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Analog circuits are commonly used in a wide range of industrial applications, and their assessment is of great
importance to ensure proper functionality and prevent faults. However, this task is not as fully developed and is
significantly less advanced compared to the assessment of digital circuits, as soft faults are particularly difficult to
detect in analog circuits. This study addresses the application of supervised classification techniques for the
detection and classification of soft faults in analog circuits. A feature extraction methodology is proposed based
on voltage measurements at key circuit points and across different frequencies, enabling precise characterization
of system behavior. From this feature, a benchmark employing different machine learning methods was used.
The evaluated classifiers include k-Nearest Neighbors (KNN), Naive Bayes (NB), Discriminant Analysis Classifier
(DAQ), Classification Decision Tree (CDT), Random Forest (RF), Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). Each model was optimized through hyperparameter tuning and validated using cross-
validation techniques. The results indicate that ANN and SVM achieved the best performance, attaining an ac-
curacy of 97.92 % and 97.22 % on test data, with a global Matthews Correlation Coefficient (MCC) of 97.76 %
and 97.01 %, respectively. Although RF obtained the highest training accuracy (99.39 %), its performance
significantly dropped during testing (93.06 %, MCC of 92.52 %), indicating overfitting. Additionally, models
such as KNN and DAC demonstrated solid performance, whereas NB and CDT were the least effective. These
findings highlight the importance of carefully selecting both the feature set and the classification model for fault
detection in electronic circuits. A Sallen-Key band-pass filter was used as the circuit under test (CUT), as soft fault
classification in this type of circuit is particularly challenging. This study demonstrates that it is possible to
accurately predict faults in circuits similar to the one analyzed.

1. Introduction

In the present work, supervised classification techniques will be
employed, such as k-Nearest Neighbors (KNN), Naive Bayes (NB),
Discriminant Analysis Classifier (DAC), Classification Decision Tree
(CDT), Random Forest (RF), Support Vector Machines (SVM), and
Artificial Neural Networks (ANN), to model faults and predict the
different soft fault scenarios that may occur in analog circuits.

As is well known, KNN classifies potential faults based on proximity
to its nearest neighbors in the feature space, making it a simple but
powerful technique for problems with complex decision boundaries.
Likewise, Naive Bayes (NB) classifiers are based on probability,
assuming feature independence. Another method used in this work is the
Discriminant Analysis Classifier (DAC), which uses linear or quadratic
discriminant functions to separate classes. Additionally, this study an-
alyzes the Classification Decision Tree (CDT), which constructs
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hierarchical trees based on sequential feature splits and the Random
Forest (RF), which combines multiple decision trees. On the other hand,
SVM are algorithms that find an optimal hyperplane to separate classes
in the feature space, being effective in both linear and nonlinear prob-
lems through the use of kernel functions. Finally, ANN will be employed,
consisting of one or multiple layers of interconnected neurons capable of
learning complex and nonlinear relationships in the data. Furthermore,
this study will perform a benchmark analysis among the different
techniques analyzed and will present the results obtained for the
determination and classification of soft faults in electronic circuits.
The main difference between classifiers such as KNN, NB, DAC, CDT,
RF, and SVM, compared to artificial neural networks (ANN), lies in their
ability to model complex relationships and their learning approach.
Methods such as KNN, DAC, NB, and SVM rely on the geometry of the
feature space or on statistical assumptions (such as independence in NB
or a Gaussian distribution in DAC). Decision trees (CDT) and Random
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Forest (RF) are based on hierarchical rules, making them effective for
structured problems, while SVM uses optimal margins to separate clas-
ses in both linear and nonlinear problems. In contrast, ANN, with one or
multiple layers and nonlinear activation functions, can learn extremely
complex and nonlinear patterns within the data, but at the cost of
greater computational complexity. The aforementioned techniques will
be evaluated comparatively in this study to analyze their performance in
detecting and classifying soft faults in analog circuits.

Likewise, the study presents a methodology for feature extraction in
the circuit for the detection of soft faults in analog circuits, consisting of
extracting features from the circuit by measuring voltage at a series of
predetermined points in the circuit and at different frequencies. This can
be done with relative ease and is easily automated, making it possible to
determine the circuit’s behavior both in its nominal operating mode and
in a fault situation. Likewise, the performances of the different analysis
methods used for fault characterization in analog circuits will be eval-
uated, which is of great technological interest since analog circuits are
used in a large number of high-responsibility engineering applications,
and ensuring their proper operation is of utmost importance.

2. Review of the state of the art

Over the last few years, machine learning techniques such as KNN (k-
Nearest Neighbors), NB (Naive Bayes), RF (Random Forest), Discrimi-
nant Analysis Classifier (DAC), Classification Decision Tree (CDT),
Support Vector Machines (SVM) and Artificial Neural Networks (ANN),
among others, have gained increasing popularity for classifying and
detecting faults in analog electronic circuits. These techniques are
particularly well-suited where reliability and fault detection are
required. The growing use of machine learning in these fields is due to its
ability to handle complex data patterns, improve diagnostic accuracy,
and reduce the need for manual intervention. Analog circuits are widely
used in many industrial systems and avionics [1]. Therefore, fault
determination is very important to ensure their correct functioning. In
the review by Afacan et al. [2], recent advancements in machine
learning (ML) techniques for analog and radio frequency integrated
circuit (IC) design are discussed, highlighting how ML-based methods
are being applied across various design stages, from modeling and
synthesis to layout and fault diagnosis. Some of the faults that may occur
in analog electronic circuits include hard faults, soft faults, and inter-
mittent faults, among others. In the research study of Qu et al. [1], the
authors employed variational modal decomposition (VMD) and an
autoencoder to detect intermittent faults in analog circuits. They then
used adaptive dynamic density peak clustering to automatically classify
fault types. Among their findings, they showed that VMD outperforms
wavelet packet transform (WPT) and empirical mode decomposition
(EMD) in detecting intermittent faults under noisy conditions. Likewise,
in Fang et al. [3] a prior knowledge-guided teacher-student model was
employed to detect intermittent faults (IFs) in analog circuits. Addi-
tionally, in Wang et al. [4] can be found an incipient fault diagnosis
method for analog circuits which integrates multi-scale feature extrac-
tion and multi-channel feature fusion to enhance fault information
completeness. Deep extreme learning machine denoising auto-encoder
was used in their study for unsupervised feature extraction and fusion.

As is well known, the k-Nearest Neighbors (KNN) algorithm classifies
data based on the majority of its k closest neighbors in the feature space
through supervised training. It has the advantage of not requiring
explicit training since it stores training data and evaluates distances such
as Euclidean, Mahalanobis, or Manhattan, among others. Its perfor-
mance depends on the k selection, the distance metric, and data distri-
bution. It is highly effective in pattern recognition problems but can be
computationally costly for large datasets. Among the research studies
dealing with KNN, it is worth mentioning that of Tang and Xu [5], who
employed KNN and conventional kernel density estimation (KDE) for
fault classification in analog circuits. In their study, the cumulative in-
fluences on a datum from its neighbors corresponding to different
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classes were estimated using a Gaussian kernel function; and that of Sun
et al. [6] where the authors employed wavelet packet energy spectrum
and sparse random projections as preprocessing techniques to extract
features from the circuit, and then they applied KNN for fault
classification.

