

i

LINE

FOLLOWER

ROBOT

AHMAD FARIZ BIN FAUZI

Ts. Hj. MOHD NORDIN BIN MOHD JANI

SAIFFUL BAHARI BIN OMAR

ii

LINE FOLLOWER ROBOT

e-book

Ahmad Fariz bin Fauzi

Ts. Hj. Mohd Nordin bin Mohd Jani

Saifful Bahari bin Omar

POLITEKNIK MELAKA

2023

iii

LINE FOLLOWER ROBOT
WRITER
Ahmad Fariz Bin Fauzi (K)
Ts. Hj. Mohd Nordin Bin Mohd Jani
Saifful Bahari Bin Omar

EDITOR
Dr. Rosnani Binti Affandi (K)
Pn. Hairani Binti Ahmad Zainuldin
Tuan Syed Alwi Al-Qudri (InoMa)

DESIGNER
Ahmad Fariz Bin Fauzi

APPLICATION PUBLISHER AND DEVELOPER
Ahmad Fariz Bin Fauzi
Ts. Hj. Mohd Nordin Bin Mohd Jani

TERBITAN EDISI 2023
Perpustakaan Negara Malaysia Cataloguing-in-Publication Data
e-ISBN 978-967-0838-95-3
All rights reserved. This publication is protected by Copyright and permission should be
obtained from the Jabatan Pendidikan Politeknik dan Kolej Komuniti, Kementerian Pengajian
Tinggi before any prohibited reproduction, storage in a retrieval system or transmission in any
form or by any means, electronic mechanical, photocopying, recording or otherwise.

Published by:
Politeknik Melaka,
Kementerian Pengajian Tinggi,
No.2 Jln Ppm 10,
Plaza Pandan Malim
75250 Melaka
https://www.polimelaka@edu.my
http://celt.edu.my/PAGE-EBOOK-POLYCC

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

A catalogue record for this book is available

from the National Library of Malaysia

eISBN 978-967-0838-95-3

iv

ACKNOWLEDGMENT

Praise Allah s.w.t for His permission, this e-book has been successfully produced.

Thanks also to our friends who are directly and indirectly involved in the preparation

of this e-book. Without the high commitment of all parties, especially the Department

of Electrical Engineering, the Malacca Polytechnic, this book cannot be realized as a

scientific reading material.

All materials used to produce this e-book are in the Malacca Polytechnic. If readers

want to produce robots and want to buy essentials they are all for sale in the store as

well as online.

Hopefully, this e-book, a little bit can help anyone who wants to start a robot project.

Ahmad Fariz Fauzi, Ts. Hj Mohd Nordin Mohd Jani & Saifful Bahari Omar

Department of Electrical Engineering

Politeknik Melaka

v

ABSTRACT

This Line Follower Robot e-book is a reading material that provides the best input to

readers in the quest to produce a robot using NANO's Arduino controller, MX1508

driver motor, and IR TCRT5000 3 array sensor. This book contains a breakdown of

chapters detailing each part needed in robot production and coding. Interestingly in

this book, all the coding produced is the basic code of the Arduino only and no library

is used. The main purpose of using basic coding is to facilitate readers' understanding

of how easy it is to create Arduino codes specifically to produce robot line followers. It

is undeniable that encoding using the PID control system produces more effective

robots, but readers must first understand the basics of analog and digital sensor

encoding and PWM encoding. This book contains a tutorial that applies all the

necessary coding basics without a PID controller.

vi

CONTENTS
ACKNOWLEDGMENT iv
ABSTRACT v
LIST OF FIGURES vii
LIST OF TABLES viii
WHAT IS LINE FOLLOWER ROBOT? 1

INTRODUCTION 1
COLOUR WAVELENGTH 4
BLACK AND WHITE LINE AND SURFACE 6

MICROCONTROLLER - ARDUINO NANO 7
INTRODUCTION 7
FEATURES 11

COMPONENT – MOTOR DRIVER (MX1508) 14
INTRODUCTION 14
FEATURES 18

COMPONENT – 3 ARRAY IR SENSOR (TCRT5000) 19
INTRODUCTION 19
FEATURES 21

COMPONENT – WHEEL & TIRE 22
INTRODUCTION 22

FEATURES 25
COMPONENT - DC GEARED MOTOR 26

INTRODUCTION 26
FEATURES 31

COMMISSIONING 32
HOW TO SET THE ROBOT 32
HOW TO WIRE THE ROBOT 33

ARDUINO IDE 34
INTRODUCTION 34
HOW TO INSTALL THE ARDUINO IDE 34

CODING – BASIC STRUCTURE 41
TUTORIAL: CODING – LINE FOLLOWER ROBOT 43

BASIC CODING WITHOUT PID & TCRT5000 READ AS DIGITAL SENSOR-Type1 43
BASIC CODING WITHOUT PID & TCRT5000 READ AS DIGITAL SENSOR-Type 2 49
BASIC CODING WITHOUT PID & TCRT5000 READ AS ANALOG SENSOR-Type 3 54
QUESTION 59

REFERENCES 61

vii

LIST OF FIGURES
FIGURE 1: LINE-FOLLOWER ROBOT 1
FIGURE 2A: LINE AND PATTERN (STRAIGHT) 2
FIGURE 2B: LINE AND PATTERN (JUNCTION) 2
FIGURE 2C: LINE AND PATTERN (ARC) 2
FIGURE 2D: LINE AND PATTERN (CURVED) 3
FIGURE 2E: LINE AND PATTERN (TRIANGLE) 3
FIGURE 2F: LINE AND PATTERN (CIRCLE) 3
FIGURE 2G: LINE AND PATTERN (RECTANGLE OR SQUARE) 4
FIGURE 2H: LINE AND PATTERN (ROUND CORNER RECTANGLE OR SQUARE) 4
FIGURE 3: BLACK AND WHITE LINE 6
FIGURE 4: WAVELENGTH OF BLACK AND WHITE LINE OR SURFACE 6
FIGURE 5: ARDUINO NANO V3.0 10
FIGURE 6: ARDUINO NANO V3.3 PINOUT 11
FIGURE 7: BUILD-IN SMD LED 12
FIGURE 8: MINI-B USB 12
FIGURE 9: MICRO-USB 13
FIGURE 10: TYPE-C 13
FIGURE 11: MICROCONTROLLER PORTS 13
FIGURE 12: MX1508 MOTOR DRIVER 14
FIGURE 13: SINGLE CHANNEL IR SENSOR (FOR LINE FOLLOWER) 20
FIGURE 14: 3 ARRAY IR SENSOR MODULE 20
FIGURE 15: SYNTHETIC WHEEL 22
FIGURE 16: RUBBER TIRE 23
FIGURE 17: FRONT VIEW 24
FIGURE 18: BACK VIEW 24
FIGURE 19: SIDE VIEW 25
FIGURE 20: DC-GEARED MOTOR 26
FIGURE 21: TERMINAL 1 AND 2 27
FIGURE 22: CW 27
FIGURE 23: CCW 28
FIGURE 24: MARKING SPOT 28
FIGURE 25: ASYMMETRICAL MOTOR POSITION 29
FIGURE 26: DC-GEARED MOTOR TO CHASSIS (TYPE A) 29
FIGURE 27: DC-GEARED MOTOR TO CHASSIS (TYPE B) 30
FIGURE 28: DC-GEARED MOTOR TO CHASSIS (4 MOTORS) 30
FIGURE 29: SETUP THE ROBOT 32
FIGURE 30: IR SENSOR LOCATION 33
FIGURE 31: CASTER WHEEL LOCATION 33
FIGURE 32: SEARCHING FOR ARDUINO IDE 34
FIGURE 33: ARDUINO IDE DOWNLOADS 35
FIGURE 34: SUPPORT THE ARDUINO IDE 36
FIGURE 35: RECENT DOWNLOAD 37
FIGURE 36: ARDUINO LICENSE AGREEMENT 37
FIGURE 37: CHOOSE INSTALLATION OPTIONS 38
FIGURE 38: CHOOSE INSTALL LOCATION 38
FIGURE 39: INSTALLING THE ARDUINO IDE 39
FIGURE 40: COMPETING ARDUINO IDE SETUP 39
FIGURE 41: WINDOWS SECURITY ALERT 40

viii

LIST OF TABLES
TABLE 1: COLOUR WAVELENGTH 5
TABLE 2: ARDUINO NANO SPECIFICATION AND PRICE 8
TABLE 3: TRUTH TABLE FOR MOTOR A 15
TABLE 4: TRUTH TABLE FOR MOTOR B 15
TABLE 5: TRUTH TABLE FOR MOTOR A & B (PWM) 16
TABLE 6: MX1508 MOTOR DRIVER SPECIFICATION 18
TABLE 7: TCRT ARRAY IR SENSOR 21
TABLE 8: WHEEL AND TIRE FEATURE 25
TABLE 9: DC-GEARED MOTOR 31
TABLE 10: DESIGNED FORM 33
TABLE 11: ARDUINO MAIN SECTION 41
TABLE 12: ARDUINO NANO PINS TO MX1508 PINS (TYPE-1) 43
TABLE 13: ARDUINO NANO PINS TO TCRT5000 PINS 44
TABLE 14: ARDUINO NANO PINS TO MX1508 PINS (TYPE-2) 49
TABLE 15: ARDUINO NANO PINS TO TCRT5000 PINS 50
TABLE 16: ARDUINO NANO PINS TO MX1508 PINS (TYPE-3) 54
TABLE 17: ARDUINO NANO PINS TO TCRT5000 PINS 55

