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A B S T R A C T

Analog circuits are commonly used in a wide range of industrial applications, and their assessment is of great 
importance to ensure proper functionality and prevent faults. However, this task is not as fully developed and is 
significantly less advanced compared to the assessment of digital circuits, as soft faults are particularly difficult to 
detect in analog circuits. This study addresses the application of supervised classification techniques for the 
detection and classification of soft faults in analog circuits. A feature extraction methodology is proposed based 
on voltage measurements at key circuit points and across different frequencies, enabling precise characterization 
of system behavior. From this feature, a benchmark employing different machine learning methods was used. 
The evaluated classifiers include k-Nearest Neighbors (KNN), Naïve Bayes (NB), Discriminant Analysis Classifier 
(DAC), Classification Decision Tree (CDT), Random Forest (RF), Support Vector Machines (SVM) and Artificial 
Neural Networks (ANN). Each model was optimized through hyperparameter tuning and validated using cross- 
validation techniques. The results indicate that ANN and SVM achieved the best performance, attaining an ac
curacy of 97.92 % and 97.22 % on test data, with a global Matthews Correlation Coefficient (MCC) of 97.76 % 
and 97.01 %, respectively. Although RF obtained the highest training accuracy (99.39 %), its performance 
significantly dropped during testing (93.06 %, MCC of 92.52 %), indicating overfitting. Additionally, models 
such as KNN and DAC demonstrated solid performance, whereas NB and CDT were the least effective. These 
findings highlight the importance of carefully selecting both the feature set and the classification model for fault 
detection in electronic circuits. A Sallen-Key band-pass filter was used as the circuit under test (CUT), as soft fault 
classification in this type of circuit is particularly challenging. This study demonstrates that it is possible to 
accurately predict faults in circuits similar to the one analyzed.

1. Introduction

In the present work, supervised classification techniques will be 
employed, such as k-Nearest Neighbors (KNN), Naïve Bayes (NB), 
Discriminant Analysis Classifier (DAC), Classification Decision Tree 
(CDT), Random Forest (RF), Support Vector Machines (SVM), and 
Artificial Neural Networks (ANN), to model faults and predict the 
different soft fault scenarios that may occur in analog circuits.

As is well known, KNN classifies potential faults based on proximity 
to its nearest neighbors in the feature space, making it a simple but 
powerful technique for problems with complex decision boundaries. 
Likewise, Naïve Bayes (NB) classifiers are based on probability, 
assuming feature independence. Another method used in this work is the 
Discriminant Analysis Classifier (DAC), which uses linear or quadratic 
discriminant functions to separate classes. Additionally, this study an
alyzes the Classification Decision Tree (CDT), which constructs 

hierarchical trees based on sequential feature splits and the Random 
Forest (RF), which combines multiple decision trees. On the other hand, 
SVM are algorithms that find an optimal hyperplane to separate classes 
in the feature space, being effective in both linear and nonlinear prob
lems through the use of kernel functions. Finally, ANN will be employed, 
consisting of one or multiple layers of interconnected neurons capable of 
learning complex and nonlinear relationships in the data. Furthermore, 
this study will perform a benchmark analysis among the different 
techniques analyzed and will present the results obtained for the 
determination and classification of soft faults in electronic circuits.

The main difference between classifiers such as KNN, NB, DAC, CDT, 
RF, and SVM, compared to artificial neural networks (ANN), lies in their 
ability to model complex relationships and their learning approach. 
Methods such as KNN, DAC, NB, and SVM rely on the geometry of the 
feature space or on statistical assumptions (such as independence in NB 
or a Gaussian distribution in DAC). Decision trees (CDT) and Random 
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Forest (RF) are based on hierarchical rules, making them effective for 
structured problems, while SVM uses optimal margins to separate clas
ses in both linear and nonlinear problems. In contrast, ANN, with one or 
multiple layers and nonlinear activation functions, can learn extremely 
complex and nonlinear patterns within the data, but at the cost of 
greater computational complexity. The aforementioned techniques will 
be evaluated comparatively in this study to analyze their performance in 
detecting and classifying soft faults in analog circuits.

Likewise, the study presents a methodology for feature extraction in 
the circuit for the detection of soft faults in analog circuits, consisting of 
extracting features from the circuit by measuring voltage at a series of 
predetermined points in the circuit and at different frequencies. This can 
be done with relative ease and is easily automated, making it possible to 
determine the circuit’s behavior both in its nominal operating mode and 
in a fault situation. Likewise, the performances of the different analysis 
methods used for fault characterization in analog circuits will be eval
uated, which is of great technological interest since analog circuits are 
used in a large number of high-responsibility engineering applications, 
and ensuring their proper operation is of utmost importance.

2. Review of the state of the art

Over the last few years, machine learning techniques such as KNN (k- 
Nearest Neighbors), NB (Naive Bayes), RF (Random Forest), Discrimi
nant Analysis Classifier (DAC), Classification Decision Tree (CDT), 
Support Vector Machines (SVM) and Artificial Neural Networks (ANN), 
among others, have gained increasing popularity for classifying and 
detecting faults in analog electronic circuits. These techniques are 
particularly well-suited where reliability and fault detection are 
required. The growing use of machine learning in these fields is due to its 
ability to handle complex data patterns, improve diagnostic accuracy, 
and reduce the need for manual intervention. Analog circuits are widely 
used in many industrial systems and avionics [1]. Therefore, fault 
determination is very important to ensure their correct functioning. In 
the review by Afacan et al. [2], recent advancements in machine 
learning (ML) techniques for analog and radio frequency integrated 
circuit (IC) design are discussed, highlighting how ML-based methods 
are being applied across various design stages, from modeling and 
synthesis to layout and fault diagnosis. Some of the faults that may occur 
in analog electronic circuits include hard faults, soft faults, and inter
mittent faults, among others. In the research study of Qu et al. [1], the 
authors employed variational modal decomposition (VMD) and an 
autoencoder to detect intermittent faults in analog circuits. They then 
used adaptive dynamic density peak clustering to automatically classify 
fault types. Among their findings, they showed that VMD outperforms 
wavelet packet transform (WPT) and empirical mode decomposition 
(EMD) in detecting intermittent faults under noisy conditions. Likewise, 
in Fang et al. [3] a prior knowledge-guided teacher-student model was 
employed to detect intermittent faults (IFs) in analog circuits. Addi
tionally, in Wang et al. [4] can be found an incipient fault diagnosis 
method for analog circuits which integrates multi-scale feature extrac
tion and multi-channel feature fusion to enhance fault information 
completeness. Deep extreme learning machine denoising auto-encoder 
was used in their study for unsupervised feature extraction and fusion.

As is well known, the k-Nearest Neighbors (KNN) algorithm classifies 
data based on the majority of its k closest neighbors in the feature space 
through supervised training. It has the advantage of not requiring 
explicit training since it stores training data and evaluates distances such 
as Euclidean, Mahalanobis, or Manhattan, among others. Its perfor
mance depends on the k selection, the distance metric, and data distri
bution. It is highly effective in pattern recognition problems but can be 
computationally costly for large datasets. Among the research studies 
dealing with KNN, it is worth mentioning that of Tang and Xu [5], who 
employed KNN and conventional kernel density estimation (KDE) for 
fault classification in analog circuits. In their study, the cumulative in
fluences on a datum from its neighbors corresponding to different 

classes were estimated using a Gaussian kernel function; and that of Sun 
et al. [6] where the authors employed wavelet packet energy spectrum 
and sparse random projections as preprocessing techniques to extract 
features from the circuit, and then they applied KNN for fault 
classification.

