
INHERITANCE
AND

POLYMORPHISM

sophian bin sout
mazliza binti roslan

OBJECT ORIENTED PROGRAMMING :

Politeknik Mukah

1st EDITION

1st EDITION

sophian bin sout
mazliza binti roslan

Politeknik Mukah

OBJECT ORIENTED PROGRAMMING :

INHERITANCE
AND

POLYMORPHISM

All rights reserved. No part of this publication may be reproduced, distributed,
or transmitted in any manner or by means, including photocopying, recording,

or other electronic or mechanical methods without the prior written
permission of the publisher in writing from the Politeknik Mukah, Sarawak.

Perpustakaan Negara Malaysia

Published in Malaysia By:
Politeknik Mukah
KM 7.5 Jalan Oya
96400 Mukah,
Sarawak, Malaysia

No Tel : +6084-874001
Fax : +6084-874005
Website : https://www.pmu.edu.my

Object Oriented Programming : Inheritance and Polymorphism
1st Edition
Author : Sophian bin Sout
 Mazliza binti Roslan

Copyright ©2024
e ISBN 978-629-7710-05-1

https://www.pmu.edu.my/

Preface

This book offers a beginner-friendly introduction to inheritance and
polymorphism in Object-Oriented Programming (OOP), focusing on Java.
Designed for students new to programming, it explains these essential OOP
concepts with clear, easy-to-understand examples and practical code
snippets. The book starts with a gentle overview of OOP and inheritance,
illustrating how classes can reuse and extend existing code, followed by a
deep dive into polymorphism, showing how objects can take multiple forms
at runtime. Each concept is accompanied by real-world examples, diagrams,
and explanations to build confidence in writing Java programs. By the end,
readers will have the foundational knowledge to write efficient, maintainable
object-oriented code using inheritance and polymorphism.

1

Synopsis

TABLE OF CONTENTS

2
Learning Outcomes 3

Introduction 4
Features 6
Approach 7
Benefits 8
Concepts 9
Objects

12
Attributes

10

Behaviour
11

Inheritance

Object Oriented Programming

Introduction 13
Extends 15
Base Class 16
Derived Class 17
Single 19
Multilevel 21
Multiple 23
Protected Access Specifier 24
Constructors 26
Super 27
Augmented Reality AR 29

Polymorphism
Introduction 30
Method Overriding 33
Method Overloading 40
Operator Overloading 45

Author 49-

-
 -

 -
 -
-
-
-

 -
-
 -

 -
 -

-
 -

-
 -

 -
 - - - - - - - - - - - - - -

 -
-

 - - - - - - - - - - - - - - - - -

 -
 - - - - - - - - - - - - - - - - - - -
 - - - - - -- - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - -

SYNOPSIS

Introduces students to the principles and concepts behind
the paradigm of object oriented programming.

Introduces students to write, compile and run programs,
make effective use of some of the standard packages,

write object-oriented code using inheritance and
polymorphism.

2

Construct Object Oriented Programming concept and
exception handling in Java Programming.

LEARNING
OUTCOMES

Display skills to use graphical/visual data to visualize the
concept of OOP.

Follow the professional ethics in group to develop a solution
for a given scenario.

3

INTRODUCTION
OOP

Object Oriented Programming (OOP) is based on the concept
of "objects".

It can contain data, in the form of fields (often known as
attributes or properties), and code, in the form of

procedures (often known as methods).

�A feature of objects is an object's procedures that can
access and often modify the data fields of the object with

which they are associated.

�In OOP, computer programs are designed by making them
out of objects that interact with one another.

4

OOP
INTRODUCTION

5

A programming paradigm based upon objects (having both
data and methods) that aims to incorporate the

advantages of modularity and reusability.

�Objects, which are usually instances of classes, are used to
interact with one another to design applications and

computer programs.

FEATURES
OOP

Bottom up approach in program design

Programs organized around objects, grouped in classes

Focus on data with methods to operate upon object’s data

Interaction between objects through functions

Reusability of design through creation of new classes by
adding features to existing classes

6

APPROACH
OOP

7

An object in nature, process certain characteristics that are
unique to it.

A real world object also exhibits unique behavior, described

as operation.

In OOP, the unique characteristics are attributes of an
object ,and the unique behaviors are the methods of an

object.