1

WHAT IS LINE FOLLOWER ROBOT?
Ahmad Fariz bin Fauzi

INTRODUCTION

FIGURE 1: LINE-FOLLOWER ROBOT

A line-follower robot is one of the mobile robot applications that is widely used around

the world based on its purpose, such as competition, industrial, hobbyist, and

education. The basic line-follower robot is shown in FIGURE 1: LINE-FOLLOWER

ROBOT.

Over the years, there have been more than 3 million innovations and inventions in

robotic technologies to make a line-follower mobile robot more accurate in detecting

lines for product inspection, product transportation to other places in factories, and

automatic guided mobile vehicles (GlobalData, 2023).

The line-follower robot consists of a combination of microcontrollers such as the

Arduino, sensors such as an IR sensor, and actuators such as a DC motor. The

microcontroller is used to control the actuator based on what the sensors detected

before it (Mandal, 2023).

2

A colour sensor is used to detect colour lines or surfaces. Meanwhile, an IR sensor is

used to detect black-and-white lines or surfaces.

The most common colours used as a track or marking line for a line-follower robot are

black and white compared to other colours. But in technical terms, black and white are

excluded from any colour, even though white includes all the colour spectrum and

black is a combination of all colour pigments on paper (Jimmy Presler, 2023).

There are a lot of line follower tracks based on what the industrial production needs or

competition requirements. The basic track is divided into a line and a pattern, or

combination, as shown in FIGURE 2A-H: LINE AND PATTERN.

FIGURE 2A: LINE AND PATTERN (STRAIGHT)

FIGURE 2B: LINE AND PATTERN (JUNCTION)

FIGURE 2C: LINE AND PATTERN (ARC)

3

FIGURE 2D: LINE AND PATTERN (CURVED)

FIGURE 2E: LINE AND PATTERN (TRIANGLE)

FIGURE 2F: LINE AND PATTERN (CIRCLE)

4

FIGURE 2G: LINE AND PATTERN (RECTANGLE OR SQUARE)

FIGURE 2H: LINE AND PATTERN (ROUND CORNER RECTANGLE OR SQUARE)

Though black and white are the colours that are widely used as a track line, both are

not colours when you define them in physics because black and white don’t have a

specific wavelength (Murmson, 2021). So, what are the spectrum colours that have a

specific wavelength?

COLOUR WAVELENGTH

Based on the colour wavelength, visible light is divided into seven specific spectral

colours regarding its wavelength (Murmson, 2021).

5

The corresponding colours from the lowest wavelength to the longest wavelength are

VIOLET, INDIGO, BLUE, GREEN, YELLOW, ORANGE, and RED (Volchko, 2018).

All seven colours are the same as a rainbow as shown in TABLE 1: COLOUR

WAVELENGTH.

TABLE 1: COLOUR WAVELENGTH

COLOR NAME WAVELENGTH

 Violet 380 – 450 nanometres

 Indigo 420 - 440 nanometre

 Blue 450 – 495 nanometres

 Green 495 – 570 nanometres

 Yellow 570 – 590 nanometres

 Orange 590 – 620 nanometres

 Red 620 – 750 nanometres

6

BLACK AND WHITE LINE AND SURFACE

Though the line follower robot sensor can be designed to detect whatever colour of a

track, the best track line is black and white. That is why the line follower robot’s specific

function is to detect a line that is either black or white, that is drawn on any kind of

surface that is suitable to the robot (M. Pakdaman, 2010) based on FIGURE 3: BLACK

AND WHITE.

FIGURE 3: BLACK AND WHITE LINE

The main reason for using a black or white line or surface is related to a light wave.

The black line or surface absorbs all spectrum light, and the white line or surface

reflects all spectrum light (ROBU.IN, 2021) based on FIGURE 4: WAVELENGTH OF

BLACK AND WHITE LINE OR SURFACE.

FIGURE 4: WAVELENGTH OF BLACK AND WHITE LINE OR SURFACE

absorb Reflect

7

MICROCONTROLLER - ARDUINO NANO
Ahmad Fariz bin Fauzi

INTRODUCTION

All robots need a control system before they can start doing things by manipulating

the environment. So, the control system you use in any kind of robot is a

microcontroller.

Microcontrollers are the main parts of robotics. A microcontroller is an integrated circuit

that has a microprocessor unit, a memory system unit, and some control device pin-

out (javatpoint, 2023).

With a microcontroller, you can produce a lot of electronic projects or systems, such

as robot line-followers. There are a lot of microcontrollers on the market such, as

Arduino, STM32, ATMEL, PIC Microcontroller, and AVR Microcontroller (School,

2019).

In this e-book, you only cover Arduino NANO as a microcontroller to set up the line

follower robot program code because of its small dimension board but still covers

complex code applications. There are a lot of types of Arduino NANO, such as Arduino

Nano 3.0, Arduino Nano Every, Arduino Nano 33 IOT, and Arduino NANO 33 BLE

(Kerstin, 2023).

You can use any kind of Arduino NANO to complete the line follower robot task, but

which Arduino NANO is the best board you should use for the Line Follower Robot?

It depends on the task and budget. If you are on a low budget and just want to build a

simple robot such as the Sumo Robot, or Line Follower Robot without any

extraordinary communication, Arduino NANO V3.3 is just enough. But if you are born

rich and don’t care about money at all and, at the same time, you want to build a

8

system that uses a lot of extraordinary communication, such as Bluetooth, Wi-Fi and

can be programmed using Python, Arduino NANO 33 BLE Sense is the best choice.

All the specifications and the estimated price before buying an Arduino NANO board

are based on TABLE 2: ARDUINO NANO SPECIFICATION AND PRICE. All

estimated prices are based on current prices at Shopee, and all specifications are

based on Arduino (Arduino, 2023).

TABLE 2: ARDUINO NANO SPECIFICATION AND PRICE

Type of Arduino

NANO
Specification Estimate Price

Arduino Nano V3.0

• Size: 45 mm (length) x 18 mm (width)

• Weight: 5g

• Processor: ATMega328P or

AtMega168

• Frequency bandwidth: 2.4Ghz

• Interface: Micro-USB or Mini-B USB

• Regulated Power Supply: 6-20Vdc

• Fixed Power Supply = 5Vdc

• Number of pins = 30

• Integrated Wi-Fi: No

• Integrated Bluetooth: No

RM 10.00

Arduino Nano Every

• Size = 45 mm (length) x 18 mm (width)

• Weight: 5g

• Processor = ATMega4809

• Interface to the board = Micro-USB

• Regulated Power Supply: 7-21Vdc

• Fixed Power Supply = 5Vdc

• Number of pins = 30

• Integrated Wi-Fi: No

• Integrated Bluetooth: No

RM 110.00

9

Arduino Nano 33 IOT

• Size = 45 mm (length) x 18 mm (width)

• Weight: 5g

• Processor = SAMD21G18A

• Interface to the board = Micro-USB

• Regulated Power Supply: 5-18Vdc

• Fixed Power Supply = 3.3Vdc

• Number of pins = 30Number of pins =

30

• Integrated Wi-Fi: Yes

• Integrated Bluetooth: Yes

• IMU (accelerometer and gyroscope):

