potential approach for further enhancing the performance of the RL agent is 
the incorporation of Design of Experiments. A DoE provides a systematic meth-
odology for the specific testing of various scenarios and the investigation of the 
influence of variables, such as changes in target speed or the presence of external 
disturbances. By varying these parameters in a structured manner, the learning 
ability and adaptability of the RL agent may be enhanced [31].  

The DoE approach may be employed to devise the parameters and training en-
vironments in a manner that enables the RL agent to be evaluated and optimized 
across a range of conditions. This would facilitate the enhancement of the agent’s 
resilience against diverse operational scenarios, thereby augmenting its perfor-
mance in intricate and dynamic environments. The systematic implementation of 
Design of Experiments could, therefore, enhance the long-term adaptability of the 
RL agent, thereby ensuring more stable and efficient control even in challenging 
environments [32].  

6. Discussion and Conclusion 

The incorporation of reinforcement learning into the mechatronic product devel-
opment lifecycle presents a promising avenue for addressing challenges such as 
adaptability, robustness, and complexity. While this study focuses on the applica-
tion of reinforcement learning within a holistic AI-driven framework, the pro-
posed methodology has demonstrated particular value between Phase 3 (“System 
Architecture”) and Phase 5 (“System Integration and Verification”). 

In these phases, reinforcement learning has proven to be a valuable tool for au-
tomating optimization processes, enabling adaptive interface control, and sup-
porting verification tasks through dynamic learning capabilities. However, rein-
forcement learning is only one of several promising techniques that could be em-
ployed at various stages of the development lifecycle. Its successful application in 
this study suggests that similar techniques could enhance other stages of the prod-
uct development process, such as early-stage risk assessment or late-stage system 
validation. This flexibility demonstrates how reinforcement learning, when inte-
grated with other AI methodologies, can facilitate the transition from conceptual 
design to implementation—a traditionally iterative process reliant on manual ad-
justments and static strategies. 

Key insights from this work include: 
• Adaptability in dynamic environments: The RL-based controller demon-

strated superior performance compared to traditional PI controllers in scenar-
ios necessitating real-time adaptation and resilience to external disturbances. 

• Scalability for system-level integration: By leveraging AI tools such as knowledge 
graphs and optimized training pipelines, the RL agent demonstrated potential 
for integration into more complex product architectures. 

• Automation potential: The deployment of RL within Phase 3 to Phase 5 can 
significantly reduce manual tuning efforts, improving the efficiency of system 
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design and validation processes. 
Despite these advances, certain limitations persist. The computational overhead 

associated with reinforcement learning training and the challenge of transferring 
simulation-based learning to real-world applications highlight areas for future im-
provement. Incorporating alternative reinforcement learning algorithms or hybrid 
control systems could address these challenges by combining the strengths of both 
approaches, thereby enhancing the robustness and scalability of the methodology. 

While the simulation results provide valuable insights into the potential of re-
inforcement learning for adaptive control, the absence of practical implementa-
tion and testing on actual hardware represents a significant limitation of this 
study. Real-world environments often present additional challenges, such as hard-
ware imperfections, sensor noise, and latency, which may impact the performance 
of the proposed reinforcement learning controller. 

Future work will address these limitations through hardware-in-the-loop (HiL) 
experiments to validate the applicability of the RL-based control strategy in real-
world scenarios. These experiments will enable a comprehensive evaluation of the 
controller’s robustness and adaptability under physical constraints. Additionally, 
integrating reinforcement learning into practical systems offers the opportunity 
to explore hybrid control strategies that combine the adaptability of reinforce-
ment learning with the computational efficiency of traditional methods. 

While the proposed framework provides substantial benefits, reinforcement 
learning itself presents challenges that merit further discussion: 
• Computational Complexity: RL algorithms, such as A2C, require significant 

computational resources during training. This can limit their applicability in 
time-sensitive scenarios. Future work could explore more efficient algorithms 
or transfer learning approaches to mitigate these limitations. 

• Sensitivity to Hyperparameters: The performance of RL agents is highly de-
pendent on hyperparameter tuning. Automated techniques, such as Bayesian 
optimization, could streamline this process and improve training outcomes. 

• Generalization to Real-World Conditions: RL agents trained in simulations 
may struggle to adapt to real-world environments due to discrepancies such as 
unmodeled dynamics or sensor noise. Domain adaptation and uncertainty-
aware training could enhance their robustness. 

• Exploration-Exploitation Trade-Off: The exploration required by RL algo-
rithms can pose risks in safety-critical applications. Safe reinforcement learn-
ing approaches and reward shaping may mitigate this issue. 

Despite these challenges, the simulated environment in this study was carefully 
designed to approximate real-world conditions, including dynamic disturbances 
and varying setpoints. As such, the results establish a strong foundation for future 
investigations, demonstrating the feasibility of reinforcement learning as a prom-
ising control strategy for mechatronic systems. 

The method focuses on the utilization of reinforcement learning for system ar-
chitecture and integration. However, its broader implications extend to the creation 
of a unified AI-driven development process. By integrating this methodology with 
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other AI techniques, such as supervised learning for anomaly detection in Phase 
1 or generative design tools in Phase 2, it is possible to develop a cohesive frame-
work for intelligent product development. 

Collaborations with industry partners to test the RL agent in hardware-in-the-
loop setups will be pivotal in advancing its adoption in industrial settings. These 
next steps will ensure that the proposed methodology not only enhances theoret-
ical insights but also delivers tangible improvements in engineering practice. 

7. Outlook 

This study offers a detailed investigation into the potential of reinforcement learn-
ing to enhance the mechatronic product development lifecycle, with a particular 
emphasis on the pivotal stages of system architecture definition and integration. 
By aligning the methodology with the structured V-model development process, 
the work underscores the applicability of AI-based solutions to genuine engineer-
ing challenges in the real world. 

Future research could expand upon these findings by: 
1) Enhancing scalability through hybrid approaches: Combining RL with clas-

sical control methods or alternative algorithms (e.g., PPO, DDPG) could improve 
computational efficiency and reduce reliance on large training datasets. 

2) Integrating domain-specific knowledge into the RL process: Future research 
could focus on embedding domain-specific knowledge, such as safety require-
ments or regulatory constraints, directly into the RL process using AI-optimized 
knowledge graphs or tailored reward functions. This approach would accelerate 
learning, ensure compliance with critical guidelines, and improve the transfera-
bility of RL solutions to real-world industrial applications. 

3) Validating in real-world environments: Implementing the RL methodology 
in HiL or real-system setups could bridge the gap between simulation and appli-
cation, further solidifying its practicality in industrial settings. 

4) Leveraging Design of Experiments: Systematic exploration of training sce-
narios and environmental variables using DoE could improve the adaptability and 
robustness of the RL agent across diverse operational conditions. 

By concentrating on these elements, future research can build upon the ground-
work laid here, propelling the integration of AI into mechatronic system develop-
ment and production. Ultimately, reinforcement learning has the potential to fun-
damentally alter the manner in which intelligent systems are designed, optimized, 
and deployed, thereby paving the way for a new era of adaptive and resilient en-
gineering solutions. 
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