A machine learning approach for fault detection and classification in 
low-voltage DC microgrids, which combined a bagged ensemble learner 
and cosine k-Nearest neighbor (C-KNN) algorithms, was used by Deb 
and Jain [7] to identify and classify faults in a standalone low-voltage 
DC microgrid. Similarly, in Zare et. [8], a method which combined 
radial basis function (RBF) neural networks with machine learning was 
used to detect and classify faults in photovoltaic (PV) arrays. Likewise, 
in Madeti and Singh [9] a fault detection and classification technique for 
PV systems was proposed, utilizing a k-Nearest Neighbors (KNN) algo
rithm to detect and classify different types of faults. A KNN approach 
was also used for fault classification and localization in distribution 
networks with multiple distributed generators (DGs) in the study by 
Awasthi et al. [10], demonstrating high accuracy in fault identification.

Likewise, in recent years, there have been a large number of studies 
on fault determination in ICs based on machine learning techniques, as 
shown in the review by Roy et al. [11]. These approaches have been 
applied to testing analog, radio frequency, digital, and memory circuits, 
focusing on addressing the complexity of fault diagnosis using methods 
such as Artificial Neural Networks (ANN) and Principal Component 
Analysis (PCA). Some other methods for fault diagnosis in analog cir
cuits can be found in Zhang and Li [12] who defined an output response 
consisting of a square matrix whose elements may vary depending on 
the circuit fault and, hence, they diagnosed the faults by comparing the 
faulty state with the normal behavior of the circuit. On the other hand, 
Shi et al. [13] proposed a method that employed density peaks clus
tering and a dynamic weight probabilistic neural network for analog 
circuit fault diagnosis, using an operational amplifier active filter as the 
circuit under test and in Shi et al. [14] a fault diagnosis method for 
analog circuits was shown by using Density Peak Clustering (DPC) and a 
Voting Probabilistic Neural Network (VPNN), combined with KNN.

Several machine learning algorithms were employed by Sudha et al. 
[15] to detect short-circuit faults in distribution transformers. Various 
feature extraction and classification techniques were evaluated, with 
k-Nearest Neighbor (KNN) identified as more effective than other 
methods, in terms of accuracy and processing time, including Quadratic 
Discriminant Analysis (QDA), Naïve Bayes (NB), and Linear Discrimi
nant Analysis (LDA). A Naïve Bayes classifier combined with 
image-oriented feature extraction and selection techniques was 
employed by He et al. [16] for fault diagnosis in analog circuits. The 
method applied cross-wavelet transform to obtain time-frequency rep
resentations of fault signals, followed by feature selection using linear 
discriminant analysis. In another study, Arabi et al. [17] presented a 
machine learning-based method for identifying and categorizing para
metric faults in analog circuits, utilizing frequency response character
istics of output voltage and supply current for feature extraction. After 
evaluating multiple classifiers, the quadratic discriminant classifier was 
selected for its superior accuracy. The feature set was generated using 
OrCAD PSpice and Monte Carlo analysis to simulate the circuits under 
test. In Silva et al. [18], autoencoders were used for data preprocessing 
and eleven algorithms were analyzed for fault classification in power 
distribution systems. Results showed that k-Nearest neighbor (KNN) and 
random forest (RF) achieved the best performance. Another method for 
detecting faults in analog circuits using cross-entropy between the 
fault-free and faulty circuit states was proposed by Li and Xie [19], based 
on the autoregressive (AR) model and Monte Carlo simulations to vary 
component values within tolerances. Likewise, Li et al. [20] proposed a 
method for diagnosing soft faults in nonlinear analog circuits through a 
feature fusion technique that integrated canonical correlation analysis 
and support vector machine (SVM).

Regarding ANN and ANFIS, Noussaiba and Abdelaziz [21] proposed 
an ANN-based fault diagnosis approach for induction motors using a 
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Multi-Layer Perceptron Neural Network to estimate stator inter-turn 
short-circuit severity. A fault diagnosis approach for analog electronic 
circuits using a Sugeno fuzzy logic classifier, based on statistical analysis 
of the circuit’s frequency response to detect and identify faulty com
ponents, was proposed by Nasser et al. [22]. Similarly, Arabi et al. [23] 
proposed a fault classification approach for analog integrated circuits 
using a multiclass Adaptive Neuro-Fuzzy Inference System (ANFIS). 
Tadeusiewicz and Hałgas [24] proposed a method for diagnosing mul
tiple soft faults in analog linear circuits, solving a least squares optimi
zation problem using the Levenberg-Marquardt algorithm and a fault 
detection and isolation method for analog circuits using convolutional 
neural networks (CNNs), spectrogram-based feature extraction, and 
Monte Carlo simulations to generate signal samples for different faults 
was employed by Moezi and Kargar [25]. Further studies can be found in 
Binu et al. [26], which reviewed publications from the past few years on 
fault diagnosis in analog circuits. Their work focused on presenting a 
taxonomy of detection techniques, analyzing state-of-the-art methods, 
identifying research challenges, and highlighting the growing trend to
ward the adoption of machine learning techniques. Additionally, in 
Khemani et al. [27], a design of experiments-based approach was 
introduced to reduce fault classification complexity in analog circuits, 
integrating a wavelet-based deep learning network for fault analysis. 
Some other studies such as of Sheikhan and Sha’bani [28] analyzed the 
employment of ANN and Particle Swarm Optimization (PSO) in fault 
detection in analog circuits. Likewise, Zhao et al. [29] proposed an 
analog circuit fault diagnosis method that integrated Ensemble Empir
ical Mode Decomposition for feature extraction, the Maximum Infor
mation Coefficient for feature selection, and Particle Swarm 
Optimization to optimize Support Vector Machine (SVM) classification. 
Likewise Dieste-Velasco [30] employed a pattern recognition ANN for 
hard faults detection and Zhong et al. [31] used deep belief neural 
networks to detect intermittent faults in analog circuits. A dual-input 
model based on a multi-scale self-normalizing convolutional neural 
network was proposed by Yang et al. [32] to detect faults using circuit 
response signals and a fully convolutional network (FCN) was employed 
by Miao et al. [33] as a fault diagnosis model for analog circuits, using a 
global average pooling layer to determine fault category probabilities.