Yes

RM 150.00

Arduino NANO 33

BLE

• Size = 45 mm (length) x 18 mm (width)

• Weight: 5g

• Processor = nRF52840

• Interface to the board = Micro-USB

• Regulated Power Supply: 5-18Vdc

• Fixed Power Supply = 3.3Vdc

• Number of pins = 30

• Integrated Wi-Fi: No

• Integrated Bluetooth: Yes

• IMU (accelerometer and gyroscope):

Yes

• Python Support: Yes

• Arm Bed OS: Yes

RM60.00

Arduino NANO 33

BLE Sense

• Size = 45 mm (length) x 18 mm (width)

• Weight: 5g

• Processor = SAMD21G18A

• Interface to the board = Micro-USB

• Regulated Power Supply: 5-18Vdc

• Fixed Power Supply = 3.3Vdc

RM 700.00

10

• Number of pins = 30

• Integrated Wi-Fi: Yes

• Integrated Bluetooth: Yes

• IMU (accelerometer and gyroscope):

Yes

• Python Support: Yes

• Built-in Microphone: Yes

• Proximity & Gesture: Yes

• Barometric: Yes

• Pressure & Temperature: Yes

So, the microcontroller you use for this Line Follower Robot is the Arduino NANO V3.0

as in FIGURE 5: ARDUINO NANO V3.0.

FIGURE 5: ARDUINO NANO V3.0

The main reason you use the Arduino Nano is because of the cheapest and most

affordable price to have. Also, because of its small size board with complete

multifunction such as a compact design, easy to use, versatile, power efficient, and

capable of integration (Kerstin, 2023).

11

FEATURES

Now you have your magnificent low-budget Arduino NANO V3.3 board. So, what is

the next step? How do you define the board? Which pin should you use and how to

connect the pin to the sensors and actuator?

The next step is to familiarize yourself with the pins. After that, it will be easy for us to

build any system using the Arduino NANO V3.3. Based on FIGURE 6: ARDUINO

NANO V3.3 PINOUT, there are two groups of pins, such as primary pins and

secondary pins. Both groups are the necessary pinout terminals for us to manipulate

based on what system you want to build. The primary pins are digital pins, analog pins,

and default pins. Meanwhile, the secondary pin is the communication pin, or you call

it the In-Circuit Serial Programming Pin (ICSP).

FIGURE 6: ARDUINO NANO V3.3 PINOUT

12

Based on FIGURE 7: BUILD-IN SMD LED, there are also four SMD LEDs on board

for indicator information. All the LEDs are shown on board as L for built-in LED

(connected to pin D13), PWR for a power indicator that shows the Arduino NANO V3.3

has the required power supply to turn ON, TX for data transmitted from Arduino NANO

V3.3 to the computer and RX for the data receive from a computer to the Arduino

NANO V3.3. In normal conditions, all the LEDs aren’t. L LED is a controllable LED

based on your code writing. The rest of the LEDs are automatic LEDs. When the power

supply is connected to the Arduino, the power LED will lid. When you do programming

and uploading from a computer to the Arduino, the TX will lid, and the RX LED will

blink. So, from this LED indicator, you can realize something is not normal when either

one LED isn’t on or blinking.

FIGURE 7: BUILD-IN SMD LED

You also must know about the USB Port type for Arduino NANO V3.3. The typical type

of USB for Arduino NANO is Mini-B as shown in FIGURE 8: MINI-B USB TYPE.

Without this port (female) and the connector(male), you can’t transfer any code writing

from a computer to the Arduino NANO V3.3.

Male Female

FIGURE 8: MINI-B USB

13

But nowadays, there are many types of USB ports on Arduino NANO such as USB

type C and micro-USB based on FIGURE 9: MICRO-USB and FIGURE 10: TYPE-C.

FIGURE 9: MICRO-USB

FIGURE 10: TYPE-C

Just forget about microcontroller ports unless you want to know more about the

ATMega328 or ATMega198 microcontroller and want to design a new board using the

specific microcontroller. By the way, the microcontroller ports are shown in FIGURE

11: MICROCONTROLLER PORTS.

FIGURE 11: MICROCONTROLLER PORTS

14

COMPONENT – MOTOR DRIVER (MX1508)
Ahmad Fariz bin Fauzi

INTRODUCTION

One of the low-cost motor drivers in the market that can control any kind of DC motor

within a 2A current rating. The reason why the MX1508 IC is most suitable to control

any kind of DC motor is because its 16-pin IC has an integrated H-bridge designed

with power MOSFET. It also prevents any kind of malfunction due to a float input pin

with thermal protection on its board (Components101, 2021).

The MX1508 board is shown in FIGURE 12: MX1508 MOTOR DRIVER.

FIGURE 12: MX1508 MOTOR DRIVER

There are four IN pins on the board two pins for Motor A two pins for Motor B and two

pins for a 2-10Vdc power supply. This board has an advantage because it is suitable

to control two motors at the same time independently. The speed of the motor is

controlled using the IN-pin connection with a Pulse Width Modulation (PWM) (Trolove,

2018).

The truth table for the MX1508 based on TABLE 3: TRUTH TABLE FOR MOTOR A

shows how to run the first DC motor. M1 is connected to a motor terminal that has a

15

red dot and M2 is connected to another motor terminal with no red dot or vice versa

based on your design.

TABLE 3: TRUTH TABLE FOR MOTOR A

Motor A Rotation IN1 IN2

Motor Stop

or

Brake

LOW

HIGH

LOW

HIGH

Motor Forward

(M1)

HIGH

LOW

Motor Reverse

(M2)

LOW

HIGH

Meanwhile, the truth table for the MX1508 based on TABLE 4: TRUTH TABLE FOR

MOTOR B shows how to run the second DC motor. M3 is connected to a motor

terminal that has a red dot or positive polarity and M4 is connected to another motor

terminal with no dot or negative polarity.

TABLE 4: TRUTH TABLE FOR MOTOR B

16

Motor B Rotation IN3 IN4

Motor Stop

or

Brake

LOW

HIGH

LOW

HIGH

Motor Forward

(M3)

HIGH

LOW

Motor Reverse

(M4)

LOW

HIGH

LOW means 0V for digital condition and HIGH means 5V for digital condition. But for

analog conditions, instead of using LOW and HIGH, you use “i” based on the PWM

based on TABLE 5: TRUTH TABLE FOR MOTOR A & B (PWM).

TABLE 5: TRUTH TABLE FOR MOTOR A & B (PWM)

17

Motor A Rotation (PWM) IN1 IN2

Motor Forward (PWM)

(M1)

i

LOW

Motor Reverse (PWM)

(M2)

LOW

i

Motor B Rotation IN3 IN4

Motor Forward (PWM)

(M3)

i

LOW

Motor Reverse (PWM)

(M4)

LOW

i

18

FEATURES

This small motor driver specification can be described based on TABLE 6: MX1508

MOTOR DRIVER SPECIFICATION.

TABLE 6: MX1508 MOTOR DRIVER SPECIFICATION

No Details Specification

1 Power Supply (Vdc)

 i) DC Voltage Input 2V – 10V

 ii) DC Voltage Output 1.8V – 7V

 iii) Operating DC Current 1.5A

 iv) Peak DC Current 2A

 iv) Standby DC (Low current) <0.1 micro-Ampere

2 Size

 Weight 2g

 Length 24.7 mm

 Height 21 mm

 Width 5 mm

From Table 6, you realize that this motor driver is a good motor driver for a small line

follower robot because it uses a small amount of DC and space.

19

COMPONENT – 3 ARRAY IR SENSOR (TCRT5000)
Ahmad Fariz bin Fauzi

INTRODUCTION

The infrared (IR) sensor is a well-known technology used in your daily life and all

industries for its specific purpose. It has low power consumption and a lot of features

that are suitable especially for mobile robot technology (Robocraze, 2022).

The IR sensor is an active sensor that uses your lighting source to measure distances

or objects (AHMAD FARIZ, 2023).

For the line follower robot, you must use a sensor that can detect an object or line in

the shortest range. For the time being, the IR sensor is the best sensor used in any

mobile robot to detect an object at a very short range (AHMAD FARIZ, 2023).

That is why there are no sensors that can beat the function of an IR sensor when it

comes to detecting a very close object.

Another advantage of this sensor is that it can detect black or white surfaces, based

on its design range specifications. So, it is convenient for tracking the line or track on

a flat surface.