A machine learning approach for fault detection and classification in
low-voltage DC microgrids, which combined a bagged ensemble learner
and cosine k-Nearest neighbor (C-KNN) algorithms, was used by Deb
and Jain [7] to identify and classify faults in a standalone low-voltage
DC microgrid. Similarly, in Zare et. [8], a method which combined
radial basis function (RBF) neural networks with machine learning was
used to detect and classify faults in photovoltaic (PV) arrays. Likewise,
in Madeti and Singh [9] a fault detection and classification technique for
PV systems was proposed, utilizing a k-Nearest Neighbors (KNN) algo-
rithm to detect and classify different types of faults. A KNN approach
was also used for fault classification and localization in distribution
networks with multiple distributed generators (DGs) in the study by
Awasthi et al. [10], demonstrating high accuracy in fault identification.

Likewise, in recent years, there have been a large number of studies
on fault determination in ICs based on machine learning techniques, as
shown in the review by Roy et al. [11]. These approaches have been
applied to testing analog, radio frequency, digital, and memory circuits,
focusing on addressing the complexity of fault diagnosis using methods
such as Artificial Neural Networks (ANN) and Principal Component
Analysis (PCA). Some other methods for fault diagnosis in analog cir-
cuits can be found in Zhang and Li [12] who defined an output response
consisting of a square matrix whose elements may vary depending on
the circuit fault and, hence, they diagnosed the faults by comparing the
faulty state with the normal behavior of the circuit. On the other hand,
Shi et al. [13] proposed a method that employed density peaks clus-
tering and a dynamic weight probabilistic neural network for analog
circuit fault diagnosis, using an operational amplifier active filter as the
circuit under test and in Shi et al. [14] a fault diagnosis method for
analog circuits was shown by using Density Peak Clustering (DPC) and a
Voting Probabilistic Neural Network (VPNN), combined with KNN.

Several machine learning algorithms were employed by Sudha et al.
[15] to detect short-circuit faults in distribution transformers. Various
feature extraction and classification techniques were evaluated, with
k-Nearest Neighbor (KNN) identified as more effective than other
methods, in terms of accuracy and processing time, including Quadratic
Discriminant Analysis (QDA), Naive Bayes (NB), and Linear Discrimi-
nant Analysis (LDA). A Naive Bayes classifier combined with
image-oriented feature extraction and selection techniques was
employed by He et al. [16] for fault diagnosis in analog circuits. The
method applied cross-wavelet transform to obtain time-frequency rep-
resentations of fault signals, followed by feature selection using linear
discriminant analysis. In another study, Arabi et al. [17] presented a
machine learning-based method for identifying and categorizing para-
metric faults in analog circuits, utilizing frequency response character-
istics of output voltage and supply current for feature extraction. After
evaluating multiple classifiers, the quadratic discriminant classifier was
selected for its superior accuracy. The feature set was generated using
OrCAD PSpice and Monte Carlo analysis to simulate the circuits under
test. In Silva et al. [18], autoencoders were used for data preprocessing
and eleven algorithms were analyzed for fault classification in power
distribution systems. Results showed that k-Nearest neighbor (KNN) and
random forest (RF) achieved the best performance. Another method for
detecting faults in analog circuits using cross-entropy between the
fault-free and faulty circuit states was proposed by Li and Xie [19], based
on the autoregressive (AR) model and Monte Carlo simulations to vary
component values within tolerances. Likewise, Li et al. [20] proposed a
method for diagnosing soft faults in nonlinear analog circuits through a
feature fusion technique that integrated canonical correlation analysis
and support vector machine (SVM).

Regarding ANN and ANFIS, Noussaiba and Abdelaziz [21] proposed
an ANN-based fault diagnosis approach for induction motors using a
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Multi-Layer Perceptron Neural Network to estimate stator inter-turn
short-circuit severity. A fault diagnosis approach for analog electronic
circuits using a Sugeno fuzzy logic classifier, based on statistical analysis
of the circuit’s frequency response to detect and identify faulty com-
ponents, was proposed by Nasser et al. [22]. Similarly, Arabi et al. [23]
proposed a fault classification approach for analog integrated circuits
using a multiclass Adaptive Neuro-Fuzzy Inference System (ANFIS).
Tadeusiewicz and Hatgas [24] proposed a method for diagnosing mul-
tiple soft faults in analog linear circuits, solving a least squares optimi-
zation problem using the Levenberg-Marquardt algorithm and a fault
detection and isolation method for analog circuits using convolutional
neural networks (CNNs), spectrogram-based feature extraction, and
Monte Carlo simulations to generate signal samples for different faults
was employed by Moezi and Kargar [25]. Further studies can be found in
Binu et al. [26], which reviewed publications from the past few years on
fault diagnosis in analog circuits. Their work focused on presenting a
taxonomy of detection techniques, analyzing state-of-the-art methods,
identifying research challenges, and highlighting the growing trend to-
ward the adoption of machine learning techniques. Additionally, in
Khemani et al. [27], a design of experiments-based approach was
introduced to reduce fault classification complexity in analog circuits,
integrating a wavelet-based deep learning network for fault analysis.
Some other studies such as of Sheikhan and Sha’bani [28] analyzed the
employment of ANN and Particle Swarm Optimization (PSO) in fault
detection in analog circuits. Likewise, Zhao et al. [29] proposed an
analog circuit fault diagnosis method that integrated Ensemble Empir-
ical Mode Decomposition for feature extraction, the Maximum Infor-
mation Coefficient for feature selection, and Particle Swarm
Optimization to optimize Support Vector Machine (SVM) classification.
Likewise Dieste-Velasco [30] employed a pattern recognition ANN for
hard faults detection and Zhong et al. [31] used deep belief neural
networks to detect intermittent faults in analog circuits. A dual-input
model based on a multi-scale self-normalizing convolutional neural
network was proposed by Yang et al. [32] to detect faults using circuit
response signals and a fully convolutional network (FCN) was employed
by Miao et al. [33] as a fault diagnosis model for analog circuits, using a
global average pooling layer to determine fault category probabilities.

Further examples of ML to detect faults in several engineering ap-
plications can be found in the study by Shi et al. [34], who applied the
Latent Dirichlet Allocation (LDA) topic model to extract features from
railway signal equipment fault records and then used a Support Vector
Machine (SVM) classifier for fault diagnosis, comparing its performance
with Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF),
and k-Nearest Neighbors (KNN). Another relevant study is the study by
Fazli and Poshtan [35], who proposed a fault detection and isolation
(FDI) method for wind turbines (WTs) using the k-Nearest Neighbors
(KNN) classifier based on SCADA data, and the study by Chahal et al.
[361, who studied stability prediction for smart energy grids using ma-
chine learning (ML) models, including Naive Bayes, Decision Tree,
Support Vector Machine, Random Forest, k-Nearest Neighbors, and
Artificial Neural Networks (ANNs), among others. They found that ANNs
optimized with the Adam optimizer achieved the highest accuracy,
outperforming all other predictive models. Additionally, Afia et al. [37]
investigated k-Nearest Neighbors (KNN), Ensemble Tree (ET),
Multi-Class Support Vector Machine (MSVM), and Random Forest (RF),
among others, for fault diagnosis based on motor current signal analysis
and vibration analysis.