Further examples of ML to detect faults in several engineering ap
plications can be found in the study by Shi et al. [34], who applied the 
Latent Dirichlet Allocation (LDA) topic model to extract features from 
railway signal equipment fault records and then used a Support Vector 
Machine (SVM) classifier for fault diagnosis, comparing its performance 
with Naïve Bayes (NB), Logistic Regression (LR), Random Forest (RF), 
and k-Nearest Neighbors (KNN). Another relevant study is the study by 
Fazli and Poshtan [35], who proposed a fault detection and isolation 
(FDI) method for wind turbines (WTs) using the k-Nearest Neighbors 
(KNN) classifier based on SCADA data, and the study by Chahal et al. 
[36], who studied stability prediction for smart energy grids using ma
chine learning (ML) models, including Naïve Bayes, Decision Tree, 
Support Vector Machine, Random Forest, k-Nearest Neighbors, and 
Artificial Neural Networks (ANNs), among others. They found that ANNs 
optimized with the Adam optimizer achieved the highest accuracy, 
outperforming all other predictive models. Additionally, Afia et al. [37] 
investigated k-Nearest Neighbors (KNN), Ensemble Tree (ET), 
Multi-Class Support Vector Machine (MSVM), and Random Forest (RF), 
among others, for fault diagnosis based on motor current signal analysis 
and vibration analysis.

On the other hand, a fuzzy classifier-based technique for diagnosing 
single and multiple soft faults in analog electronic circuits was proposed 
by Kumar and Singh [38], where parameters like peak gain, frequency, 
and phase were extracted to differentiate between normal and faulty 
states, and a fault detection approach for analog circuits using an 
Extreme Learning Machine (ELM) optimized with the Firefly-Chaos Al
gorithm was employed by Yu et al. [39]. Likewise, Parai et al. [40] 
analyzed fault diagnosis in analog circuits by integrating output re
sponses from multiple input signals and applying data fusion with 

Principal Component Analysis (PCA) and SVM classification. Bilski [41] 
proposed a hierarchical two-stage classification approach using 
self-organizing maps to separate easy and difficult fault cases, followed 
by Random Forest (RF) for complex cases. Zhao et al. [42] introduced a 
fault diagnosis method based on Deep Belief Networks (DBN), and 
Zhang et al. [43] proposed a wavelet transform-based feature extraction 
method combined with a Multiple Kernel Extreme Learning Machine 
(MKELM) for diagnosing analog circuit faults, where the extracted fea
tures were used to train an MKELM model with its parameters optimized 
via Particle Swarm Optimization (PSO), among many others.

This study is organized as follows: Section 3 describes the method
ology, including the machine learning algorithms and feature extraction 
techniques applied to the circuit under test (CUT). Section 4 presents the 
classification results and compares the performance of the models. 
Section 5 discusses the key findings of this study, while Section 6 pro
vides the conclusions and suggests directions for future research.

3. Methodology

The selection of predictor (independent) variables and the classifi
cation methods used in this study for fault detection in analog circuits 
are briefly described in this section. Matlab™ 2022b, as well as the 
Statistics and Machine Learning Toolbox of Matlab™ 2022b [44] and 
the Deep Learning Toolbox of Matlab™ 2022b [45], will be used in this 
study. More specifically, the Statistics and Machine Learning Toolbox is 
used to implement various supervised classification algorithms, such as 
Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Naive 
Bayes (NB), Discriminant Analysis Classifier (DAC), Classification De
cision Tree (CDT), and Random Forest (RF), and the Deep Learning 
Toolbox is employed for developing and training artificial neural net
works (ANNs). Matlab™ 2022b itself serves as the platform to integrate 
these tools.

3.1. Selection of measurement points in the circuit

To determine the soft faults that appear in the circuit, a second-order 
band-pass filter will be selected as the circuit under test (CUT), in which 
fault determination is challenging due to the existence of common 
characteristics in the input variables used for fault classification. In 
order to obtain data on variables that allow the classification of soft 
faults, that is, deviations in circuit components that cause performance 
degradation without resulting in a complete failure, a Monte Carlo 
analysis will be used, taking into account the tolerances of the circuit 
components as well as situations in which these components deviate 
from their nominal value. As previously mentioned, a Sallen-Key band- 
pass filter will be used as the CUT, whose electrical schematic is shown 
in Fig. 1. By measuring at only two points in the circuit, at different 
frequencies, it is possible to obtain a dataset that will be used to deter
mine the possible soft faults that may appear in the circuit. In the circuit 
shown in Fig. 1, commercial components with 5 % tolerances have been 
used, which will result in significant variations in the circuit, making 
fault determination difficult, as output responses may exhibit common 
characteristics due to circuit tolerance variations. This occurs because 
the circuit is sensitive to component tolerances, and therefore, both the 
quality factor and the frequency response of the circuit will vary. For 
example, the center frequency will change as it directly depends on the 
filter parameters. The dataset used for soft fault detection in this type of 
circuit has been selected from the two measurement points (OUT and 
M1) shown in Fig. 1, obtaining voltage measurements at the center 
frequency of the filter and at frequencies located at ±3 dB from the 
nominal frequency of the filter. Therefore, the proposed method consists 
of six predictors, represented by voltage measurements. These mea
surements act as inputs to the model and provide information that will 
be used to characterize the system state (nominal operation or some type 
of fault). The output corresponds to 15 different classes that describe the 
characteristics of possible faults in the circuit, that is, the nominal value 
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and fourteen soft faults associated with variations in specific compo
nents. Based on this, it will be possible to train the supervised learning 
methods employed in this study: KNN, NB, DAC, CDT, RF, SVM, and 
ANN, so they can be applied to accurately detect anomalies in circuits. 
The capability of each of these models to detect the possible faults 
considered in this study will be demonstrated.

Table 1 shows the variation ranges of the circuit components in 
relation to their nominal values, that is, the variation ranges related to 
soft faults. To obtain the Monte Carlo values, it is assumed that the 
components vary, each within the ranges shown in Table 1, following a 
uniform distribution law, where the class names will be {’Nominal’, 
’C1low’, ’C1high’, ’C2low’, ’C2high’, ’R1low’, ’R1high’, ’R2low’, ’R2high’, 
’R3low’, ’R3high’, ’R4low’, ’R4high’, ’R5low’, ’R5high’}. As can be observed, 
deviations below the allowed values for the nominal values (low) and 
above them (high) are considered.

Based on the values shown in Table 1, a Monte Carlo analysis using 
Cadence® OrCAD® is carried out in which the nominal value of the 
circuit shown in Fig. 1 is replaced with the value corresponding to the 
soft fault to be analyzed. Once the features of the circuit have been 
extracted, MATLAB™ 2022b is used to develop supervised classification 
models to predict future fault situations as well as nominal values. Fig. 2
jointly represents the circuit responses corresponding to the frequency 
response of the Sallen-Key circuit at the selected points OUT and M1, 
using nominal values and those corresponding to each of the soft faults, 
when these situations are analyzed at the central value of the fault, i.e., 
without carrying out the Monte Carlo analysis. As can be observed in 
Figure 2, fifteen curves are represented for both OUT and M1, each 
corresponding to the nominal value of the circuit and to each of the soft 
faults. Likewise, the points where features will be extracted from the 

CUT are graphically indicated. In this study, these have been reduced to 
two measurement points at three different frequencies each, which are 
represented with dashed lines in the figure. As previously mentioned, 
these frequency values correspond to the nominal frequency and the 
frequencies located at ±3 dB from the nominal frequency. Only the 
value corresponding to the central value of these components is shown, 
not the Monte Carlo results, which are depicted in Fig. 3. From this 
figure, it can be observed the complexity of determining which type of 
fault corresponds to each output, based on the extracted features, as the 
values are very close to each other. For this reason, the determination of 
soft faults in analog circuits is a highly complex issue that has not yet 
been fully resolved.