Nowadays, there are many types of IR sensors sold on the market. The basic one is

the single channel IR Sensor based on FIGURE 13: SINGLE CHANNEL IR SENSOR

(FOR LINE FOLLOWER). This type of sensor is used widely for educational and

research purposes or for hobbyists to design a new system.

20

FIGURE 13: SINGLE CHANNEL IR SENSOR (FOR LINE FOLLOWER)

But if you want to use more than one IR sensor for a line-follower mobile robot, the

best way is to get a specific multi-array IR sensor module like 3 Array IR Sensor shown

in FIGURE 14: 3 ARRAY IR SENSOR MODULE.

Back Side

Front Side

FIGURE 14: 3 ARRAY IR SENSOR MODULE

21

FEATURES

The feature for this IR sensor is based on TABLE 7: TCRT 3 ARRAY IR SENSOR.

TABLE 7: TCRT ARRAY IR SENSOR

No Details Specification

1 Power Supply (Vdc) 5V

2 TCRT5000 built-in sensor 3 unit

3 Mode Schmidt Trigger

4

Pins

5

5 Built-in LED (Green) 3

22

COMPONENT – WHEEL & TIRE
Ahmad Fariz bin Fauzi

INTRODUCTION

The line follower robot needs a wheel and tire to move forward, reverse, turn right, and

turn left. A wheel is an object that rotates on its axis (Merriam-Webster, 2023).

The wheel is round so that it’s more suitable to be used for any type of mechanism

that is closely related to movement (Eurofit, 2021).

A round-shaped wheel allows less drag or resistance and becomes smoother

movement (Wheel-Talk, 2019).

For this Line Follower Robot, the wheel that you use is a 50 mm outer diameter made

of synthetic material based on FIGURE 15: SYNTHETIC WHEEL.

FIGURE 15: SYNTHETIC WHEEL

Even though a wheel is enough to move an object, without tires, movement is quite

limited. A tire is made from rubber or rubber compounds based on its purpose of use.

23

A tire is mounted outside the wheel to make the wheel more efficient for carrying,

transmitting, and guiding the movement of an object (Micheline, 2023).

For this line-follower robot, the tire you use is 50mm inner diameter and 65mm outer

diameter made of rubber material based on FIGURE 16: RUBBER TIRE. The wheel

is made from high-quality rubber and gives more grip to the track because of its

pattern. The arrow pattern on the tire shows the forward direction.

FIGURE 16: RUBBER TIRE

Both tire and wheel for this Line Follower Robot, when you combine them, you can

call them by any kind of name, such as Smart Car Robot Plastic Tire Wheel, BO

Wheel, TT Wheel Robot Tire, Rubber Wheel Robot Tire, and Robot Car Wheel

Plastic Tire. Just search for it on the internet, and you will be directed to the specific

website about the wheel.

The wheel and tire are divided into three sections. The first one is the front section

shown in FIGURE 17: FRONT VIEW. This section is the most clearly visible when the

wheel is attached to the robot.

24

FIGURE 17: FRONT VIEW

The second section is shown in FIGURE 18: BACK VIEW. This section has a small

hole with two semicircle sides. The function of the hole is to attach the wheel to the

DC motor shaft. For this kind of wheel, the semicircle hole has its function as a lock

between the shaft and the wheel. Without this semicircle hole, the wheel has less lock

if the robot is heavier than a predetermined weight.

FIGURE 18: BACK VIEW

The third section of the wheel and tire is shown in FIGURE 19: SIDE VIEW. The wider

the tire width, the stronger the grip on the track. However, it has disadvantages

because it is heavier, and the size of the robot becomes wider.

25

FIGURE 19: SIDE VIEW

FEATURES

Based on the on-field item for this Line Follower Robot, the features for the wheel and

the tire are shown in TABLE 8: WHEEL AND TIRE FEATURE.

TABLE 8: WHEEL AND TIRE FEATURE

No Details Specification

1 Wheel (Yellow, Plastic)

 v) Weight 34g

 vi) Diameter 50 mm

 vii) Width 25 mm

 viii) Hole Diameter 5 mm

 iv) Loading Capability (Max) 2.5kg

2 Tire (Black, Rubber)

 Weight 34g

 Inner Diameter = Wheel diameter 50 mm

 Outer Diameter = Height 65 mm

 Width 25 mm

26

COMPONENT - DC GEARED MOTOR
 Ahmad Fariz bin Fauzi

INTRODUCTION

A DC-geared motor is the one that rotates the wheel upon the signal, either clockwise

(CW) or counterclockwise (CCW). For this line-follower robot, you use this basic TT

200RPM without an encoder.

Based on FIGURE 20: DC-GEARED MOTOR, there are combinations of small gears

to reduce the maximum speed to approximately speed.

FIGURE 20: DC-GEARED MOTOR

At the bottom of the motor, there are two terminals connected to the coil inside the

body. To detect which terminal is terminal 1, there is a red dot showing that terminal.

The other without a red dot is terminal 2, based on FIGURE 21: TERMINAL 1 AND 2.

27

FIGURE 21: TERMINAL 1 AND 2

Terminal 1 means the starting point for the coil, and terminal 2 means the ending point

for the coil. By connecting a power supply based on its specification, either 3 Volt, 4.5

Volt, or 6 Volt, the motor will rotate either CW or CCW.

For example, if you connect positive to terminal 1 and negative to terminal 2, the motor

will turn CW, as shown in FIGURE 22: CW.

FIGURE 22: CW

So, to turn the motor rotation CCW, just connect terminal 1 to the negative and terminal

2 to the positive, as shown in FIGURE 23: CCW.

28

FIGURE 23: CCW

But, to make sure that your robot moves forward or reverse, it depends on how you

connect the motor to the board. Though you connect it right to the motor, if you are

wrongly connected to the board, your robot will move differently.

The way to assemble the wheel for the DC motor is by looking at the marking point.

For the TT DC-geared motor, the marking point is visible on one side of the motor,

based on FIGURE 24: MARKING SPOT.

FIGURE 24: MARKING SPOT

The function of this marking spot is to ensure the correct wheel attachment on the

motor shaft. Another function is to attach the DC-geared motor through a hole in the

robot’s chassis or body.

29

Now you know the correct position to attach the wheel on the DC-geared motor. Let’s

focus on how to assemble two DC-geared motors with wheels on the robot chassis.

Both motors must be asymmetrical to each other, based on FIGURE 25:

ASYMMETRICAL MOTOR POSITION.

FIGURE 25: ASYMMETRICAL MOTOR POSITION

Make sure both the DC geared motor marking spots are located opposite to each

other. Otherwise, you will face a problem during the assembly process. The line-

follower robot base can be bought at any DIY online shop, or you can build it on your

own. If you have the guts and love to do everything, then you can buy acrylic and start

making the base or chassis.

The correct way to assemble the DC-geared motor to the base is shown in FIGURE

26: DC-GEARED MOTOR TO CHASSIS (TYPE A).

FIGURE 26: DC-GEARED MOTOR TO CHASSIS (TYPE A)

30

Sometimes you need both tires located at the front of the robot’s body, so the best

assembly for this purpose is shown in FIGURE 27: DC GEARED MOTOR TO

CHASSIS (TYPE B).

FIGURE 27: DC-GEARED MOTOR TO CHASSIS (TYPE B)

If you want to attach four DC-geared motors to a chassis, the best attachment is shown

in FIGURE 28: DC-GEARED MOTOR TO CHASSIS (4 MOTORS).

FIGURE 28: DC-GEARED MOTOR TO CHASSIS (4 MOTORS)

31

The position of the DC Geared Motor attachment depends on the size of your project,

the base, and the robot design. There are no strict rules on this matter. All the previous

diagrams are about to give an idea of how to attach the DC-geared motor to the body.

FEATURES

The features for the TT DC-geared motor are based on TABLE 9: DC-GEARED

MOTOR.

TABLE 9: DC-GEARED MOTOR

No Details Specification

 Voltage (operated) 3-12V

 Without load current (A) 0.2mA

 Rotation Per Minute (for 6V) 200

32

COMMISSIONING
Ahmad Fariz bin Fauzi

HOW TO SET THE ROBOT

Based on FIGURE 29: SETUP THE ROBOT, attach the two DC-geared motors at the

right and left of the chassis. Use a small bolt and nut to tighten all the motors and IR

sensors.

