
DIY MODULEDIY MODULE
TUAN ROZILAAZAWANI BINTI TUAN MAT

HASYIREEN BINTI ABDUL HALIM
DR. KHAIRUNNISA BINTI A RAHMAN

ARDUINO UNO R3
EMBEDDED ROBOTIC

0

ARDUINO UNO R3
DIY MODULE

EMBEDDED ROBOTIC

TUAN ROZILAAZAWANI BINTI TUAN MAT
HASYIREEN BINTI ABDUL HALIM

DR. KHAIRUNNISA BINTI A RAHMAN

1

First Publication: July 2024

©Copyright 2024

This ebook is the original work of
Tuan Rozilaazawani binti Tuan Mat
Hasyireen binti Abdul Halim
Dr. Khairunnisa binti A Rahman

Editor
Tuan Rozilaazawani binti Tuan Mat

Graphic Designer
Shamsul bin Mazalan

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
prior permission of author/s or publisher. The author also does not
guarantee that the content is suitable for the reader, but all the content is
through the author's own experience and expertise.

Published by:
Petrochemical Engineering Department,
Politeknik Tun Syed Nasir Syed Ismail,
Hab Pendidikan Tinggi Pagoh,
KM1 Jalan Panchor
84600 Panchor, Muar, Johor, Malaysia

2

PREFACE

In the name of Allah, the Most Gracious, the Most Merciful, we extend our

heartfelt gratitude to Him for granting us enlightenment, truth, and knowledge. With

utmost respect, we acknowledge Prophet Muhammad S.A.W. for guiding us along

the righteous path. We are deeply thankful to Allah S.W.T. for providing us the

strength to write this book, and we pray that He continues to grant us the ability to

serve our community, particularly in the field of robotics.

This book serves as a comprehensive guide to Do-It-Yourself (DIY) and

project-based learning, specifically focusing on robotic system design using the

Arduino UNO R3 microcontroller. Even if you lack fundamental skills and knowledge

in C programming, there's no need to worry; this book is designed to provide you with

the essential skills and understanding needed to write source code for robotic

systems. Furthermore, the book aligns with the learning objectives that emphasize

hands-on experiences in embedded robotics, including software application skills, C

programming, result analysis, hardware development, and embedded system design.

The book comprises six practical tasks: Introduction to Arduino Editor and

Proteus Software, Basic Robotic Programming in C, Arduino UNO R3

Microcontroller, Robotic Controller Programming in C, Mobile Robot Design, and

Sumo Robot Design. Each task provides a theoretical overview followed by hands-on

activities to reinforce basic concepts. Additionally, each practical task is

supplemented with questions and answers to facilitate learning.

By the end of these practical tasks and exercises, you will be able to

comprehend robot positioning, identification, and communication in mobile robot

control as per standard robotic regulations. You will also learn to apply sensors and

actuators, manage robot identification and communication, and design Sumo robots

using land mobile robot principles.

We welcome any comments and suggestions to further enhance the quality of

this book. It is our sincere hope that this book proves to be a valuable resource for

beginner robotic programmers using the Arduino UNO R3.

3

AUTHOR

Tuan Rozilaazawani binti Tuan Mat

is a Lecturer in Electrical and Instrumentation within the
Department of Petrochemical Engineering at Politeknik
Tun Syed Nasir Syed Ismail. She earned her Bachelor's
degree in Electrical Engineering from Kolej Universiti
Teknologi Tun Hussein Onn and completed her
Master’s degree in Technical and Vocational Education
in 2004. With 20 years of experience in teaching
Electrical and Electronic Engineering, she brings a
wealth of knowledge and expertise to her role.

Hasyireen binti Abdul Halim

is a Lecturer in Electrical and Instrumentation at the
Department of Petrochemical Engineering, Politeknik
Tun Syed Nasir Syed Ismail. She obtained her
Bachelor's degree in Telecommunication Engineering
from the University of Malaya (UM) and completed her
Master of Engineering in Industrial Electronics &
Control Engineering in 2012. With 16 years of
experience in teaching Electrical and Electronic
Engineering, she offers extensive expertise and insight
in her field.

Dr. Khairunnisa binti A Rahman

is a Lecturer in Electrical and Instrumentation within the
Department of Petrochemical Engineering at Politeknik
Tun Syed Nasir Syed Ismail. She earned her Bachelor's
degree in Electrical Engineering from Kolej Universiti
Teknologi Tun Hussein Onn (KUiTTHO) and completed
her Master’s degree in Technical and Vocational
Education at the same institution in 2004. She went on
to pursue a PhD in Mechanical Engineering, focusing
on energy efficiency, and graduated from Universiti Tun
Hussein Onn Malaysia (UTHM) in 2017. With nearly 19
years of experience, Dr. Khairunnisa has extensive
expertise in teaching electrical and electronic
engineering.