Fig. 3 shows the results obtained from the Monte Carlo analysis for 
the nominal case of the circuit, as well as for soft faults observed at the 
output (VOUT) and at point M1 (VM1), specifically for the nominal con
dition and the C1low fault scenario. According to the procedure 
described above, the voltage values at each of the three selected fre
quencies are extracted from these graphs. A similar procedure was fol
lowed for the remaining soft fault cases.

Fig. 4 shows the distribution of the different classes as a function of 
the three selected variables: VOUT, VM1, y VOUT-3dB, which were chosen 
because they exhibited the highest correlation (VOUT and VM1) with the 
selected classes (soft faults) and the highest variance (VOUT y VOUT-3dB) 
in the dataset. As can be observed, regarding C1high and C2high, these 
classes have high values in VOUT, which clearly separates them from the 
other categories. Regarding C2low and C1low, they are well clustered 
with lower values of VOUT and VOUT-3dB, making them easily distin
guishable. On the other hand, with three variables, some classes remain 
partially separated, such as the Nominal class, which, although located 
in an intermediate region, is not perfectly separated, as it is relatively 
close to classes such as R1high and R2low. This could introduce some 
confusion in the classification models. R1low and R1high are close to 
each other but show some separation due to VOUT. However, the overlap 
in VM1 could hinder precise classification.

Likewise, some classes with greater overlap can be observed such as 
R4low and R5low, which exhibit significant dispersion in VOUT-3dB y 
VM1. This suggests that the selected variables are not sufficient to 
completely differentiate them. R3low and R2high also show significant 
proximity, especially in VOUT, which could complicate their separation. 

Fig. 1. Electrical diagram of the Sallen-Key band-pass filter employed as the CUT for determining soft faults.

Table 1 
Variation ranges of the circuit components for soft fault analysis.

C1↓ [3.06 − 3.35] (nF) R2↑ [2.96 − 3.20] (kΩ)
C1↑ [5.88 − 6.35] (nF) R3↓ [1.54 − 1.69] (kΩ)
C2↓ [3.06 − 3.35] (nF) R3↑ [2.96 − 3.20] (kΩ)
C2↑ [5.88 − 6.35] (nF) R4↓ [1.11 − 1.21] (kΩ)
R1↓ [1.54 − 1.69] (kΩ) R4↑ [2.13 − 2.30] (kΩ)
R1↑ [2.96 − 3.20] (kΩ) R5↓ [0.91 − 1.00] (kΩ)
R2↓ [1.54 − 1.69] (kΩ) R5↑ [1.75 − 1.89] (kΩ)

M.I. Dieste-Velasco                                                                                                                                                                                                                             Integration 104 (2025) 102482 

4 



In light of the above, it is evident that fault prediction in this type of 
circuit is challenging. Based on the above, the effectiveness of the 
classification models used in the benchmarking conducted in this study 
will be analyzed, employing six variables, which, as previously 
mentioned, correspond to measurements at two points in the circuit 
(VOUT and VM1) and at three different frequencies (central and ±3 dB). 
This will demonstrate that some of the analyzed models can achieve a 
high degree of discrimination between the different soft faults and the 

nominal behavior of the circuit.

3.2. Dataset structure and distribution

In the case of ANNs, the dataset will be divided into three main sets: 
70 % for training, to adjust the network’s weights and biases by mini
mizing the loss function during training, 15 % for validation, to monitor 
the model’s performance during training and prevent overfitting, and 

Fig. 2. Frequency response of the Sallen-Key circuit at OUT and M1 for soft faults and nominal behavior.

Fig. 3. Monte Carlo analysis results for the nominal case and the C1low fault, showing voltage responses at VOUT and VM1.
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15 % for testing, to evaluate the model’s performance on independent 
test data. Since other supervised classification techniques will also be 
used, cross-validation will be applied to these classification techniques 
so that the comparison of the obtained results is conducted on a similar 
dataset. Specifically, cross-validation divides the dataset into k subsets 
(folds) for training and validation over multiple iterations. That is, given 
a dataset T = {(x, y)} it is divided into k disjoint subsets such that T =
⋃k

j=1 Tj, where Tj
⋂

Tj́ = ∅for j ∕= j́ , and each subset contains approxi
mately the same number of data points (N /k), where N is the total 
number of data points. In each iteration, one subset Tj will be used as the 
validation set, while the remaining (k − 1) subsets will be used for 
training. Since the division used to train the ANN follows the previously 
mentioned method, the number of k-folds will be set to 7. Thus, 85 % of 
the data initially used in the neural network for training and validation 
will be distributed among the other supervised methods as 85.7 % for 
training and 14.3 % for cross-validation in each iteration.

In order to analyze the ability of the different classifiers to discrim
inate both the nominal class and the faults, confusion matrices will be 
used. The confusion matrix is row-normalized, allowing the percentages 
to be interpreted in terms of the proportion of correctly and incorrectly 
classified instances for each class. Each row corresponds to an actual 
class (True Class), and each column represents the predicted class 
(Predicted Class). The diagonal values indicate the number (or per
centage) of correctly classified instances, while the off-diagonal values 
represent misclassifications. The metrics employed in the confusion 
matrix are shown in Equations (1)–(4). For a more detailed description 
of these metrics, see Larner [46].

Equation (1) shows the TPR (True Positive Rate), also known as 
sensitivity or recall. It measures the proportion of true positives (TP) 
among all actual positive instances (TP + FN), where FN are false neg
atives. This metric is useful for evaluating how well the model detects 
positive cases. A high TPR indicates that the model is highly sensitive to 
actual positives. 

TPR=
TP

TP + FN
(1) 

Equation (2) shows the FNR (False Negative Rate). It measures the 
proportion of false negatives (FN) among all actual positive instances 
(TP + FN). It indicates the error rate where the model incorrectly clas
sifies positive cases as negative. A low FNR is desirable to avoid false 
negatives. 

FNR=
FN

TP + FN
(2) 

Equation (3) shows the PPV (Positive Predictive Value). Also known 
as precision. It measures the proportion of true positives (TP) among all 
positive predictions (TP + FP), where FP are false positives. It evaluates 
how reliable the model is when classifying an instance as positive. A PPV 
close to 1 indicates that most positive predictions are correct. 

PPV =
TP

TP + FP
(3) 

Equation (4) Shows the FDR (False Discovery Rate). It measures the 
proportion of false positives (FP) among all positive predictions (TP +
FP). It reflects the error rate when predicting positives that are actually 
not, where an FDR close to zero is desirable. 

FDR=
FP

TP + FP
(4) 

4. Results

This section presents the main findings of the study, analyzing how 
they relate to the stated objectives. Additionally, a benchmarking 
analysis is conducted among the different alternatives, examining their 
limitations as well as their relevance for the detection of soft faults in 
analog circuits.