FIGURE 29: SETUP THE ROBOT

Also, attach the IR sensor to the front of the chassis and place it under the chassis.

Make sure there is enough space between the IR sensor and the floor or surface based

on FIGURE 30: IR SENSOR LOCATION.

33

FIGURE 30: IR SENSOR LOCATION

To make the robot less dragged, attach any type of ball caster wheel beside the IR

sensor. It is shown in FIGURE 31: CASTER WHEEL LOCATION.

FIGURE 31: CASTER WHEEL LOCATION

HOW TO WIRE THE ROBOT

If you already have a shield board like this robot, just connect the wire from each

component to another component based on its pin. To start doing the wiring, the best

way is to design the connection based on TABLE 10: DESIGN FORM.

TABLE 10: DESIGNED FORM

MOTOR Motor Terminal MX1508 pin Arduino pin

LEFT

MTRA

1 IN1 D10

2 IN2 D9

RIGHT

MTRB

1 IN3 D6

2 IN4 D5

IR SENSOR Motor Terminal TCRT5000 pin Arduino pin

L Sensor - L A0 or D13

C Sensor - C A1 or D12

R Sensor - R A2 or D11

34

ARDUINO IDE
Ahmad Fariz bin Fauzi

INTRODUCTION

Before executing any microcontroller board, you need a suitable Integrated

Development Environment (IDE) for the board. For the Arduino board, you can use the

latest open-source Arduino IDE on the website.

While writing for this e-book, the latest version of Arduino IDE is 2.1.1. There is no

need to worry if you already installed the older version because Arduino IDE is

updatable, and you will be asked to update to a new version. Frankly speaking, the

new version is the best one.

HOW TO INSTALL THE ARDUINO IDE

First, turn on your computer and make sure there is an internet connection during the

process.

Now, click to open any kind of browser. Then type Arduino IDE. The browser will show

the result based on FIGURE 32: SEARCHING FOR ARDUINO IDE.

FIGURE 32: SEARCHING FOR ARDUINO IDE

35

In a second, the browser will send you the result based on what you have typed. Don’t

worry if the results show millions. Just pick the one that shows Software | Arduino.

Usually, the top result is the best option to choose. Then, left-click on the Software |

Arduino.

Now you are on the new Arduino IDE interface shown in FIGURE 33: ARDUINO IDE

DOWNLOADS.

FIGURE 33: ARDUINO IDE DOWNLOADS

Thanks to all the contributors who support the research and development, the new

release of the Arduino IDE version is much better than the older one and more powerful

than before. A lot of bugs are fixed. So, it’s a good choice to update to the new release

IDE version when the new version is available.

To know more about the details before installing or upgrading to the new version, just

refer to the Arduino IDE 2.0 documentation.

The download options depend on your computer software, either Linux, MacOS, or

Windows. It’s up to you, but still, your computer needs to meet the minimum

requirement for the Arduino IDE.

Just click on your mouse to either one of the DOWNLOAD OPTIONS lists, and you

will be sent to a new interface.

36

By the way, you could be one of the contributors that help the development team to

upgrade their system by supporting the team by donating a small amount of money

based on FIGURE 34: SUPPORT THE ARDUINO IDE.

FIGURE 34: SUPPORT THE ARDUINO IDE

Come on guys, the minimum donation is just $3. By supporting it, you are helping the

development of the Arduino.

After clicking or , the download process will begin shortly based on

FIGURE 35: RECENT DOWNLOAD.

37

FIGURE 35: RECENT DOWNLOAD

Then click on the icon to start installing the software. You will be asked to review

the license terms before starting to install the Arduino IDE. If you accept all the terms

inside the agreement, then left-click on . If not, just click and no need to

develop a robot using the Arduino IDE. The step is based on FIGURE 36: ARDUINO

LICENSE AGREEMENT.

FIGURE 36: ARDUINO LICENSE AGREEMENT

38

After agreeing with the License Agreement, you will be asked to choose the installation

option. All users who use the computer can access the Arduino IDE or only you can

access the Arduino IDE. Everything depends on you. If you like more privacy, then

choose . If not, just choose . After choosing

the installation Options, left-click on " FIGURE 37: CHOOSE INSTALLATION

OPTIONS.

FIGURE 37: CHOOSE INSTALLATION OPTIONS

After choosing the installation option, Arduino IDE Setup asks where the desirable

destination for your Arduino IDE folder is based on FIGURE 38: CHOOSE INSTALL

LOCATION. The default folder location is in C drive, but the location can be arranged

for any drive inside your computer. To select a new destination folder, just left-click on

, it and set your location. After that, left-click on to proceed to the

destination folder inside the computer. Once installed, you can’t change the location

unless you uninstall the software and repeat the installation setup.

FIGURE 38: CHOOSE INSTALL LOCATION

39

Now, the Arduino IDE installation process will start. Just let it install automatically until

the process is done. It will take a while until the installation is done. During the

installation, the horizontal bar shows the green colour increasing from nothing to a full

bar based on FIGURE 39: INSTALLING THE ARDUINO IDE. When the bar is full of

green colour, it means that the installation process is done.

start installation during the installation

FIGURE 39: INSTALLING THE ARDUINO IDE

After completing the installation, you will be asked either to Run Arduino IDE

immediately or just click to close the process based on FIGURE 40:

COMPLETING ARDUINO IDE SETUP.

FIGURE 40: COMPETING ARDUINO IDE SETUP

It’s a good choice if you just tick the box and click Finish to start the Arduino IDE

because you want to know if there is another instruction to follow before you can start

40

doing your programming code using Arduino IDE. Some computers have already

activated their firewalls to block some features on any outsourced software based on

FIGURE 41: WINDOWS SECURITY ALERT.

FIGURE 41: WINDOWS SECURITY ALERT

So, before you click Allow access, make sure you choose the right choice for your

security. For security purposes, click the Private Network and click to give

permission, and allows the Arduino IDE to communicate on specific networks.

41

CODING – BASIC STRUCTURE
Ahmad Fariz bin Fauzi

To learn more about Arduino programming, you need to know more about the basic

structure of the Arduino code program itself. The Arduino code program is divided into

three main sections, shown in TABLE 11: ARDUINO MAIN SECTION

TABLE 11: ARDUINO MAIN SECTION

SECTION EXPLANATION CODE PROGRAM

Structure

Two main functions:

i) Setup ()

ii) Loop ()

void setup ()

{statement 1; statement 2;}

void loop ()

{statement 1; statement 2;}

Value

Variable and constants:

i) local variable is described

inside a function.

ii) global variable is described

outside a function.

void setup ()

{statement1; statement2;}

void loop ()

{int a = 2;} <-- local variable

int a = 2; <-- global variable

void setup ()

{statement1; statement2;}

void loop ()

{statement 1; statement 2;}

Function

i) INPUT

All the sensors are INPUT

For Digital Pins:

pinMode(pinterminal,INPUT)

For Analog Pins:

-

42

ii) OUTPUT

All the actuators are OUTPUT

For digital output:

digitalWrite(pinterminal,HIGH)

For analog output:

analogWrite(pinterminal,ivalue);

43

TUTORIAL: CODING – LINE FOLLOWER ROBOT
Ahmad Fariz bin Fauzi & Ts. Hj Mohd Nordin bin Mohd Jani & Saifful Bahari bin

Omar

BASIC CODING WITHOUT PID & TCRT5000 READ AS DIGITAL SENSOR-Type1

Type 1 is the basic code for the simplest line follower robot using driver motor MX1508

and Arduino NANO with a 3 array IR sensor TCRT5000 without a PID control. All the

motor pins are set up as digital output, and the IR sensor pins are set up as digital

sensors.

The steps for programming the code into the Arduino NANO board on the line follower

robot are very simple:

• The first step is to make sure the robot is connected to the computer’s USB port

via a USB cable.

• The second step is to open the Arduino IDE on your computer.

• The third step is to do the coding.

Set all the global variables outside the function based on the Arduino Nano PWM pins

and MX1508 pin connection. This setup makes your coding easier to understand if

something happens to the system.

For this purpose, you use PWM PIN 5 and PIN 6 for the right motor. Meanwhile, PIN

9 and PIN 10 are for the left motor, as shown in TABLE 12: ARDUINO NANO PINS

TO MX1508 PINS (TYPE-1).