On the other hand, a fuzzy classifier-based technique for diagnosing
single and multiple soft faults in analog electronic circuits was proposed
by Kumar and Singh [38], where parameters like peak gain, frequency,
and phase were extracted to differentiate between normal and faulty
states, and a fault detection approach for analog circuits using an
Extreme Learning Machine (ELM) optimized with the Firefly-Chaos Al-
gorithm was employed by Yu et al. [39]. Likewise, Parai et al. [40]
analyzed fault diagnosis in analog circuits by integrating output re-
sponses from multiple input signals and applying data fusion with
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Principal Component Analysis (PCA) and SVM classification. Bilski [41]
proposed a hierarchical two-stage -classification approach using
self-organizing maps to separate easy and difficult fault cases, followed
by Random Forest (RF) for complex cases. Zhao et al. [42] introduced a
fault diagnosis method based on Deep Belief Networks (DBN), and
Zhang et al. [43] proposed a wavelet transform-based feature extraction
method combined with a Multiple Kernel Extreme Learning Machine
(MKELM) for diagnosing analog circuit faults, where the extracted fea-
tures were used to train an MKELM model with its parameters optimized
via Particle Swarm Optimization (PSO), among many others.

This study is organized as follows: Section 3 describes the method-
ology, including the machine learning algorithms and feature extraction
techniques applied to the circuit under test (CUT). Section 4 presents the
classification results and compares the performance of the models.
Section 5 discusses the key findings of this study, while Section 6 pro-
vides the conclusions and suggests directions for future research.

3. Methodology

The selection of predictor (independent) variables and the classifi-
cation methods used in this study for fault detection in analog circuits
are briefly described in this section. Matlab™ 2022b, as well as the
Statistics and Machine Learning Toolbox of Matlab™ 2022b [44] and
the Deep Learning Toolbox of Matlab™ 2022b [45], will be used in this
study. More specifically, the Statistics and Machine Learning Toolbox is
used to implement various supervised classification algorithms, such as
Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Naive
Bayes (NB), Discriminant Analysis Classifier (DAC), Classification De-
cision Tree (CDT), and Random Forest (RF), and the Deep Learning
Toolbox is employed for developing and training artificial neural net-
works (ANNs). Matlab™ 2022b itself serves as the platform to integrate
these tools.

3.1. Selection of measurement points in the circuit

To determine the soft faults that appear in the circuit, a second-order
band-pass filter will be selected as the circuit under test (CUT), in which
fault determination is challenging due to the existence of common
characteristics in the input variables used for fault classification. In
order to obtain data on variables that allow the classification of soft
faults, that is, deviations in circuit components that cause performance
degradation without resulting in a complete failure, a Monte Carlo
analysis will be used, taking into account the tolerances of the circuit
components as well as situations in which these components deviate
from their nominal value. As previously mentioned, a Sallen-Key band-
pass filter will be used as the CUT, whose electrical schematic is shown
in Fig. 1. By measuring at only two points in the circuit, at different
frequencies, it is possible to obtain a dataset that will be used to deter-
mine the possible soft faults that may appear in the circuit. In the circuit
shown in Fig. 1, commercial components with 5 % tolerances have been
used, which will result in significant variations in the circuit, making
fault determination difficult, as output responses may exhibit common
characteristics due to circuit tolerance variations. This occurs because
the circuit is sensitive to component tolerances, and therefore, both the
quality factor and the frequency response of the circuit will vary. For
example, the center frequency will change as it directly depends on the
filter parameters. The dataset used for soft fault detection in this type of
circuit has been selected from the two measurement points (OUT and
M1) shown in Fig. 1, obtaining voltage measurements at the center
frequency of the filter and at frequencies located at +3 dB from the
nominal frequency of the filter. Therefore, the proposed method consists
of six predictors, represented by voltage measurements. These mea-
surements act as inputs to the model and provide information that will
be used to characterize the system state (nominal operation or some type
of fault). The output corresponds to 15 different classes that describe the
characteristics of possible faults in the circuit, that is, the nominal value
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Fig. 1. Electrical diagram of the Sallen-Key band-pass filter employed as the CUT for determining soft faults.

and fourteen soft faults associated with variations in specific compo-
nents. Based on this, it will be possible to train the supervised learning
methods employed in this study: KNN, NB, DAC, CDT, RF, SVM, and
ANN, so they can be applied to accurately detect anomalies in circuits.
The capability of each of these models to detect the possible faults
considered in this study will be demonstrated.

Table 1 shows the variation ranges of the circuit components in
relation to their nominal values, that is, the variation ranges related to
soft faults. To obtain the Monte Carlo values, it is assumed that the
components vary, each within the ranges shown in Table 1, following a
uniform distribution law, where the class names will be {"Nominal’,
"Cliow’, "Clhigh’s "C2low’s "C2high’s 'Rliow’s 'Rlnigh’s 'R2i0w’s 'R2high’
"R310w’, "R3high’s 'R41ow’s "Rénigh’, "R510w’, "R5nigh’}. As can be observed,
deviations below the allowed values for the nominal values (low) and
above them (high) are considered.

Based on the values shown in Table 1, a Monte Carlo analysis using
Cadence® OrCAD® is carried out in which the nominal value of the
circuit shown in Fig. 1 is replaced with the value corresponding to the
soft fault to be analyzed. Once the features of the circuit have been
extracted, MATLAB™ 2022b is used to develop supervised classification
models to predict future fault situations as well as nominal values. Fig. 2
jointly represents the circuit responses corresponding to the frequency
response of the Sallen-Key circuit at the selected points OUT and M1,
using nominal values and those corresponding to each of the soft faults,
when these situations are analyzed at the central value of the fault, i.e.,
without carrying out the Monte Carlo analysis. As can be observed in
Figure 2, fifteen curves are represented for both OUT and M1, each
corresponding to the nominal value of the circuit and to each of the soft
faults. Likewise, the points where features will be extracted from the

Table 1
Variation ranges of the circuit components for soft fault analysis.

C1} [3.06 — 3.35] (nF) R2t [2.96 — 3.20] (kQ)
Cl11 [5.88 — 6.35] (nF) R3l [1.54 — 1.69] (kQ)
Cc2| [3.06 — 3.35] (nF) R3t [2.96 — 3.20] (kQ)
Cc21 [5.88 — 6.35] (nF) R4| [1.11 — 1.21] (k)
R1} [1.54 — 1.69] (kQ) R4t [2.13 — 2.30] (kQ)
R1t [2.96 — 3.20] (kQ) RS5| [0.91 — 1.00] (k)
R2| [1.54 — 1.69] (kQ) RSt [1.75 — 1.89] (kQ)

CUT are graphically indicated. In this study, these have been reduced to
two measurement points at three different frequencies each, which are
represented with dashed lines in the figure. As previously mentioned,
these frequency values correspond to the nominal frequency and the
frequencies located at +3 dB from the nominal frequency. Only the
value corresponding to the central value of these components is shown,
not the Monte Carlo results, which are depicted in Fig. 3. From this
figure, it can be observed the complexity of determining which type of
fault corresponds to each output, based on the extracted features, as the
values are very close to each other. For this reason, the determination of
soft faults in analog circuits is a highly complex issue that has not yet
been fully resolved.