4.1. Classification using k-nearest neighbors (KNN)

The algorithm for this method is shown in Table 2. It is a supervised 
technique that classifies new observations based on their proximity to 
previously labeled points in the feature space. To apply this method, the 
“fitcknn” function from MATLAB™ 2022b [44] will be used, which al
lows training a KNN model by fitting it to a training dataset composed of 
predictor features and class labels. This model utilizes distance metrics 
such as Euclidean, Manhattan, or Mahalanobis, among others, to iden
tify the k-nearest neighbors for each new observation [47,48]. One of 
the drawbacks of this method is that it requires storing all the training 
data, which can result in a high computational cost.

In the KNN method, the training set 
(
xi, yi

)
for i = 1..n where xi 

represents the features and yi corresponds to the class labels (C1..Cn), is 
stored as is, without performing an explicit learning process. To classify 
a new sample xnew, the algorithm computes the distance between xnew 
and each sample in the training set using a specific metric (such as 
Euclidean, Manhattan, or cosine). Then, the k-nearest neighbors are 
selected, meaning the k samples with the smallest distances. Finally, 
xnew is assigned to the class with the highest frequency among the k 
selected neighbors (majority voting). Some of the distances used in this 
method include Euclidean distance (5), Manhattan distance (6), Min
kowski distance (7) (where p = 1 corresponds to Manhattan and p = 2 
corresponds to Euclidean) and Mahalanobis distance (8), where S is the 
covariance matrix, among others. A detailed description of these metrics 
can be found in [47,48]. 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1

(
xik − xjk

)2

√

(5) 

d
(
xi, xj

)
=
∑n

k=1

⃒
⃒xik − xjk

⃒
⃒ (6) 

d
(
xi, xj

)
=

(
∑n

k=1

⃒
⃒xik − xjk

⃒
⃒p
)1
/

p
(7) 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xi − xj

)tS− 1
(
xi − xj

)√

(8) 

As was previously mentioned, the KNN model was optimized using 
the “fitcknn” function in MATLAB™, configuring the option ’Opti
mizeHyperparameters’, ’auto’ to automatically adjust the most relevant 

Fig. 4. Separation of nominal and soft faults values vs. the three most influ
ential variables.
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hyperparameters: the number of neighbors (k) and the distance metric. 
Additionally, 7-fold cross-validation was used, as previously mentioned, 
to ensure the robustness of the results and reduce variance. The obtained 
results highlighted the Mahalanobis metric with 25 neighbors as the 
most effective configuration for this dataset, achieving a minimum 
average error of 0.023284. The confusion matrices shown in Figs. 5 and 
6 represent the performance of a k-Nearest Neighbors model on the 
training and test data, respectively, configured with 25 neighbors and 
using the Mahalanobis distance as the metric. It can be observed that 
most classes have a 100 % correct classification rate, as seen in the first 
rows and columns. This indicates that the model performs well for these 
classes, correctly assigning all instances. However, for the R4high, 
R4low, R5high, and R5low classes, there is a higher number of errors, 
reflected in the values outside the diagonal. This could indicate that 
these two classes share similar characteristics, making their differenti
ation more challenging with the current model.

Regarding the most challenging classes, the model demonstrated 
lower accuracy. For example, as shown in Fig. 5, for the R4high class, the 
model correctly identifies 92.6 % of the instances (TPR) and has a pre
cision of 87.7 % (PPV). The false negative rate, where instances are 
misclassified as R5low, is 7.4 % (FNR), and the false discovery rate is 
12.3 % (FDR). Similarly, for R4low class, the model correctly identifies 
90.6 % of the instances (TPR) and has a precision of 92.3 % (PPV). The 
false negative rate, where instances are incorrectly classified as R5high, 
is 9.4 % (FNR), while the false discovery rate, where they are also 
classified as R5high, remains at 7.7 % (FDR). Regarding the test set, the 
confusion matrix in Fig. 6 follows a trend similar to that of the training 
set, shown in Fig. 5, where it can be observed that, for the most prob
lematic classes, TPR and PPV percentages decrease, demonstrating 
lower performance.

As observed in Fig. 5, the R4high and R5low classes are misclassified 
when detecting soft faults, and the same occurs with the R4low and 
R5high classes. Regarding the test set, Fig. 6 reveals a TPR of 100.0 % for 
the R5high class, indicating that the model correctly identified all in
stances. Nevertheless, precision decreases to 78.6 % (PPV), suggesting 
an increase in the proportion of false positives. Additionally, the false 
discovery rate (FDR) increases to 21.4 %, indicating less consistent 
performance in terms of precision outside the training set. However, 

since the rest of the fault classes, as well as the nominal values, were 
correctly identified, it could be stated that the KNN model performs well 
across all classes, except for the mentioned cases. Moreover, overall, the 
TPR and PPV rates remain high.

4.2. Analysis of results for Naïve Bayes (NB)

The Naïve Bayes (NB) algorithm, whose procedure is shown in 
Table 3, is a probabilistic model based on Bayes’ theorem (9). 

P(C /X)=
P(X/C)P(C)

P(X)
(9) 

Where P(C /X) is the probability that X belongs to class C (nominal value 
or soft faults), P(X /C) is the conditional probability indicating how 
likely it is to observe feature X given that it belongs to class C, and P(C) is 
the probability of class C, based solely on the frequency of that class in 
the data. P(X) represents the total probability of observing X, regardless 
of the class. That is, it is the sum P(X) =

∑
CP(X /C)P(C) for all possible 

classes. For a more detailed description of the method, see Refs. [47,48].
The objective of the algorithm is to determine the class C that 

maximizes P(C /X), that is, the probability that an observation X belongs 
to a specific fault class. In this case, the Naïve Bayes algorithm assumes 
conditional independence between features, which implies that each 
feature contributes independently to the probability of the class.

In this study, the Naïve Bayes model was optimized to classify a 
dataset using the same training data. Through a Bayesian optimization 
process, Gaussian (normal) distributions and kernel-based distributions 
were explored using the “fitcnb” function in MATLAB™ 2022b [44]. The 
final model selected normal distributions for all features, achieving a 
minimum cross-validation loss of 0.1380. As shown in the confusion 
matrices in Figs. 7 and 8, obtained with this method, the model is unable 
to accurately predict either the soft faults or nominal values.

Figs. 7 and 8 show the confusion matrices of the Gaussian Naïve 
Bayes model for the training and test sets, respectively. As observed, in 
both the training and test sets, the model demonstrates poor overall 
performance compared to KNN, making it unsuitable for detecting soft 
faults in this type of analog electronic circuit.

Table 2 
Summary of the KNN algorithm.

1 Compute the distances between xnew and all observations in the training set.
2 Identify the k nearest neighbors.
3 Assign weights (if necessary) based on distance.
4 Classify xnew according to the labels of the neighbors, using the weighted sum of votes.

Fig. 5. Confusion matrix for the training data (selected KNN).
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4.3. Analysis of results for Discriminant Analysis Classifier (DAC)

The discriminant analysis method implemented in the “fitcdiscr” 
function of Matlab™2022b [44] is an implementation of Linear 
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis 
(QDA), specifically designed for classification problems as shown by 
Table 4. This method is based on finding a linear or quadratic combi
nation of the predictor variables (features) that maximizes the separa
tion between the target classes [47,48].