TABLE 12: ARDUINO NANO PINS TO MX1508 PINS (TYPE-1)

DC Geared Motor Arduino NANO PWM Pins MX1508 Pins

Left Motor (Motor-A)
D10 IN1 (M1)

D9 IN2 (M2)

Right Motor (Motor-B)
D6 IN3 (M3)

D5 IN4 (M4)

44

The global variable code is as below:

int M1 = 10; // MX1508 PIN IN1 to ARDUINO NANO D10 (PWM)

int M2 = 9; // MX1508 PIN IN2 to ARDUINO NANO D9 (PWM)

int M3 = 6; // MX1508 PIN IN3 to ARDUINO NANO D6 (PWM)

int M4 = 5; // MX1508 PIN IN4 to ARDUINO NANO D5 (PWM)

Next, do the same thing for the global variable setup based on Arduino Nano Analog

pins and a 3-array IR Sensor TCRT5000 pin connection. This setup is suitable for

continuous sensor reading and is easy to understand if anything malfunctions with the

system.

You can use either digital pins, other than motor pins, or ADC pins. For this line

follower robot, you just use digital pins like D13, D12, and D11 shown in TABLE 13:

ARDUINO NANO PINS TO TCRT5000 PINS.

TABLE 13: ARDUINO NANO PINS TO TCRT5000 PINS

IR Sensor Arduino NANO Digital Pins TCRT5000 Pins

Right D13 IN1 or R

Centre D12 IN2 or C

Left D11 IN3 or L

int R1 = D13; // TCRT5000 PIN IN1 to ARDUINO NANO D13

int C0 = D12; // TCRT5000 PIN IN2 to ARDUINO NANO D12

int L1 = D11; // TCRT5000 PIN IN3 to ARDUINO NANO D11

Now, let’s set up the pin type based on the global variable and Mode type, either as

INPUT or OUTPUT based on (1).

void setup () {statement1; statement2;;} (1)

45

void setup ()

{

 Serial.begin(9600); // setup to 9600 baud for Serial Monitor purpose.

 pinMode(R1, INPUT); // pin R1 & Mode INPUT

 pinMode(C0, INPUT); // pin C0 & Mode INPUT

 pinMode(L1, INPUT); // pin L1 & Mode INPUT

 pinMode(M1, OUTPUT); // pin M1 & Mode OUTPUT

 pinMode(M2, OUTPUT); // pin M2 & Mode OUTPUT

 pinMode(M3, OUTPUT); // pin M3 & Mode OUTPUT

 pinMode(M4, OUTPUT); // pin M4 & Mode OUTPUT

 }

Then, let’s set up the continuous loop program based on (2).

void loop () {statement1; statement2;;} (2)

void loop ()

{ // open close loop statement

 int L1Value = digitalRead(L1); // declare the L1Value based on digitalRead(L1)

 Serial.println(L1Value); // Allow Serial print to show L1Value

 int C0Value = digitalRead(C0); // declare the C0Value based on digitalRead(C0)

 Serial.println(C0Value); // Allow Serial print to show C0Value

 int R1Value = digitalRead(R1); // declare the R1Value based on digitalRead(R1)

 Serial.println(R1Value); // Allow Serial print to show R1Value

 if (L1Value == 1 && C0Value == 0 && R1Value == 1) // if statement

 {

 MotorForward(); // motor forward task

 Serial.println("Move Forward"); // Serial shows TEXT

 }

46

else if (L1Value == 0 && C0Value == 0 && R1Value == 0) // else if statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All Black"); // Serial shows TEXT

 }

 else if (L1Value == 1 && C0Value == 1 && R1Value == 1) // else if statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All White"); // Serial shows TEXT

 }

 else if (L1Value == 0 && C0Value == 0 && R1Value == 1) // else if statement

 {

 MotorTurnLeft(); // motor turn left task

 Serial.println("Move Left (L1 and C0 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value == 1 && C0Value == 0 &R1Value == 0) // else if statement

 {

 MotorTurnRight(); // motor turn right task

 Serial.println("Move Right (C0 and R1 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value == 0 && C0Value == 1 && R1Value == 1) // else if statement

 {

 MotorTurnLeftStatic(); // motor turnleftst task

 Serial.println("Move Left(Only L1 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value == 1 && C0Value == 1 && R1Value == 0) // else if statement

 {

 MotorTurnRightStatic(); // motor turnrightst task

 Serial.println("Move Right(Only R1 on BLACK)"); // Serial shows TEXT

 }

} // close void loop statement

47

void MotorForward() //MotorForward Task

{

 digitalWrite(M1,HIGH); //set the M1 as digital & Write the Signal as HIGH

 digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

 digitalWrite(M3, HIGH); //set the M3 as digital & Write the Signal as HIGH

 digitalWrite(M4, LOW); //set the M4 as digital & Write the Signal as LOW

}

void MotorTurnLeft() // Motor TurnLeft Task

{

 digitalWrite(M1, LOW); //set the M1 as digital & Write the Signal as LOW

 digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

 digitalWrite(M3, HIGH); //set the M3 as digital & Write the Signal as HIGH

 digitalWrite(M4, LOW); //set the M4 as digital & Write the Signal as LOW

}

void MotorTurnLeftStatic() // Motor TurnLeftSt Task

{

 digitalWrite(M1, LOW); //set the M1 as digital & Write the Signal as LOW

 digitalWrite(M2, HIGH); //set the M2 as digital & Write the Signal as HIGH

 digitalWrite(M3, HIGH); //set the M3 as digital & Write the Signal as HIGH

 digitalWrite(M4, LOW); // set the M4 as digital & Write the Signal as LOW

}

void MotorTurnRight() // Motor TurnRight Task

{

 digitalWrite(M1, HIGH); //set the M1 as digital & Write the Signal as HIGH

 digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

 digitalWrite(M3, LOW); //set the M3 as digital & Write the Signal as LOW

 digitalWrite(M4, LOW); //set the M4 as digital & Write the Signal as LOW

}

48

void MotorTurnRightStatic() // Motor TurnRightSt Task

{

 digitalWrite(M1, HIGH); //set the M1 as digital & Write the Signal as HIGH

 digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

 digitalWrite(M3, LOW); //set the M3 as digital & Write the Signal as LOW

 digitalWrite(M4, HIGH); //set the M4 as digital & Write the Signal as HIGH

}

void MotorStop() // Motor TurnStop Task

{

 digitalWrite(M1, LOW); // set the M1 as digital & Write the Signal as LOW

 digitalWrite(M2, LOW); // set the M2 as digital & Write the Signal as LOW

 digitalWrite(M3, LOW); // set the M3 as digital & Write the Signal as LOW

 digitalWrite(M4, LOW); // set the M4 as digital & Write the Signal as LOW

}

49

BASIC CODING WITHOUT PID & TCRT5000 READ AS DIGITAL SENSOR-Type 2

This Type 2 coding is the modification code based on Type 1. There are only small

differences if compared to Type 1. All motor pins are set as digital pins and all IR

sensor pins are set as digital sensors but connected to analog pins.

The steps for programming the code into the Arduino NANO board on the line follower

robot are still the same as the previous Type 1. The PWM pin is still the same as the

previous Type 1. No need to adjust the wiring connection if all the terminations are

connected to PINs 5 and 6 for the Right Motor and PINs 9 and 10 for the Left Motor

shown as TABLE 14: ARDUINO NANO PINS TO MX1508 PINS (TYPE-2).

TABLE 14: ARDUINO NANO PINS TO MX1508 PINS (TYPE-2)

DC Geared Motor Arduino NANO PWM Pins MX1508 Pins

Left Motor (Motor-A)
D10 IN1

D9 IN2

Right Motor (Motor-B)
D6 IN3

D5 IN4

The global variable code is as below:

int M1 = 10; // MX1508 PIN IN1 to ARDUINO NANO D10 (PWM)

int M2 = 9; // MX1508 PIN IN2 to ARDUINO NANO D9 (PWM)

int M3 = 6; // MX1508 PIN IN3 to ARDUINO NANO D6 (PWM)

int M4 = 5; // MX1508 PIN IN4 to ARDUINO NANO D5 (PWM)

For this type 2, you must use three ADC pins numbers A0, A1, and A2 to TCRT5000

pins shown as TABLE 15: ARDUINO NANO PINS TO TCRT5000 PINS. The reason

for using this ADC pin is the ability to set the sensor as digital or analog.