BENEFITS
OOP

8

Creating well-structured program

Easily reusable

Easily extended

Reduce maintenance cost

Encapsulation

Less flaws design

Inheritance - code reuse

Polymorphism - flexibility

CONCEPTS
OOP

Object

Attribute Behaviour

9

OBJECT
OOP

Something that is or is capable of being seen, touched, or
other wise sensed, and about which users store data and

associate behavior

1 0

Object

Attribute Behaviour

ATTRIBUTE
OOP

1 1

Object

Attribute Behaviour

The individual things that differentiate one object from
another and determine the appearance, state, or other

qualities of that object

The data that represent characteristics of interest about an
object

BEHAVIOUR
OOP

1 2

Object

Attribute Behaviour

A set of operations that it performs to meet the system
goal

The only way objects can do anything to themselves or
have anything done to them

INHERITANCE
OOP

Creating new classes based on existing ones.

A class that inherits from another class can reuse the
attributes and methods of that class.

You can add new attributes and methods to your current
class as well.

1 3

INTRODUCTION

INHERITANCE
OOP

Child class inherits the attributes and methods from
Parent class

Parent class Child class

1 4

INTRODUCTION

INHERITANCE
OOP

Keyword extends is used to inherit a subclass from the
superclass.

EXTENDS

1 5

INHERITANCE
OOP

Super class

BASE CLASS

ParentOld class

The class being inherited from

1 6

INHERITANCE
OOP

DERIVED CLASS

The class that inherits from another class

Sub class

ChildNew class

1 7

INHERITANCE
OOP

The sub class inherits all of its attributes and methods
defined by the super class

It also adds its own attributes and methods

The sub class can be said that it is specialized version of
super class.

DERIVED CLASS

1 8

INHERITANCE

One class extends one class only

A super class can have any number of sub classes but a sub
class can have only one super class

SINGLE

OOP

1 9

INHERITANCE

SINGLE

OOP

2 0

INHERITANCE

Is the extension of Single Inheritance

When a class is inherited from another sub class, then it is
Multilevel Inheritance

The sub class at the lowest level can access the member
attributes and methods of all the super classes at the

higher level

MULTILEVEL

OOP

2 1

INHERITANCE

MULTILEVEL

OOP

2 2

INHERITANCE

Inherited from more than one existing class

The inherited class is a sub class and all the existing classes
from which the sub class is created are super classes

Java supports Multiple Inheritance through a concept called
Interface

MULTIPLE

OOP

2 3

INHERITANCE

The protected access modifier is accessible within package
and outside the package but through inheritance only

Protected attributes and methods allow the class itself,
classes inside and sub classes to access them

PROTECTED
ACCESS

SPECIFIER

OOP

2 4

INHERITANCE

PROTECTED
ACCESS

SPECIFIER

The hairColour attribute in A class is set to a protected access
modifier. B class can access the attribute

If it is set to private, B class would not be able to access the
attribute

OOP

2 5

https://www.w3schools.com/java/java_modifiers.asp
https://www.w3schools.com/java/java_modifiers.asp

INHERITANCE

If we want to call parameterized constructor of base class,
then we can call it using super()

Base class constructor call must be the first line in derived
class constructor

CONSTRUCTORS

OOP

2 6

INHERITANCE

Super is a reference attributes that is used to refer
immediate parent class object.

SUPER

OOP

2 7

INHERITANCE

SUPER

Super is used to invoke immediate parent class construction

Super is used to invoke immediate parent class methods

Super is used to refer immediate parent class attributes

USES

OOP

2 8

INHERITANCE
OOP

2 9

AUGMENTED
REALITY (AR)

POLYMORPHISM

Polymorphism is an important concept of object-oriented
programming. It simply means more than one form.

It occurs when we have many classes that are related to
each other by inheritance.

OOP

3 0

INTRODUCTION

Inheritance lets us inherit attributes and methods
from another class.

Polymorphism uses those methods to perform
different tasks. This allows us to perform a single

action in different ways.

Parent class Child class

POLYMORPHISM
OOP

3 1

INTRODUCTION

POLYMORPHISM

We can achieve polymorphism in Java using the following
ways.

OOP

3 2

INTRODUCTION

METHOD
OVERRIDING

METHOD
OVERLOADING

OPERATOR
OVERLOADING

POLYMORPHISM

When the same method is present in both a superclass and
a subclass, and the subclass method overrides the

superclass method, this is known as method overriding.

In object-oriented programming, method overriding allows a
subclass to provide a specific implementation of a method

that is already defined in its superclass.

METHOD
OVERRIDING

OOP

3 3

POLYMORPHISM

Same Method Signature
The method in both the superclass and subclass must have

the same name, return type, and parameters.
Dynamic Polymorphism

Method overriding is a form of dynamic polymorphism,
meaning the method that gets called is determined at

runtime based on the object type.
Super Keyword

In many languages, such as Java or Python, you can use the
super keyword in the subclass to invoke the overridden

method in the superclass.
Subclass Behavior

The method in the subclass takes precedence over the
superclass method when invoked on an instance of the

subclass.