Fig. 9 shows the confusion matrix of the Discriminant Analysis 
Classifier (DAC) in the training set. Overall, the model demonstrates 
good performance, with correct predictions for most classes. The per
formance of the DAC model is similar to that of KNN, with R4high, 
R4low, R5high, and R5low being the most challenging classes to iden
tify. However, in the case of DAC, one instance belonging to the nominal 
class is misclassified as R2high, resulting in slightly lower performance 

in this case.
Fig. 10 presents the confusion matrix of DAC in the test set. Classes 

such as C1low, Nominal, and R1high maintain excellent performance, 
with a TPR of 100 %, indicating that all actual instances of these classes 
were correctly classified. However, other classes, such as R4low, 
R4high, R5low, and R5high, exhibit lower TPR values compared to the 
training set.

In summary, the Discriminant Analysis Classifier model shows good 
overall performance, particularly in the training set, where it achieves 
high correct prediction rates for most classes. However, in the test set, 
some classes, such as R4low, R4high, R5low, and R5high, exhibit 
generalization issues similar to those observed in KNN. Despite mis
classifying one instance from the nominal class as R2high, no fault in
stances were incorrectly classified as nominal using this method, which, 
if it had occurred, would have been more problematic.

4.4. Classification Decision Tree (CDT)

In this case, a decision tree-based classification model is trained 
using the “fitctree” function in Matlab™2022b [44] as shown in Table 5, 
automatically optimizing the most relevant model hyperparameters 
through Bayesian optimization. The predictive data (x) and class labels 
(y) serve as inputs to train the tree, and the hyperparameter search 
adjusts the minimum leaf size.

Fig. 6. Confusion matrix for the test data (selected KNN).

Table 3 
Summary of the Naïve Bayes (NB) algorithm.

1 Training: Compute the probability of each class P(C).
2 Compute P(xi /C), assuming independence.
3 For an observation X = {x1…x6}, compute P(C /X).
4 Assign the class with the highest probability P(C /X).

Fig. 7. Confusion matrix for the training data (Gaussian Naïve Bayes).
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As observed in the confusion matrices in Figs. 11 and 12, for training 
data and test data, respectively, the decision tree exhibits irregular 
performance in both the training and test sets. Additionally, the model 
incorrectly predicts fault values as belonging to the nominal class, which 
is more problematic. Specifically, one instance of C2high, two of R2high, 
and one of R5high are incorrectly predicted as nominal. In the test set, 
shown in Fig. 12, the classification accuracy for different classes im
proves compared to the training set, but one instance of R2high is still 
misclassified as nominal.

4.5. Random forest

Random Forest is a supervised algorithm that combines decision 
trees trained with random data and variables, improving accuracy and 
reducing overfitting [47]. In this study, a classification model based on 

an ensemble of decision trees is trained using the Bagging (Bootstrap 
Aggregating) method with the “fitcensemble” function in Matlab™ 2022b 
[44]. The model training is automatically optimized through hyper
parameter tuning, using a Bayesian optimization process. The hyper
parameter search employs an acquisition function called 
“expected-improvement-plus”. Additionally, the model evaluation during 
the optimization process is conducted through cross-validation, 
ensuring that the performance metrics are representative and not 
biased by a specific training dataset.

The graph depicted in Fig. 13 confirms that the optimization suc
cessfully identified an efficient model in terms of the objective function 
(minimum around 0.080882). Additionally, the convergence of the 
observed and estimated values supports the quality of the Bayesian 
optimization model.

As observed in Fig. 14, the Random Forest model provides significant 

Fig. 8. Confusion matrix for the test data (Gaussian Naïve Bayes).

Table 4 
Summary of the DAC algorithm using the “fitcdiscr” function of Matlab™2022b [44].

1. Specify the number of k-folds and max iterations.
2. Select automatic hyperparameter optimization.
3. Use Bayesian optimization to find the best model configuration.
4. The “fitcdiscr” function tests different hyperparameter combinations and trains a discriminant analysis model.

Fig. 9. Confusion matrix for the training data (Discriminant Analysis Classifier).
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improvements over the KNN and CDT classifiers in terms of performance 
on test data. However, it has the drawback of misclassifying a C2high 
instance as nominal, which could be problematic. Regarding the values 
used for testing, the classification matrix in Fig. 15 shows that the 
model’s performance deteriorates, compared to the training data, in the 
R4high, R4low, R5high, and R5low classes. However, for the remaining 
classes, the TPR reaches 100 % true positive rate.

4.6. Support Vector Machines (SVM)

Another machine learning technique used in this study is Support 
Vector Machines. Specifically, in this study, the “fitcecoc” function in 
Matlab™2022b [44] was used, which trains a multiclass classifier using 
Error-Correcting Output Codes, decomposing the problem into multiple 
binary subproblems solved with Support Vector Machines (SVM). A 

linear kernel is used to separate the classes in the original feature space. 
The model automatically optimizes its hyperparameters through 
cross-validation and Bayesian optimization. As is well known, the su
pervised learning method called Support Vector Machines (SVM) finds 
an optimal hyperplane to separate classes in a feature space. To achieve 
this, it utilizes support vectors and can employ kernel functions [48].

Fig. 16 presents the results obtained, which shows the evolution of 
the objective function with the number of iterations. It can be observed 
that it rapidly decreases until reaching 9–10 iterations, after which it 
stabilizes once the optimum of 0.02384 is achieved.

The SVM model shows good performance in both the training and 
test data. In the training data, shown in Fig. 17, the TPR (True Positive 
Rate) is close to 100 % for most classes. However, there are slight de
creases in classes such as R4high, R4low, R5high, and R5low, where the 
TPR ranges between 92.5 % and 98.1 %. Fig. 18 presents the confusion 

Fig. 10. Confusion matrix for the test data (Discriminant Analysis Classifier).

Table 5 
Summary of the CDT Algorithm the “fitctree” function in Matlab™2022b [44].

1.Specify the number of k-folds and the maximum number of objective function evaluations.
2.Enable automatic hyperparameter optimization (’OptimizeHyperparameters’, ’auto’).
3.Apply Bayesian optimization, using the “expected-improvement-plus” acquisition function, to find the best model configuration.
4.The “fitctree” function tests different hyperparameter combinations (such as tree depth and splitting criterion) and adjusts a decision tree classification model according.

Fig. 11. Confusion matrix for the training data (Classification Decision Tree).
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matrix for the test data, where SVM maintains good performance, with a 
TPR of 100 % for most classes. Although its performance decreases 
slightly compared to the training data in the R4low, R5high, and R5low 
classes, where the TPR reaches 81.8 %, 90.9 %, and 88.9 %, respectively, 
this confirms that these classes remain challenging to detect, consistent 
with the findings in the other analyzed models.