50

TABLE 15: ARDUINO NANO PINS TO TCRT5000 PINS

IR Sensor Arduino NANO ADC Pins TCRT5000 Pins

Right A0 IN1

Centre A1 IN2

Left A2 IN3

int R1 = A0; // TCRT5000 PIN IN1 to ARDUINO NANO A0

int C0 = A1; // TCRT5000 PIN IN2 to ARDUINO NANO A1

int L1 = A2; // TCRT5000 PIN IN3 to ARDUINO NANO A2

void setup ()

{

 Serial.begin(9600); // setup to 9600 baud for Serial Monitor purpose.

 pinMode(R1, INPUT); // pin R1 & Mode INPUT

 pinMode(C0, INPUT); // pin C0 & Mode INPUT

 pinMode(L1, INPUT); // pin L1 & Mode INPUT

 pinMode(M1, OUTPUT); // pin M1 & Mode OUTPUT

 pinMode(M2, OUTPUT); // pin M2 & Mode OUTPUT

 pinMode(M3, OUTPUT); // pin M3 & Mode OUTPUT

 pinMode(M4, OUTPUT); // pin M4 & Mode OUTPUT

 }

void loop ()

{ // open void loop statement

 int L1Value = digitalRead(L1); // declare the L1Value based on digitalRead(L1)

 Serial.println(L1Value); // Allow Serial print to show L1Value

 int C0Value = digitalRead(C0); // declare the C0Value based on digitalRead(C0)

 Serial.println(C0Value); // Allow Serial print to show C0Value

 int R1Value = digitalRead(R1); // declare the R1Value based on digitalRead(R1)

 Serial.println(R1Value); // Allow Serial print to show R1Value

51

 if (L1Value == 1 && C0Value == 0 && R1Value == 1) // if statement

 {

 MotorForward(); // motor forward task

 Serial.println("Move Forward"); // Serial shows TEXT

 }

 else if (L1Value == 0 && C0Value == 0 && R1Value == 0) // else if statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All Black"); // Serial shows TEXT

 }

 else if (L1Value == 1 && C0Value == 1 && R1Value == 1) // else if statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All White"); // Serial shows TEXT

 }

 else if (L1Value == 0 && C0Value == 0 && R1Value == 1) // else if statement

 {

 MotorTurnLeft(); // motor turn left task

 Serial.println("Move Left (L1 and C0 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value == 1 && C0Value == 0 &R1Value == 0) // else if statement

 {

 MotorTurnRight(); // motor turn right task

 Serial.println("Move Right (C0 and R1 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value == 0 && C0Value == 1 && R1Value == 1) // else if statement

 {

 MotorTurnLeftStatic(); // motor turnleftst task

 Serial.println("Move Left(Only L1 on BLACK)"); // Serial shows TEXT

 }

52

 else if (L1Value == 1 && C0Value == 1 && R1Value == 0) // else if statement

 {

 MotorTurnRightStatic(); // motor turnrightst task

 Serial.println("Move Right(Only R1 on BLACK)"); // Serial shows TEXT

 }

} // close void loop statement

The difference between this Type-2 programming is in this section. You are changing

the motor pin from digital to analog because you want to control the speed. The value

of PWM is between 0 to 255. In this case, you put the value to 80 for one motor speed

and 100 for both motor speeds.

void MotorForward() // MotorForward Task with PWM equal to 80

{

 analogWrite(M1, 80); // set the M1 as analog and Write the PWM to 80

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 analogWrite(M3, 80); // set the M3 as analog and Write the PWM to 80

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnLeft() // Motor TurnLeft Task with PWM equal to 80

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 analogWrite(M3, 80); // set the M3 as analog and Write the PWM to 80

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

 void MotorTurnLeftStatic() // Motor TurnLeftSt Task with PWM equal to 100

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 analogWrite(M2, 100); // set the M2 as analog and Write the PWM to 100

 analogWrite(M3, 100); // set the M3 as analog and Write the PWM to 100

53

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnRight() // Motor TurnRight Task with PWM equal to 80

{

 analogWrite(M1, 80); // set the M1 as analog and Write the PWM to 80

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnRightStatic() // Motor TurnRightSt Task with PWM equal to 100

{

 analogWrite(M1, 100); // set the M1 as analog and Write the PWM to 100

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 analogWrite(M4, 100); // set the M4 as analog and Write the PWM to 100

}

void MotorStop() // Motor TurnStop Task

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

54

BASIC CODING WITHOUT PID & TCRT5000 READ AS ANALOG SENSOR-Type 3

This Type 3 coding is the modification code based on the Type 1 and Type 2. There

are only small differences if compared to the previous coding. All Motor pins are set

as digital pins and all IR sensor pins are set as digital pins but during the loop main

structure, all the sensors will be coded as analog sensors.

Make sure to set all the global variable setup outside the function based on Arduino

Nano PWM Pins and MX1508 Pins connection. This setup makes your coding easier

to understand if something happens to the system. The PWM pin is still the same as

the previous Type 1 and Type 2. No need to adjust the wiring connection if all the

termination is connected to PIN 5 and 6 for the Right Motor and PIN 9 and 10 for Left

Motor shown as TABLE 16: ARDUINO NANO PINS TO MX1508 PINS (TYPE-3).

TABLE 16: ARDUINO NANO PINS TO MX1508 PINS (TYPE-3)

DC Geared Motor Arduino NANO PWM Pins MX1508 Pins

Left Motor (Motor-A)
D10 IN1

D9 IN2

Right Motor (Motor-B)
D6 IN3

D5 IN4

The global variable code is as below:

int M1 = 10; // MX1508 PIN IN1 to ARDUINO NANO D10 (PWM)

int M2 = 9; // MX1508 PIN IN2 to ARDUINO NANO D9 (PWM)

int M3 = 6; // MX1508 PIN IN3 to ARDUINO NANO D6 (PWM)

int M4 = 5; // MX1508 PIN IN4 to ARDUINO NANO D5 (PWM)

For this Type 3, you still use ADC PIN A0, A1, and A2 shown as Figure: Arduino NANO

Pins to TCRT5000 Pins shown as TABLE 17: ARDUINO NANO PINS TO TCRT5000

PINS. The reason for using this ADC pin is the ability to change the sensor from digital

to analog.

55

TABLE 17: ARDUINO NANO PINS TO TCRT5000 PINS

IR Sensor Arduino NANO ADC Pins TCRT5000 Pins

Right A0 IN1

Centre A1 IN2

Left A2 IN3

int R1 = A0; // TCRT5000 PIN IN1 to ARDUINO NANO A0

int C0 = A1; // TCRT5000 PIN IN2 to ARDUINO NANO A1

int L1 = A2; // TCRT5000 PIN IN3 to ARDUINO NANO A2

The additional new global variable to store the value from the IR sensor.

int R1Value = 0;

int C0Value = 0;

int L1Value = 0;

int threshold = 400;

All the IR sensor pins are no longer declared as an input in void setup () because they

now become an analog input. But what if all the pins are still declared as a digital input

in void setup ()? What will happen to your programming? The answer is the function

is still the same if you don’t declare the pin as INPUT but this coding uses more

memory.

void setup ()

{

 Serial. begin(9600); // setup to 9600 baud for Serial Monitor purposes.

 pinMode(M1, OUTPUT); // pin M1 & Mode OUTPUT

 pinMode(M2, OUTPUT); // pin M2 & Mode OUTPUT

 pinMode(M3, OUTPUT); // pin M3 & Mode OUTPUT

 pinMode(M4, OUTPUT); // pin M4 & Mode OUTPUT

 }

Inside the void loop function, just change all the digitalRead to analogRead.

void loop ()

56

{ // open void loop statement

 L1Value = analogRead(L1); // declare the L1Value based on analogRead(L1)

 Serial.println(L1Value); // Allow Serial print to show L1Value

 C0Value = analogRead(C0); // declare the C0Value based on analogRead(C0)

 Serial.println(C0Value); // Allow Serial print to show C0Value

 R1Value = analogRead(R1); // declare the R1Value based on analogRead(R1)

 Serial.println(R1Value); // Allow Serial print to show R1Value

 if (L1Value > threshold && C0Value <threshold && R1Value >threshold) // if

statement

 {

 MotorForward(); // motor forward task

 Serial.println("Move Forward"); // Serial shows TEXT

 }

 else if (L1Value <threshold && C0Value <threshold && R1Value <threshold) // else if

statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All Black"); // Serial shows TEXT