METHOD
OVERRIDING

OOP

KEY POINTS

3 4

POLYMORPHISM

Superclass Method
The display() method in the Superclass outputs a specific

message.

Subclass Override
The display() method in the Subclass overrides the one in

the superclass and outputs a different message.

Polymorphism
Even when a superclass reference points to a subclass
object (Superclass superClassRef = new Subclass();), the

subclass version of the method is invoked.

METHOD
OVERRIDING

OOP

EXPLANATION

3 5

POLYMORPHISM

We can also create different methods

calculateSquareArea() to calculate area of Square
calculateCircleArea() to calculate area of Circle
calculateRectangleArea() to calculate area of Rectangle

This will work perfectly.
However, for every shape, we need to create different

methods.

It will make our code inconsistent.

OOP

3 6

METHOD
OVERRIDING

INCONSISTENT CODE

POLYMORPHISM

To solve this, polymorphism in Java allows us to create a
single method that will behave differently for different

shapes.

The same method can perform different operations in
different scenarios.

calculateArea() to calculate area of Square
calculateArea() to calculate area of Circle
calculateArea() to calculate area of Rectangle

This method will work more perfectly.

Polymorphism will make our code consistent.

OOP

3 7

CONSISTENT CODE

METHOD
OVERRIDING

POLYMORPHISM
OOP

3 8

METHOD
OVERRIDING

PRACTICAL CODE

POLYMORPHISM
OOP

METHOD
OVERRIDING

3 9

PRACTICAL CODE

POLYMORPHISM

When methods in the same class share the same name but
differ in parameters (number, type, or both), it is called

method overloading.

This feature enables a class to perform different operations
based on the type or number of arguments passed.

Method overloading is a form of compile-time polymorphism
in Java.

METHOD
OVERLOADING

OOP

4 0

POLYMORPHISM

Same method name but different parameter lists (either in
type, number, or order of parameters).

Return type can be different, but it doesn’t affect method
overloading.

The method that gets called is determined at compile-time
based on the arguments provided.

Overloading happens in the same class (or in subclasses
using inherited methods).

METHOD
OVERLOADING

OOP

KEY FEATURES

4 1

POLYMORPHISM

METHOD
OVERLOADING

OOP

4 2

PRACTICAL CODE

POLYMORPHISM

METHOD
OVERLOADING

OOP

Different Parameters
add(int a, int b) adds two integers.

add(int a, int b, int c) adds three integers.
add(double a, double b) adds two double values.

Compile-Time Polymorphism
When the code is compiled, the correct version of the add()

method is determined based on the arguments passed.

Overloaded Methods
Although the methods share the same name (add), they are
treated as different methods because their parameter lists

differ.

EXPLANATION

4 3

POLYMORPHISM

METHOD
OVERLOADING

OOP

KEY DIFFERENCES BETWEEN OVERLOADING AND
OVERRIDING

aspect
method

overloading
method

overriding

Location Same class
Subclass overrides superclass

method

Polymorphism Compile-time polymorphism Runtime polymorphism

Parameters
Must differ in type, number, or

order
Same signature as superclass

Return Type Can differ Must be the same or covariant

Inheritance Not required Involves inheritance

4 4

POLYMORPHISM

In Java, the + operator serves a dual purpose:

Arithmetic Addition: When used with numeric operands
(integers, floats, doubles, etc.)

String Concatenation: When used with strings.

OPERATOR
OVERLOADING

OOP

4 5

POLYMORPHISM

When + is used with numbers (integers and floating-point
numbers), it performs mathematical addition.

OPERATOR
OVERLOADING

OOP

4 6

POLYMORPHISM

When we use the + operator with strings, it will perform
string concatenation (join two strings).

OPERATOR
OVERLOADING

OOP

When one operand is a string, the + operator converts the
other operand to a string and concatenates them.

In the second example, age (an int) is converted to "40"
before being concatenated with the "Age: " string.

4 7

Operands Operation Result

Both numeric Arithmetic addition Numeric sum

At least one string String concatenation Concatenated string

POLYMORPHISM

The + operator is versatile in Java, making it easy to
perform both arithmetic operations and string

manipulations with minimal syntax.

Understanding how it behaves with different operand types
is essential to avoid unintended results.

OPERATOR
OVERLOADING

OOP

SUMMARY

4 8

SOPHIAN BIN SOUT

PENSYARAH
Politeknik Mukah

MAZLIZA BINTI ROSLAN

PENSYARAH
Politeknik Mukah

4 9

AUTHOR