4.7. Artificial neural network

Finally, a Patternet-type neural network [45] is employed, as shown 
in Fig. 19, where X is the input vector (6 × 1), Whidden (8x6) is the weight 
matrix of the hidden layer, connecting the six inputs to the 8 hidden 
neurons, bhidden (8x1) is the bias vector of the hidden layer, introducing 
an additional offset to the linear combinations of the inputs, zhidden (8x1) 
is the weighted input vector (pre-activations) for the hidden layer, ahidden 
(8x1) is the hidden layer output after applying the activation function 
and fhidden is the activation function used, which is sigmoidal. Addi
tionally, Woutput (15x8) is the weight matrix of the output layer, con
necting the 8 hidden neurons to the 15 output neurons, boutput is the bias 
vector of the output layer, zoutput (15x1) is the weighted input vector 
(pre-activations) for the output layer, foutput is the activation function of 
the output layer, which is of type softmax, zi represents the 
pre-activation of the i − th output neuron and aoutput (15x1) is the final 
output of the network.

Fig. 12. Confusion matrix for the test data (Classification Decision Tree).

Fig. 13. (a) evolution of the objective function using RF

Fig. 14. Confusion matrix for the training data (Random Forest).
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As observed in Fig. 19, a sigmoidal transfer function is applied in the 
hidden layer. The network employs a feedforward propagation approach 
to compute the outputs. As mentioned in the methodology section, the 
process begins with the random division of data (dividerand) into 
training, validation, and test sets, preventing bias in the model. These 
same datasets were used in the previously analyzed classifiers. Training 
is performed using the scaled conjugate gradient algorithm, imple
mented through the Matlab™ function (trainscg), which optimizes the 
weights iteratively without requiring the computation of the Hessian 
matrix. Additionally, the selected loss function is cross-entropy, which 
measures the discrepancy between the probabilities predicted by the 
model and the actual classes.

Fig. 20(a) shows the evolution of cross-entropy during the training, 
validation, and testing of the neural network, highlighting the best 
performance in validation. On the other hand, Fig. 20(b) presents an 
error histogram, displaying the distribution of differences between the 
network’s predictions and the actual labels in the training, validation, 
and test sets. Most errors are concentrated near zero, indicating a good 
overall fit of the model.

As can be observed in Fig. 21, the confusion matrix for the ANN 
presents an almost perfect performance with the training data, with TPR 
(True Positive Rate) values close to 100 % for most classes. This in
dicates that the neural network has learned to classify the training data 
correctly with very few errors. However, there are some exceptions, 

Fig. 15. Confusion matrix for the test data (Random Forest).

Fig. 16. Evolution of the objective function.

Fig. 17. Confusion matrix for SVM (training data).
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such as the R4low, R5high, and R5low classes, where the TPR slightly 
decreases to 96.2 %, 96.4 %, and 94.3 %, respectively. Nevertheless, 
these values are lower than those obtained previously with the other 
classifiers analyzed in this study. On the other hand, in the confusion 

matrix obtained with the test data, which is shown in Fig. 22, it can be 
observed that the results follow a similar trend to those of the training 
set, correctly classifying most classes.

In summary, the ANN is highly effective for this classification 
problem, with very few discrepancies between predictions and actual 
labels, even in more complex classes, showing superior performance 
compared to the other classifiers analyzed in this section, as will be 
demonstrated in the following section.

5. Discussion of results

To compare the models as a whole, the metrics shown in Equations 
(10)–(15) are used. The global accuracy of each classifier is given by 
Equation (10), which represents the percentage of correct predictions 
made by the model out of the total instances evaluated, being N the 
number of data points. 

Global accuracyClassifier =
Number of correct predictionsClassifier

N
(10) 

Global precision, given by Equation (11), is the average precision of 
each class. 

Fig. 18. Confusion matrix for SVM (test data).

Fig. 19. Neural network employed and equations.

Fig. 20. Neural network employed: (a) Evolution of cross-entropy during the training, validation, and testing of the neural network and (b) Error histogram.
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Global precisionClassifier =

∑Num. class

i=1
Precisioni

N
(11) 

Global recall, given by Equation (12), is the average recall of each 
class. 

Global recallClassifier =

∑Num. class

i=1
Recalli

N
(12) 

F1 − score represents the harmonic mean between precision and recall 
for each class and is evaluated from Equation (13). 

F1 − score = 2*
Precision*Recall

Precision + Recall
(13) 

And the Global F1 − score is given by Equation (14), which is evaluated 
for each classifier. 

Global F1 − scoreClassifier =

∑Num. class

i=1
F1 − scorei

N
(14) 

Finally, Equation (15) shows the Matthews Correlation Coefficient 
(MCC) [49], which is a metric used in classification problems to measure 

the quality of a model, considering all elements of the confusion matrix. 
Its value ranges between − 1 and + 1, where +1 indicates perfect clas
sification, 0 represents random performance, and − 1 means completely 
incorrect classification [50–52]. 

MCC=
TP*TN − FP*FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (15) 

Tables 6 and 7 show the global results obtained with the machine 
learning techniques analyzed for the training and test data, respectively.

As shown in Table 6, with the training data, Random Forest (RF) is 
the best-performing classifier across all metrics, achieving 99.39 % in 
accuracy, precision, and F1-score, 99.38 % in recall, and an MCC of 
99.34 %. This indicates that RF has an almost perfect predictive capa
bility on the training data. Similarly, although the Artificial Neural 
Network (ANN) performs at a very high level, it is slightly below RF. On 
the other hand, Support Vector Machine (SVM) ranks third. However, its 
performance is slightly lower than that of ANN, but it remains a suitable 
model for fault classification. Likewise, the Discriminant Analysis Clas
sifier (DAC) also demonstrates good performance. Meanwhile, the 
Classification Decision Tree (CDT) exhibits a decline in performance, 
making it less effective compared to the previously mentioned models. 
Finally, Naïve Bayes (NB) is the worst-performing classifier across all 
metrics, obtaining 87.13 % accuracy, 86.98 % precision, 86.92 % recall, 

Fig. 21. Confusion matrix for the training data (ANN).

Fig. 22. Confusion matrix for the test data (ANN).
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86.90 % F1-score, and an MCC of 86.22 %. This demonstrates that NB is 
the least efficient model in this comparison, likely due to the assumption 
of independence among features, which may not hold in this dataset.

Although in advance it seems that RF is the best technique for fault 
detection in the CUT, when validating its performance on the test data, a 
significant decrease is observed. Specifically, as shown in Table 7, the 
Artificial Neural Network (ANN) is the best-performing classifier on the 
test data, achieving 97.92 % accuracy, 98.18 % precision, 98.05 % 
recall, 98.08 % F1-score, and an MCC of 97.76 %. This indicates that 
ANN maintains a high level of performance and generalization, with 
only a slight reduction compared to the training data. The Support 
Vector Machine (SVM) ranks second in performance. Its performance is 
very close to that of ANN, demonstrating a strong classification capa
bility on the test data. On the other hand, k-Nearest Neighbors (KNN) 
also demonstrates good performance. The Discriminant Analysis Clas
sifier (DAC) shows a performance similar to that of KNN, although with 
a slight decrease compared to the training data. However, contrary to 
what was observed with the training data, Random Forest (RF) achieved 
lower performance on the test data compared to its training perfor
mance, with 93.06 % accuracy, 93.70 % precision, 93.68 % recall, 93.64 
% F1-score, and an MCC of 92.52 %. This drop in performance suggests 
the possibility of some overfitting in the model. Similarly, the Classifi
cation Decision Tree (CDT) exhibits lower performance compared to the 
other models. Finally, Naïve Bayes (NB) is the lowest-performing clas
sifier. Its lower recall value indicates that it struggles to detect certain 
classes, which may be likely caused by the limitations of its indepen
dence assumption among features.