Fig. 3 shows the results obtained from the Monte Carlo analysis for
the nominal case of the circuit, as well as for soft faults observed at the
output (Voyr) and at point M1 (Vy1), specifically for the nominal con-
dition and the Clj,, fault scenario. According to the procedure
described above, the voltage values at each of the three selected fre-
quencies are extracted from these graphs. A similar procedure was fol-
lowed for the remaining soft fault cases.

Fig. 4 shows the distribution of the different classes as a function of
the three selected variables: Vour, Vv, ¥ VouTt-3ds, Which were chosen
because they exhibited the highest correlation (Voyr and V1) with the
selected classes (soft faults) and the highest variance (Voyr ¥ Vour-3dB)
in the dataset. As can be observed, regarding Clhigh and C2high, these
classes have high values in Voyr, which clearly separates them from the
other categories. Regarding C2low and Cllow, they are well clustered
with lower values of Voyr and Voyr.sds, making them easily distin-
guishable. On the other hand, with three variables, some classes remain
partially separated, such as the Nominal class, which, although located
in an intermediate region, is not perfectly separated, as it is relatively
close to classes such as Rlhigh and R2low. This could introduce some
confusion in the classification models. R1low and R1high are close to
each other but show some separation due to Voyr. However, the overlap
in Vi1 could hinder precise classification.

Likewise, some classes with greater overlap can be observed such as
R4low and R5low, which exhibit significant dispersion in Vouyr.3ds ¥
Vmi- This suggests that the selected variables are not sufficient to
completely differentiate them. R3low and R2high also show significant
proximity, especially in Voyr, which could complicate their separation.
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Fig. 2. Frequency response of the Sallen-Key circuit at OUT and M1 for soft faults and nominal behavior.
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Fig. 3. Monte Carlo analysis results for the nominal case and the C1,,, fault, showing voltage responses at Voyr and V.

In light of the above, it is evident that fault prediction in this type of nominal behavior of the circuit.
circuit is challenging. Based on the above, the effectiveness of the

classification models used in the benchmarking conducted in this study

will be analyzed, employing six variables, which, as previously 3.2. Dataset structure and distribution
mentioned, correspond to measurements at two points in the circuit

(Vour and Vi) and at three different frequencies (central and +3 dB). In the case of ANNs, the dataset will be divided into three main sets:
This will demonstrate that some of the analyzed models can achieve a 79 % for training, to ad]ust.the ne:tv.vork’s weights a.nd l.)lases by mini-
high degree of discrimination between the different soft faults and the mizing the loss function during training, 15 % for validation, to monitor

the model’s performance during training and prevent overfitting, and
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Fig. 4. Separation of nominal and soft faults values vs. the three most influ-
ential variables.

15 % for testing, to evaluate the model’s performance on independent
test data. Since other supervised classification techniques will also be
used, cross-validation will be applied to these classification techniques
so that the comparison of the obtained results is conducted on a similar
dataset. Specifically, cross-validation divides the dataset into k subsets
(folds) for training and validation over multiple iterations. That is, given
a dataset T = {(x,y)} it is divided into k disjoint subsets such that T =
U]’-‘:1 T;, where T;\T; = @forj #j, and each subset contains approxi-
mately the same number of data points (N /k), where N is the total
number of data points. In each iteration, one subset T; will be used as the
validation set, while the remaining (k—1) subsets will be used for
training. Since the division used to train the ANN follows the previously
mentioned method, the number of k-folds will be set to 7. Thus, 85 % of
the data initially used in the neural network for training and validation
will be distributed among the other supervised methods as 85.7 % for
training and 14.3 % for cross-validation in each iteration.

In order to analyze the ability of the different classifiers to discrim-
inate both the nominal class and the faults, confusion matrices will be
used. The confusion matrix is row-normalized, allowing the percentages
to be interpreted in terms of the proportion of correctly and incorrectly
classified instances for each class. Each row corresponds to an actual
class (True Class), and each column represents the predicted class
(Predicted Class). The diagonal values indicate the number (or per-
centage) of correctly classified instances, while the off-diagonal values
represent misclassifications. The metrics employed in the confusion
matrix are shown in Equations (1)—(4). For a more detailed description
of these metrics, see Larner [46].

Equation (1) shows the TPR (True Positive Rate), also known as
sensitivity or recall. It measures the proportion of true positives (TP)
among all actual positive instances (TP + FN), where FN are false neg-
atives. This metric is useful for evaluating how well the model detects
positive cases. A high TPR indicates that the model is highly sensitive to
actual positives.

TP

TPR=1p N

(€)]

Equation (2) shows the FNR (False Negative Rate). It measures the
proportion of false negatives (FN) among all actual positive instances
(TP + FN). It indicates the error rate where the model incorrectly clas-
sifies positive cases as negative. A low FNR is desirable to avoid false
negatives.

FN

FNR=1p N

(2)
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Equation (3) shows the PPV (Positive Predictive Value). Also known
as precision. It measures the proportion of true positives (TP) among all
positive predictions (TP + FP), where FP are false positives. It evaluates
how reliable the model is when classifying an instance as positive. A PPV
close to 1 indicates that most positive predictions are correct.

TP

PPV=——"+
TP + FP

3)

Equation (4) Shows the FDR (False Discovery Rate). It measures the
proportion of false positives (FP) among all positive predictions (TP +
FP). It reflects the error rate when predicting positives that are actually
not, where an FDR close to zero is desirable.

FP
FDR=——
R TP + FP @
4. Results

This section presents the main findings of the study, analyzing how
they relate to the stated objectives. Additionally, a benchmarking
analysis is conducted among the different alternatives, examining their
limitations as well as their relevance for the detection of soft faults in
analog circuits.

4.1. Classification using k-nearest neighbors (KNN)

The algorithm for this method is shown in Table 2. It is a supervised
technique that classifies new observations based on their proximity to
previously labeled points in the feature space. To apply this method, the
“fitcknn” function from MATLAB™ 2022b [44] will be used, which al-
lows training a KNN model by fitting it to a training dataset composed of
predictor features and class labels. This model utilizes distance metrics
such as Euclidean, Manhattan, or Mahalanobis, among others, to iden-
tify the k-nearest neighbors for each new observation [47,48]. One of
the drawbacks of this method is that it requires storing all the training
data, which can result in a high computational cost.

In the KNN method, the training set (x;,y;) fori=1..n where x;
represents the features and y; corresponds to the class labels (C;..Cp), is
stored as is, without performing an explicit learning process. To classify
a new sample Xpew, the algorithm computes the distance between Xpew
and each sample in the training set using a specific metric (such as
Euclidean, Manhattan, or cosine). Then, the k-nearest neighbors are
selected, meaning the k samples with the smallest distances. Finally,
Xnew iS assigned to the class with the highest frequency among the k
selected neighbors (majority voting). Some of the distances used in this
method include Euclidean distance (5), Manhattan distance (6), Min-
kowski distance (7) (where p = 1 corresponds to Manhattan and p = 2
corresponds to Euclidean) and Mahalanobis distance (8), where S is the
covariance matrix, among others. A detailed description of these metrics
can be found in [47,48].

n

d(xi,x) = [ > (e — ) ®)

k=1

n

d(xi,%) = > i — x| 6

k=1

k=1

1
n p
d(xi,x) = (Z i — xjklp> / ™

(i, 35) =/ (x = )'s 7 (x — ) ®

As was previously mentioned, the KNN model was optimized using
the “fitcknn” function in MATLAB™, configuring the option ’Opti-
mizeHyperparameters’, auto’ to automatically adjust the most relevant



M.I Dieste-Velasco

Table 2
Summary of the KNN algorithm.