 }

 else if (L1Value >threshold && C0Value >threshold && R1Value >threshold) //

else if statement

 {

 MotorStop(); // motor stop task

 Serial.println("Stop All White"); // Serial shows TEXT

 }

 else if (L1Value <threshold && C0Value<threshold && R1Value >threshold) //

else if statement

 {

 MotorTurnLeft(); // motor turn left task

 Serial.println("Move Left (L1 and C0 on BLACK)"); // Serial shows TEXT

 }

57

 else if (L1Value >threshold && C0Value <threshold &&R1Value <threshold) //

else if statement

 {

 MotorTurnRight(); // motor turn right task

 Serial.println("Move Right (C0 and R1 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value <threshold && C0Value >threshold && R1Value >threshold) //

else if statement

 {

 MotorTurnLeftStatic(); // motor turnleftst task

 Serial.println("Move Left(Only L1 on BLACK)"); // Serial shows TEXT

 }

 else if (L1Value >threshold && C0Value >threshold && R1Value <threshold) //

else if statement

 {

 MotorTurnRightStatic(); // motor turnrightst task

 Serial.println("Move Right(Only R1 on BLACK)"); // Serial shows TEXT

 }

} // close void loop statement

void MotorForward() // MotorForward Task with PWM equal to 80

{

 analogWrite(M1, 80); // set the M1 as analog and Write the PWM to 80

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 analogWrite(M3, 80); // set the M3 as analog and Write the PWM to 80

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnLeft() // Motor TurnLeft Task with PWM equal to 80

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 analogWrite(M3, 80); // set the M3 as analog and Write the PWM to 80

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

58

}

 void MotorTurnLeftStatic() // Motor TurnLeftSt Task with PWM equal to 100

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 analogWrite(M2, 100); // set the M2 as analog and Write the PWM to 100

 analogWrite(M3, 100); // set the M3 as analog and Write the PWM to 100

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnRight() // Motor TurnRight Task with PWM equal to 80

{

 analogWrite(M1, 80); // set the M1 as analog and Write the PWM to 80

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

void MotorTurnRightStatic() // Motor TurnRightSt Task with PWM equal to 100

{

 analogWrite(M1, 100); // set the M1 as analog and Write the PWM to 100

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 analogWrite(M4, 100); // set the M4 as analog and Write the PWM to 100

}

void MotorStop() // Motor TurnStop Task

{

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

}

59

QUESTION

QUESTION 1:

Show the code to move a motor forward if all the motor pin is set to digital.

ANSWER

void loop ()

{

digitalWrite(M1,HIGH); //set the M1 as digital & Write the Signal as HIGH

digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

digitalWrite(M3, HIGH); //set the M3 as digital & Write the Signal as HIGH

digitalWrite(M4, LOW); //set the M4 as digital & Write the Signal as LOW

}

QUESTION 2:

Show the code to move a motor turn left if all the motor pin is set to digital.

ANSWER

void loop ()

{

digitalWrite(M1, LOW); //set the M1 as digital & Write the Signal as LOW

digitalWrite(M2, LOW); //set the M2 as digital & Write the Signal as LOW

digitalWrite(M3, HIGH); //set the M3 as digital & Write the Signal as HIGH

digitalWrite(M4, LOW); //set the M4 as digital & Write the Signal as LOW

}

60

QUESTION 3:

Show the code to stop a motor if the L1, C0 and R1 sensors are below the threshold.

ANSWER

void loop ()

{

 L1Value = analogRead(L1); // declare the L1Value based on analogRead(L1)

 C0Value = analogRead(C0); // declare the C0Value based on analogRead(C0)

 R1Value = analogRead(R1); // declare the R1Value based on analogRead(R1)

if (L1Value <threshold && C0Value <threshold && R1Value <threshold) // else if

statement

 {

 digitalWrite(M1, LOW); // set the M1 as digital and Write the Signal is LOW

 digitalWrite(M2, LOW); // set the M2 as digital and Write the Signal is LOW

 digitalWrite(M3, LOW); // set the M3 as digital and Write the Signal is LOW

 digitalWrite(M4, LOW); // set the M4 as digital and Write the Signal is LOW

 }

}

61

REFERENCES

AHMAD FARIZ, F. (2023). ANALISIS PENGGUNAAN KUASA(W) IR SENSOR

MENGAWAL LED DAN/TANPA PENGAWAL MIKRO UNTUK APLIKASI

ROBOTIK. Icrepe 2023.

Arduino. (2023). Doc. Retrieved from Arduino. cc: https://docs.arduino.cc

Components101. (2021, May 31). MX1508 DC Motor Driver with PWM Control.

Retrieved from Components 101: https://components101.com/

Eurofit. (2021). The reason car tires are circles and why it matters. Retrieved from

Eurofit /Home /News: https://www.eurofitgroup.com

GlobalData. (2023, June 6). Robotics innovation: Leading companies in line follower

robots. Retrieved from Verdict: https://www.verdict.co.uk

javatpoint. (2023). What is Microcontroller? Retrieved from java T point:

https://www.javatpoint.com

Jimmy Presler, J. M. (2023). Understanding black and white as colours. Retrieved from

Adobe: https://www.adobe.com

Kerstin. (2023, August 4). Understanding Arduino Nano – A Comprehensive Guide to

Features, Uses, and Comparisons. Retrieved from IBE Electronics:

https://www.pcbaaa.com

M. Pakdaman, M. M. (2010). A line follower robot from design to implementation:

Technical issues and problems. Computer and Automation Engineering

(ICCAE), 2010 The 2nd International Conference onVolume: 1 (pp. 5-9).

Singapore: 2010 The 2nd International Conference on Computer and

Automation Engineering (ICCAE).

Mandal, P. (2023, February 27). Line Follower Robot. Retrieved from Educba:

https://www.educba.com

Merriam-Webster. (2023). Wheel. Retrieved from Merriam-Webster Dictionary:

https://www.merriam-webster.com

Micheline. (2023). Functions of the tire. Retrieved from Michelin : The tire digest:

https://thetiredigest.michelin.com

Murmson, S. (2021). Why Do We Not List Black and White as Colors in Physics?

Retrieved from Seattle.PI: https://education.seattlepi.com

Murmson, S. (2021). Why Do We Not List Black and White as Colors in Physics?

Retrieved from Seattle Pi: https://education.seattlepi.com/

Robocraze. (2022, June 20). IR Sensor Working. Retrieved from Robocraze:

https://robocraze.com/

62

ROBU.IN. (2021). how-to-make-a-line-follower-robot-using-arduino-connection-code.

Retrieved from ROBU.IN: https://robu.in

School, E. (2019, Jan 29). Different types of Microcontroller Programming used in

Embedded Systems. Retrieved from Elysium Embedded School:

https://embeddedschool.in

Trolove, H. (2018, April). Using the MX1508 Brushed DC Motor Driver. Retrieved from

www.techmonkeybusiness.com: https://www.techmonkeybusiness.com

Volchko, J. (2018). Visible Light Spectrum: From a Lighting Manufacturer's

Perspective. Retrieved from LUMITEX: https://www.lumitex.com/blog/visible-

light-spectrum

Wheel-Talk. (2019, January 28). Why Are Wheels Circular? Retrieved from Santa Ana

Wheel: https://www.santaanawheel.com

63

LINE FOLLOWER ROBOT
AHMAD FARIZ BIN FAUZI

Ts. Hj. MOHD NORDIN BIN MOHD JANI

This Line Follower Robot e-book is a reading material

that provides the best input to readers in the quest to

produce a robot using NANO's Arduino controller,

MX1508 driver motor, and IR TCRT5000 3 array

sensor. This book contains a breakdown of chapters

detailing each part needed in robot production and

coding. Interestingly in this book, all the coding

produced is the basic code of the Arduino only and no

library is used. The main purpose of using basic coding

is to facilitate readers' understanding of how easy it is

to create Arduino codes specifically to produce robot

line followers. It is undeniable that encoding using the

PID control system produces more effective robots, but

readers must first understand the basics of analog and

digital sensor encoding and PWM encoding. This book

contains a tutorial that applies all the necessary coding

basics without a PID controller.

SAIFFUL BAHARI BIN OMAR