Therefore, based on the data obtained in Tables 6 and 7 and it is 
observed that Artificial Neural Network (ANN) and Support Vector 
Machine (SVM) are the best-performing models overall. ANN achieves 
the highest values across all metrics on the test data (97.92 % accuracy 
and an MCC of 97.76 %), with a slight reduction compared to training, 
suggesting good generalization capability. SVM closely follows with 
97.22 % accuracy and an MCC of 97.01 %, also demonstrating high 
performance on both datasets. At a second performance level, k-Nearest 
Neighbors (KNN) and Discriminant Analysis Classifier (DAC) exhibit 
similar values in both the training and test datasets. KNN drops from 
97.55 % accuracy in training to 95.83 % in testing, with its MCC 
decreasing from 97.38 % to 95.56 %, while DAC shows a decline from 
97.79 % to 95.14 % in accuracy and from 97.64 % to 94.78 % in MCC.

Random Forest (RF) shows irregular behavior: although it achieves 
the best performance in training (99.39 % across all metrics), its per
formance drops significantly in testing (93.06 % accuracy and an MCC of 

92.52 %). This indicates possible overfitting, as its test performance is 
not competitive compared to models like ANN and SVM. At the lower 
performance levels, Classification Decision Tree (CDT) and Naïve Bayes 
(NB) are found. CDT drops in accuracy from 96.08 % in training to 
88.89 % in testing, with an MCC of 88.04 %, indicating a clear perfor
mance loss on unseen data. Meanwhile, Naïve Bayes (NB) is consistently 
the worst classifier, with an accuracy of 87.13 % in training and 86.11 % 
in testing, and the lowest MCC in both phases (86.22 % in training and 
85.05 % in testing), confirming its lower predictive capacity in this 
context. In conclusion, ANN and SVM are the most reliable and best- 
performing models overall, followed by KNN and DAC, which exhibit 
competitive performance. Random Forest, despite its high training 
performance, shows signs of overfitting, while CDT and NB are the least 
effective classifiers in this dataset.

On the other hand, Figs. 23 and 24 graphically present the results 
obtained in Tables 6 and 7, for the training and test data, respectively. As 
observed in Fig. 23, the RF method achieves the best results with the 
training data. However, its performance decreases more significantly 
with the test data, as shown in Fig. 24.

Therefore, it is evident that ANN is superior to the other classification 
models used, as it achieves a better balance between training and test 
data than the rest. Additionally, as shown in the results section, RF, 
although it achieved better performance in the training data, had the 
drawback of misclassifying a C2high instance as nominal, which could 
be problematic. Likewise, SVM, while producing slightly lower results 
than ANN, is a solid alternative for predicting soft faults in analog cir
cuits. On the other hand, KNN is another method capable of effectively 
distinguishing the nominal class from the faulty classes, although its 
accuracy rates in the other classes are lower.

Fig. 25 shows that incorporating the three most influential variables, 
selected from those with the highest variance and correlation, improves 
class separation. However, it is necessary to increase the number of in
dependent variables in the classifiers to achieve better class separation. 
The figure also shows that SVM and RF define the class separation 
boundaries more clearly.

Finally, Fig. 26 shows the classification performed with the ANN 
using the entire dataset. It can be observed that there is better class 
separation, which aligns with the data obtained in Tables 6 and 7 (for 
training and test, respectively). This suggests that the ANN is better able 
to model the complexity of these data, as can be seen from Fig. 26 and 
the previously obtained metrics.

6. Conclusions

In this study, various supervised classification techniques have been 
evaluated for the detection and classification of soft faults in analog 
circuits. A feature extraction method based on voltage measurements at 
key points in the circuit and at three different frequencies was used, 
allowing for the extraction of relevant information for fault diagnosis in 
the Sallen-Key band-pass filter, considered as the circuit under test in 
this study.

The results show that Artificial Neural Network (ANN) and Support 
Vector Machines (SVM) are the most effective classifiers for fault 
detection in the CUT, achieving 97.92 % and 97.22 % accuracy on the 
test data, with MCC values of 97.76 % and 97.01 %, respectively. ANN 
demonstrated better generalization, maintaining a minimal difference 
between its training and test performance. In contrast, Random Forest 
(RF) achieved the best performance in training (99.39 % accuracy, MCC 
of 99.34 %) but suffered a notable drop in testing (93.06 % accuracy, 
MCC of 92.52 %), also misclassifying faulty classes as nominal, which is 
more problematic.

Models such as KNN (95.83 % accuracy, MCC of 95.56 %) and 
Discriminant Analysis Classifier (DAC) (95.14 % accuracy, MCC of 
94.78 %) demonstrated solid performance, although inferior to ANN and 
SVM. At the opposite end, Classification Decision Tree (CDT) and Naïve 
Bayes (NB) were the worst-performing classifiers, with significant 

Table 6 
Performance comparison between classifiers (training data).

Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%)

KNN 97.55 97.54 97.53 97.52 97.38
NB 87.13 86.98 86.92 86.90 86.22
DAC 97.79 97.85 97.77 97.76 97.64
CDT 96.08 96.21 96.07 96.06 95.81
RF 99.39 99.39 99.38 99.39 99.34
SVM 98.90 98.89 98.88 98.88 98.82
ANN 99.14 99.14 99.13 99.13 99.08

Table 7 
Performance comparison between classifiers (test data).

Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%)

KNN 95.83 96.53 96.03 96.02 95.56
NB 86.11 86.32 84.81 85.26 85.05
DAC 95.14 95.68 95.43 95.43 94.78
CDT 88.89 89.57 88.68 88.88 88.04
RF 93.06 93.70 93.68 93.64 92.52
SVM 97.22 97.62 97.44 97.47 97.01
ANN 97.92 98.18 98.05 98.08 97.76
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reductions in their accuracy when evaluated on test data.
The analysis of decision regions revealed that Naïve Bayes and 

Discriminant Analysis exhibit high class overlap, making fault identifi
cation in the CUT more challenging. In contrast, Random Forest and 
SVM achieved more detailed and adaptive decision boundaries, 
although class separation remains limited when few variables are used. 
By incorporating the three most influential variables, a significant 

improvement in classification was observed, especially with SVM and 
RF. However, it was necessary to include six predictive variables, ob
tained from measurements at two circuit points at three different fre
quencies, to improve the separation between faulty and nominal classes.

Furthermore, the proposed feature extraction method has proven 
effective when combined with these classifiers for soft fault detection in 
the CUT. The ability of this approach to capture relevant information has 

Fig. 23. Performance Comparison of Prediction Methods with training data.

Fig. 24. Performance Comparison of Prediction Methods with test data.

Fig. 25. Comparison of class separation across different classifiers when incorporating the three most influential variables.
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been key to the models’ performance, highlighting its usefulness in 
electronic circuit diagnostics.

Future research will focus on extending the proposed methodology to 
other analog circuit topologies, as well as on its application to the 
identification of multiple faults and incipient faults in analog electronic 
circuits, and on experimental validation.
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