Integration 104 (2025) 102482

1 Compute the distances between Xpe, and all observations in the training set.

2 Identify the k nearest neighbors.
3 Assign weights (if necessary) based on distance.

4 Classify Xpew according to the labels of the neighbors, using the weighted sum of votes.

hyperparameters: the number of neighbors (k) and the distance metric.
Additionally, 7-fold cross-validation was used, as previously mentioned,
to ensure the robustness of the results and reduce variance. The obtained
results highlighted the Mahalanobis metric with 25 neighbors as the
most effective configuration for this dataset, achieving a minimum
average error of 0.023284. The confusion matrices shown in Figs. 5 and
6 represent the performance of a k-Nearest Neighbors model on the
training and test data, respectively, configured with 25 neighbors and
using the Mahalanobis distance as the metric. It can be observed that
most classes have a 100 % correct classification rate, as seen in the first
rows and columns. This indicates that the model performs well for these
classes, correctly assigning all instances. However, for the R4high,
R4low, R5high, and R5low classes, there is a higher number of errors,
reflected in the values outside the diagonal. This could indicate that
these two classes share similar characteristics, making their differenti-
ation more challenging with the current model.

Regarding the most challenging classes, the model demonstrated
lower accuracy. For example, as shown in Fig. 5, for the R4high class, the
model correctly identifies 92.6 % of the instances (TPR) and has a pre-
cision of 87.7 % (PPV). The false negative rate, where instances are
misclassified as R5low, is 7.4 % (FNR), and the false discovery rate is
12.3 % (FDR). Similarly, for R4low class, the model correctly identifies
90.6 % of the instances (TPR) and has a precision of 92.3 % (PPV). The
false negative rate, where instances are incorrectly classified as R5high,
is 9.4 % (FNR), while the false discovery rate, where they are also
classified as R5high, remains at 7.7 % (FDR). Regarding the test set, the
confusion matrix in Fig. 6 follows a trend similar to that of the training
set, shown in Fig. 5, where it can be observed that, for the most prob-
lematic classes, TPR and PPV percentages decrease, demonstrating
lower performance.

As observed in Fig. 5, the R4high and R5low classes are misclassified
when detecting soft faults, and the same occurs with the R4low and
R5high classes. Regarding the test set, Fig. 6 reveals a TPR of 100.0 % for
the R5high class, indicating that the model correctly identified all in-
stances. Nevertheless, precision decreases to 78.6 % (PPV), suggesting
an increase in the proportion of false positives. Additionally, the false
discovery rate (FDR) increases to 21.4 %, indicating less consistent
performance in terms of precision outside the training set. However,

Confusion Matrix for Training Data using KNN (25 Neighbors, Mahalanobis Dist )

since the rest of the fault classes, as well as the nominal values, were
correctly identified, it could be stated that the KNN model performs well
across all classes, except for the mentioned cases. Moreover, overall, the
TPR and PPV rates remain high.

4.2. Analysis of results for Naive Bayes (NB)

The Naive Bayes (NB) algorithm, whose procedure is shown in
Table 3, is a probabilistic model based on Bayes’ theorem (9).

P(C/X) :P—(X{,(C)){;’ ©

€)]
Where P(C /X) is the probability that X belongs to class C (nominal value
or soft faults), P(X /C) is the conditional probability indicating how
likely it is to observe feature X given that it belongs to class C, and P(C) is
the probability of class C, based solely on the frequency of that class in
the data. P(X) represents the total probability of observing X, regardless
of the class. That is, it is the sum P(X) = ) .P(X /C)P(C) for all possible
classes. For a more detailed description of the method, see Refs. [47,48].

The objective of the algorithm is to determine the class C that
maximizes P(C /X), that is, the probability that an observation X belongs
to a specific fault class. In this case, the Naive Bayes algorithm assumes
conditional independence between features, which implies that each
feature contributes independently to the probability of the class.

In this study, the Naive Bayes model was optimized to classify a
dataset using the same training data. Through a Bayesian optimization
process, Gaussian (normal) distributions and kernel-based distributions
were explored using the “fitcnb” function in MATLAB™ 2022b [44]. The
final model selected normal distributions for all features, achieving a
minimum cross-validation loss of 0.1380. As shown in the confusion
matrices in Figs. 7 and 8, obtained with this method, the model is unable
to accurately predict either the soft faults or nominal values.

Figs. 7 and 8 show the confusion matrices of the Gaussian Naive
Bayes model for the training and test sets, respectively. As observed, in
both the training and test sets, the model demonstrates poor overall
performance compared to KNN, making it unsuitable for detecting soft
faults in this type of analog electronic circuit.
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Fig. 5. Confusion matrix for the training data (selected KNN).
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Confusion Matrix for Test Data using KNN (25 Neighbors, Mahalanobis Distance)
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Fig. 6. Confusion matrix for the test data (selected KNN).

Table 3
Summary of the Naive Bayes (NB) algorithm.

1 Training: Compute the probability of each class P(C).
2 Compute P(x; /C), assuming independence.

3 For an observation X = {xj...Xs }, compute P(C /X).
4 Assign the class with the highest probability P(C /X).

4.3. Analysis of results for Discriminant Analysis Classifier (DAC)

The discriminant analysis method implemented in the “fitcdiscr”
function of Matlab™2022b [44] is an implementation of Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA), specifically designed for classification problems as shown by
Table 4. This method is based on finding a linear or quadratic combi-
nation of the predictor variables (features) that maximizes the separa-
tion between the target classes [47,48].

Fig. 9 shows the confusion matrix of the Discriminant Analysis
Classifier (DAC) in the training set. Overall, the model demonstrates
good performance, with correct predictions for most classes. The per-
formance of the DAC model is similar to that of KNN, with R4high,
R4low, R5high, and R5low being the most challenging classes to iden-
tify. However, in the case of DAC, one instance belonging to the nominal
class is misclassified as R2high, resulting in slightly lower performance

in this case.

Fig. 10 presents the confusion matrix of DAC in the test set. Classes
such as Cllow, Nominal, and R1high maintain excellent performance,
with a TPR of 100 %, indicating that all actual instances of these classes
were correctly classified. However, other classes, such as R4low,
R4high, R5low, and R5high, exhibit lower TPR values compared to the
training set.

In summary, the Discriminant Analysis Classifier model shows good
overall performance, particularly in the training set, where it achieves
high correct prediction rates for most classes. However, in the test set,
some classes, such as R4low, R4high, R5low, and R5high, exhibit
generalization issues similar to those observed in KNN. Despite mis-
classifying one instance from the nominal class as R2high, no fault in-
stances were incorrectly classified as nominal using this method, which,
if it had occurred, would have been more problematic.

4.4. Classification Decision Tree (CDT)

In this case, a decision tree-based classification model is trained
using the “fitctree” function in Matlab™2022b [44] as shown in Table 5,
automatically optimizing the most relevant model hyperparameters
through Bayesian optimization. The predictive data (x) and class labels
(y) serve as inputs to train the tree, and the hyperparameter search
adjusts the minimum leaf size.

Confusion Matrix for Gaussian Naive Bayes Classifier (Training data)
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Fig. 7. Confusion matrix for the training data (Gaussian Naive Bayes).
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Confusion Matrix for Gaussian Naive Bayes Classifier (Test data)
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Fig. 8. Confusion matrix for the test data (Gaussian Naive Bayes).

Table 4

Summary of the DAC algorithm using the “fitcdiscr” function of Matlab™2022b [44].

. Specify the number of k-folds and max iterations.
. Select automatic hyperparameter optimization.

1

2

3. Use Bayesian optimization to find the best model configuration.

4. The “fitcdiscr” function tests different hyperparameter combinations and trains a discriminant analysis model.

Confusion Matrix for Discriminant Analysis Classifier (Training data)
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Fig. 9. Confusion matrix for the training data (Discriminant Analysis Classifier).

As observed in the confusion matrices in Figs. 11 and 12, for training
data and test data, respectively, the decision tree exhibits irregular
performance in both the training and test sets. Additionally, the model
incorrectly predicts fault values as belonging to the nominal class, which
is more problematic. Specifically, one instance of C2high, two of R2high,
and one of R5high are incorrectly predicted as nominal. In the test set,
shown in Fig. 12, the classification accuracy for different classes im-
proves compared to the training set, but one instance of R2high is still
misclassified as nominal.

4.5. Random forest

Random Forest is a supervised algorithm that combines decision
trees trained with random data and variables, improving accuracy and
reducing overfitting [47]. In this study, a classification model based on

an ensemble of decision trees is trained using the Bagging (Bootstrap
Aggregating) method with the “fitcensemble” function in Matlab™ 2022b
[44]. The model training is automatically optimized through hyper-
parameter tuning, using a Bayesian optimization process. The hyper-
parameter search employs an acquisition function called
“expected-improvement-plus”. Additionally, the model evaluation during
the optimization process is conducted through cross-validation,
ensuring that the performance metrics are representative and not
biased by a specific training dataset.

The graph depicted in Fig. 13 confirms that the optimization suc-
cessfully identified an efficient model in terms of the objective function
(minimum around 0.080882). Additionally, the convergence of the
observed and estimated values supports the quality of the Bayesian
optimization model.

As observed in Fig. 14, the Random Forest model provides significant
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Confusion Matrix for Discriminant Analysis Classifier (Test data)
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Fig. 10. Confusion matrix for the test data (Discriminant Analysis Classifier).

Table 5
Summary of the CDT Algorithm the “fitctree” function in Matlab™2022b [44].

1.Specify the number of k-folds and the maximum number of objective function evaluations.

2.Enable automatic hyperparameter optimization ("OptimizeHyperparameters’, "auto’).

3.Apply Bayesian optimization, using the “expected-improvement-plus” acquisition function, to find the best model configuration.
4.The “fitctree” function tests different hyperparameter combinations (such as tree depth and splitting criterion) and adjusts a decision tree classification model according.

Classification Decision Tree (Training data)
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Fig. 11. Confusion matrix for the training data (Classification Decision Tree).

improvements over the KNN and CDT classifiers in terms of performance
on test data. However, it has the drawback of misclassifying a C2high
instance as nominal, which could be problematic. Regarding the values
used for testing, the classification matrix in Fig. 15 shows that the
model’s performance deteriorates, compared to the training data, in the
R4high, R4low, R5high, and R5low classes. However, for the remaining
classes, the TPR reaches 100 % true positive rate.

4.6. Support Vector Machines (SVM)

Another machine learning technique used in this study is Support
Vector Machines. Specifically, in this study, the “fitcecoc” function in
Matlab™2022b [44] was used, which trains a multiclass classifier using
Error-Correcting Output Codes, decomposing the problem into multiple
binary subproblems solved with Support Vector Machines (SVM). A

10

linear kernel is used to separate the classes in the original feature space.
The model automatically optimizes its hyperparameters through
cross-validation and Bayesian optimization. As is well known, the su-
pervised learning method called Support Vector Machines (SVM) finds
an optimal hyperplane to separate classes in a feature space. To achieve
this, it utilizes support vectors and can employ kernel functions [48].

Fig. 16 presents the results obtained, which shows the evolution of
the objective function with the number of iterations. It can be observed
that it rapidly decreases until reaching 9-10 iterations, after which it
stabilizes once the optimum of 0.02384 is achieved.

The SVM model shows good performance in both the training and
test data. In the training data, shown in Fig. 17, the TPR (True Positive
Rate) is close to 100 % for most classes. However, there are slight de-
creases in classes such as R4high, R4low, R5high, and R5low, where the
TPR ranges between 92.5 % and 98.1 %. Fig. 18 presents the confusion
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Classification Decision Tree (Test data)
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Fig. 12. Confusion matrix for the test data (Classification Decision Tree).

Min objective vs. Number of function evaluations

Min observed objective
Estimated min objective

matrix for the test data, where SVM maintains good performance, with a

10.26 TPR of 100 % for most classes. Although its performance decreases
slightly compared to the training data in the R4low, R5high, and R5low
10.24 classes, where the TPR reaches 81.8 %, 90.9 %, and 88.9 %, respectively,
this confirms that these classes remain challenging to detect, consistent
10.22 with the findings in the other analyzed models.
10.2
o 4.7. Artificial neural network
10.18 %
2 Finally, a Patternet-type neural network [45] is employed, as shown
+40.16 _g in Fig. 19, where X is the input vector (6 X 1), Whjgqen (8x6) is the weight
= matrix of the hidden layer, connecting the six inputs to the 8 hidden

10.14 neurons, bpiggen (8x1) is the bias vector of the hidden layer, introducing
an additional offset to the linear combinations of the inputs, Zpiggen, (8x1)

\‘ 1012 is the weighted input vector (pre-activations) for the hidden layer, apiggen

‘ ” . loa (8x1) is the hidden layer output after applying the activation function
/T ' and fhiggen is the activation function used, which is sigmoidal. Addi-

. $ [ ¢ - — 0.08 tionally, Woupu: (15x8) is the weight matrix of the output layer, con-
0 5 10 15 20 25 30 necting the 8 hidden neurons to the 15 output neurons, bougpy: is the bias

Function evaluations

Fig. 13. (a) evolution of the objective function using RF

vector of the output layer, Zoupu (15x1) is the weighted input vector
(pre-activations) for the output layer, foupu: is the activation function of
the output layer, which is of type softmax, 2 represents the
pre-activation of the i — th output neuron and agypy (15x1) is the final
output of the network.
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matrix for the training data (Random Forest).
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Random Forest (Test data)
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Fig. 15. Confusion matrix for the test data (Random Forest).
As observed in Fig. 19, a sigmoidal transfer function is applied in the
Min objective vs. Number of function evaluations hidden layer. The network employs a feedforward propagation approach
70-16 to compute the outputs. As mentioned in the methodology section, the
Min observed objective begi ith th d divisi £ dat (d' id d) int
Estimated min objective process begins wi e random division of data (dividerand) into
10.14 training, validation, and test sets, preventing bias in the model. These
same datasets were used in the previously analyzed classifiers. Training
1012 is performed using the scaled conjugate gradient algorithm, imple-
mented through the Matlab™ function (trainscg), which optimizes the
0 weights iteratively without requiring the computation of the Hessian
701 "é matrix. Additionally, the selected loss function is cross-entropy, which
g measures the discrepancy between the probabilities predicted by the
+0.08 é model and the actual classes.
Fig. 20(a) shows the evolution of cross-entropy during the training,
{0.06 validation, and testing of the neural network, highlighting the best
performance in validation. On the other hand, Fig. 20(b) presents an
error histogram, displaying the distribution of differences between the
1004 network’s predictions and the actual labels in the training, validation,
and test sets. Most errors are concentrated near zero, indicating a good
' : = — —0.02 overall fit of the model.
0 5 10 15 20 25 30

As can be observed in Fig. 21, the confusion matrix for the ANN
presents an almost perfect performance with the training data, with TPR
(True Positive Rate) values close to 100 % for most classes. This in-
dicates that the neural network has learned to classify the training data
correctly with very few errors. However, there are some exceptions,

Function evaluations

Fig. 16. Evolution of the objective function.

SVM with linear kernel (multiclass with ECOC) (Training data)
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Fig. 17. Confusion matrix for SVM (training data).
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SVM with linear kernel (multiclass with ECOC) (Test data)

18.2%

9.1%

1M1.1%

TPR FNR

matrix obtained with the test data, which is shown in Fig. 22, it can be
observed that the results follow a similar trend to those of the training

In summary, the ANN is highly effective for this classification
problem, with very few discrepancies between predictions and actual
labels, even in more complex classes, showing superior performance
compared to the other classifiers analyzed in this section, as will be

To compare the models as a whole, the metrics shown in Equations
(10)-(15) are used. The global accuracy of each classifier is given by
Equation (10), which represents the percentage of correct predictions
made by the model out of the total instances evaluated, being N the

Cthigh| 4
C1low
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Nominal
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R1low 6
o Relow
© R3high 7
2
= R3low
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R5high
R5low
|4:4"A 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 90.9% 90.0% 83.3% 100.0%
FDR 9.1% | 10.0% | 16.7%
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Fig. 18. Confusion matrix for SVM (test data).
Input
r Neural Network Equations. set, correctly classifying most classes.
|I] Computation in the Hidden Layer.
Zniaden = Whiaden * X + Dhiaden
Aniaden = f (Zniaden) . N .
demonstrated in the following section.
fhidden(X) = Tre=
SRCTTER 5. Discussion of results
El Computation in the Output Layer.
Zoutput = Woutput * Apidden T boutput
Qoutput = foutput(zoutput)
e%i
N——— foutput(zi) =15 Lz
Output j=1€"’ .
S number of data points.

Fig. 19. Neural network employed and equations.

such as the R4low, R5high, and R5low classes, where the TPR slightly
decreases to 96.2 %, 96.4 %, and 94.3 %, respectively. Nevertheless,
these values are lower than those obtained previously with the other
classifiers analyzed in this study. On the other hand, in the confusion

Best Validation Performance is 0.0017222 at epoch 686
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Fig. 20. Neural network employed: (a) Evolution of cross-entropy during the training, validation,

Number of correct predictionsciqssifier

Global accuracy ciassifier = N (10)

Global precision, given by Equation (11), is the average precision of
each class.
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Confusion Matrix for Training Data using ANN
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Fig. 21. Confusion matrix for the training data (ANN).

Confusion Matrix for testing Data using ANN
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Fig. 22. Confusion matrix for the test data (ANN).

Num. class

>

i=1

Precision;

Global precisioncgssifier = (11)

N
Global recall, given by Equation (12), is the average recall of each
class.
Num. class
>~ Recall;

Global recalligssifier = 12)

N
F1 — score represents the harmonic mean between precision and recall
for each class and is evaluated from Equation (13).

Precision*Recall

Fl1 —score =2*————————
Precision + Recall

(13)
And the Global F1 — score is given by Equation (14), which is evaluated
for each classifier.
Num. class

F1 — score;

i-1
N
Finally, Equation (15) shows the Matthews Correlation Coefficient

(MCC) [49], which is a metric used in classification problems to measure

Global F1 — scoreciassifier = 14

14

the quality of a model, considering all elements of the confusion matrix.
Its value ranges between —1 and + 1, where +1 indicates perfect clas-
sification, O represents random performance, and —1 means completely
incorrect classification [50-52].

_ TP*TN — FP*FN
/(TP + FP)(TP + FN)(TIN + FP)(TN + FN)

MccC 15)

Tables 6 and 7 show the global results obtained with the machine
learning techniques analyzed for the training and test data, respectively.

As shown in Table 6, with the training data, Random Forest (RF) is
the best-performing classifier across all metrics, achieving 99.39 % in
accuracy, precision, and Fl-score, 99.38 % in recall, and an MCC of
99.34 %. This indicates that RF has an almost perfect predictive capa-
bility on the training data. Similarly, although the Artificial Neural
Network (ANN) performs at a very high level, it is slightly below RF. On
the other hand, Support Vector Machine (SVM) ranks third. However, its
performance is slightly lower than that of ANN, but it remains a suitable
model for fault classification. Likewise, the Discriminant Analysis Clas-
sifier (DAC) also demonstrates good performance. Meanwhile, the
Classification Decision Tree (CDT) exhibits a decline in performance,
making it less effective compared to the previously mentioned models.
Finally, Naive Bayes (NB) is the worst-performing classifier across all
metrics, obtaining 87.13 % accuracy, 86.98 % precision, 86.92 % recall,
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Table 6
Performance comparison between classifiers (training data).
Accuracy (%)  Precision (%)  Recall (%)  Fl-score (%)  MCC (%)

KNN 97.55 97.54 97.53 97.52 97.38
NB 87.13 86.98 86.92 86.90 86.22
DAC 97.79 97.85 97.77 97.76 97.64
CDT 96.08 96.21 96.07 96.06 95.81
RF 99.39 99.39 99.38 99.39 99.34
SVM 98.90 98.89 98.88 98.88 98.82
ANN  99.14 99.14 99.13 99.13 99.08

Table 7

Performance comparison between classifiers (test data).

Accuracy (%)  Precision (%)  Recall (%)  Fl-score (%) MCC (%)

KNN 95.83 96.53 96.03 96.02 95.56
NB 86.11 86.32 84.81 85.26 85.05
DAC 95.14 95.68 95.43 95.43 94.78
CDT 88.89 89.57 88.68 88.88 88.04
RF 93.06 93.70 93.68 93.64 92.52
SVM 97.22 97.62 97.44 97.47 97.01
ANN 97.92 98.18 98.05 98.08 97.76

86.90 % F1-score, and an MCC of 86.22 %. This demonstrates that NB is
the least efficient model in this comparison, likely due to the assumption
of independence among features, which may not hold in this dataset.

Although in advance it seems that RF is the best technique for fault
detection in the CUT, when validating its performance on the test data, a
significant decrease is observed. Specifically, as shown in Table 7, the
Artificial Neural Network (ANN) is the best-performing classifier on the
test data, achieving 97.92 % accuracy, 98.18 % precision, 98.05 %
recall, 98.08 % F1-score, and an MCC of 97.76 %. This indicates that
ANN maintains a high level of performance and generalization, with
only a slight reduction compared to the training data. The Support
Vector Machine (SVM) ranks second in performance. Its performance is
very close to that of ANN, demonstrating a strong classification capa-
bility on the test data. On the other hand, k-Nearest Neighbors (KNN)
also demonstrates good performance. The Discriminant Analysis Clas-
sifier (DAC) shows a performance similar to that of KNN, although with
a slight decrease compared to the training data. However, contrary to
what was observed with the training data, Random Forest (RF) achieved
lower performance on the test data compared to its training perfor-
mance, with 93.06 % accuracy, 93.70 % precision, 93.68 % recall, 93.64
% F1-score, and an MCC of 92.52 %. This drop in performance suggests
the possibility of some overfitting in the model. Similarly, the Classifi-
cation Decision Tree (CDT) exhibits lower performance compared to the
other models. Finally, Naive Bayes (NB) is the lowest-performing clas-
sifier. Its lower recall value indicates that it struggles to detect certain
classes, which may be likely caused by the limitations of its indepen-
dence assumption among features.

Therefore, based on the data obtained in Tables 6 and 7 and it is
observed that Artificial Neural Network (ANN) and Support Vector
Machine (SVM) are the best-performing models overall. ANN achieves
the highest values across all metrics on the test data (97.92 % accuracy
and an MCC of 97.76 %), with a slight reduction compared to training,
suggesting good generalization capability. SVM closely follows with
97.22 % accuracy and an MCC of 97.01 %, also demonstrating high
performance on both datasets. At a second performance level, k-Nearest
Neighbors (KNN) and Discriminant Analysis Classifier (DAC) exhibit
similar values in both the training and test datasets. KNN drops from
97.55 % accuracy in training to 95.83 % in testing, with its MCC
decreasing from 97.38 % to 95.56 %, while DAC shows a decline from
97.79 % to 95.14 % in accuracy and from 97.64 % to 94.78 % in MCC.

Random Forest (RF) shows irregular behavior: although it achieves
the best performance in training (99.39 % across all metrics), its per-
formance drops significantly in testing (93.06 % accuracy and an MCC of
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92.52 %). This indicates possible overfitting, as its test performance is
not competitive compared to models like ANN and SVM. At the lower
performance levels, Classification Decision Tree (CDT) and Naive Bayes
(NB) are found. CDT drops in accuracy from 96.08 % in training to
88.89 % in testing, with an MCC of 88.04 %, indicating a clear perfor-
mance loss on unseen data. Meanwhile, Naive Bayes (NB) is consistently
the worst classifier, with an accuracy of 87.13 % in training and 86.11 %
in testing, and the lowest MCC in both phases (86.22 % in training and
85.05 % in testing), confirming its lower predictive capacity in this
context. In conclusion, ANN and SVM are the most reliable and best-
performing models overall, followed by KNN and DAC, which exhibit
competitive performance. Random Forest, despite its high training
performance, shows signs of overfitting, while CDT and NB are the least
effective classifiers in this dataset.

On the other hand, Figs. 23 and 24 graphically present the results
obtained in Tables 6 and 7, for the training and test data, respectively. As
observed in Fig. 23, the RF method achieves the best results with the
training data. However, its performance decreases more significantly
with the test data, as shown in Fig. 24.

Therefore, it is evident that ANN is superior to the other classification
models used, as it achieves a better balance between training and test
data than the rest. Additionally, as shown in the results section, RF,
although it achieved better performance in the training data, had the
drawback of misclassifying a C2high instance as nominal, which could
be problematic. Likewise, SVM, while producing slightly lower results
than ANN, is a solid alternative for predicting soft faults in analog cir-
cuits. On the other hand, KNN is another method capable of effectively
distinguishing the nominal class from the faulty classes, although its
accuracy rates in the other classes are lower.

Fig. 25 shows that incorporating the three most influential variables,
selected from those with the highest variance and correlation, improves
class separation. However, it is necessary to increase the number of in-
dependent variables in the classifiers to achieve better class separation.
The figure also shows that SVM and RF define the class separation
boundaries more clearly.

Finally, Fig. 26 shows the classification performed with the ANN
using the entire dataset. It can be observed that there is better class
separation, which aligns with the data obtained in Tables 6 and 7 (for
training and test, respectively). This suggests that the ANN is better able
to model the complexity of these data, as can be seen from Fig. 26 and
the previously obtained metrics.

6. Conclusions

In this study, various supervised classification techniques have been
evaluated for the detection and classification of soft faults in analog
circuits. A feature extraction method based on voltage measurements at
key points in the circuit and at three different frequencies was used,
allowing for the extraction of relevant information for fault diagnosis in
the Sallen-Key band-pass filter, considered as the circuit under test in
this study.

The results show that Artificial Neural Network (ANN) and Support
Vector Machines (SVM) are the most effective classifiers for fault
detection in the CUT, achieving 97.92 % and 97.22 % accuracy on the
test data, with MCC values of 97.76 % and 97.01 %, respectively. ANN
demonstrated better generalization, maintaining a minimal difference
between its training and test performance. In contrast, Random Forest
(RF) achieved the best performance in training (99.39 % accuracy, MCC
of 99.34 %) but suffered a notable drop in testing (93.06 % accuracy,
MCC of 92.52 %), also misclassifying faulty classes as nominal, which is
more problematic.

Models such as KNN (95.83 % accuracy, MCC of 95.56 %) and
Discriminant Analysis Classifier (DAC) (95.14 % accuracy, MCC of
94.78 %) demonstrated solid performance, although inferior to ANN and
SVM. At the opposite end, Classification Decision Tree (CDT) and Naive
Bayes (NB) were the worst-performing classifiers, with significant
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Fig. 23. Performance Comparison of Prediction Methods with training data.
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Fig. 24. Performance Comparison of Prediction Methods with test data.
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Fig. 25. Comparison of class separation across different classifiers when incorporating the three most influential variables.
reductions in their accuracy when evaluated on test data. improvement in classification was observed, especially with SVM and
The analysis of decision regions revealed that Naive Bayes and RF. However, it was necessary to include six predictive variables, ob-
Discriminant Analysis exhibit high class overlap, making fault identifi- tained from measurements at two circuit points at three different fre-
cation in the CUT more challenging. In contrast, Random Forest and quencies, to improve the separation between faulty and nominal classes.
SVM achieved more detailed and adaptive decision boundaries, Furthermore, the proposed feature extraction method has proven
although class separation remains limited when few variables are used. effective when combined with these classifiers for soft fault detection in
By incorporating the three most influential variables, a significant the CUT. The ability of this approach to capture relevant information has
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Fig. 26. Comparison of class separation in the ANN when incorporating the three most influential variables.

been key to the models’ performance, highlighting its usefulness in
electronic circuit diagnostics.

Future research will focus on extending the proposed methodology to
other analog circuit topologies, as well as on its application to the
identification of multiple faults and incipient faults in analog electronic
circuits, and on experimental validation.
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