4

CONTENT

NO. ITEMS NO. OF PAGES

1 Introduction 6 - 7

2 Practical Task Overview 8

3 Arduino UNO R3 Microcontroller 8 - 9

4 Hardware and Software Preparation 10 - 12

5 Hardware Specification 13

6 Arduino UNO R3 DIY Kit 13

7 DIY Kit Operational Procedure 14

8 Practical Task 15 - 16

 ▪ Practical Task 1: Introduction to Arduino Editor and

Proteus Software

17 - 21

 ▪ Practical Task 2: Basic Robotic Programming in C 22 - 32

 ▪ Practical Task 3: Arduino UNO R3 Microcontroller 33 – 40

 ▪ Practical Task 4: Robotic Controller Programming in C 41 - 45

 ▪ Practical Task 5: Mobile Robot Design 46 - 49

 ▪ Practical Task 6: Sumo Robot Design 50 - 51

9 References 57

5

 1.0 Introduction

In recent years, hands-on learning methodologies such as problem-based and project-

based learning (PBL) have grown in popularity in the engineering classroom. Since its

beginnings, PBL has had a substantial impact on students' knowledge of basic principles

taught in courses, and it extends this learning by allowing students to apply this material to

real-world applications (Chi & City, 2022).

The advancement of computing technology, such as embedded robotics, has

introduced new challenges to the landscape of computer engineering education (Rosa et

al., 2021). Numerous research has produced an innovative project-based course to meet

the requirement for engineering graduates to have a good grasp and skill in embedded

system design. It has the potential to be an educational technique that offers learners

realistic learning tasks based on their specific interests (Tian, 2021). As far as the

literature is concerned, the popularity of robotics and programming are increasing in

educational environments (Uzun, 2020).

For instance, in the year 2020, the DGI40122 Embedded Robotic Course has been

launched with the latest revised syllabus in Malaysian Polytechnic by the Ministry of

Higher Education's Department of Polytechnic and Community College. The course

teaches students at the basic and intermediate levels how to combine mobile robots and

embedded systems.

Despite the fact that PBL is commonly used in embedded robotics, it is demonstrated

that there is still a lack of suitable guidance on the intended approach for the creation of

practical work processes that take this into consideration, especially for the Malaysian

polytechnic. Furthermore, it was observed that there was a lack of diverse types of

practical work series that best provided a more complete understanding of assessment

towards the applicability of embedded robotic teaching methods (Jawaid et al., 2020).

The implications will result in practical pedagogy only focused on one means of

communication for electrical and instrumentation engineering students without displaying

the interconnection between user experience and soft skills development. The effective

teaching of practical work series for embedded robotics, on the other hand, necessarily

involves interaction with particular technological goal-setting pertaining to programming

and hardware, for instance, using the Arduino microcontroller, C programming

6

development for embedded robotics, and project design experience.

Thus, the initiatives for the development of practical work procedures must be taken in a

planned manner. The Embedded Robotics DGI140122 was chosen to illustrate this

conceptual analysis because it provides a novel, systematic assessment technique for

combining these two types of methods. This practical work series was created with the use of

an Arduino microcontroller, a land mobile robot, the Arduino Editor, and the Proteus

software.

There are three structured combinations: (1) dealing with embedded systems, to

evaluate students’ cognitive skills such as programming and application of the C

language; (2) sensors and actuators, a psychomotor assessment to observe results and

gain judgements from embedded systems design; and (3) mobile robot design, a mix of

psychomotor and cognitive abilities to observe results and acquire judgments from

embedded systems design. Jawaid et al., (2020) supported that a successful course

design strategy of PBL in teaching engineering content to the learners was of the utmost

importance in the robotic field.

In embedded robotics, the PBL function is predominantly expressed in three main

categories: (i) Pedagogical optimization methods; (ii) Gaming competitions that assess

technical criteria; and (iii) Course learning outcomes evaluation (depicting Figure 1 for

references). It appears that the course learning outcomes assessment followed by

pedagogical optimization methods are by far the most favored in the studies reviewed,

indicating a more theoretical or conceptual purpose for the PBL.

Engineering students can receive good benefits from PBL because it gives hands-on,

real-world experience that helps comprehend technical ideas and concepts better. By

assigning tasks that lead to the development of a final product in terms of design, model,

device, program coding, and simulation, PBL gives direction and encourages self-directed

and active learning (Larson et al., 2020).

7

2.0 Practical Task Overview

You must be familiar with this manual in order to complete the exercises given within. With all

these exercises, you will learn about:

i. Introduction to Arduino Editor and Proteus Software

ii. Basic Robotic Programming in C

iii. Arduino UNO R3 Microcontroller

iv. Robotic Controller Programming in C

v. Mobile Robot Design

vi. Sumo Robot Design

Upon completion of these laboratory and exercises, you will be able to determine the concept

of robot positioning, identification and communication in mobile robot control according to

standard robot organization regulation; manipulates the application of sensor and actuator,

robot identification and communication during practical work based on land mobile robot

design; and organize mini competition among themselves to compete using land mobile

robot.

3.0 Arduino UNO R3 Microcontroller

Arduino Uno R3 is a microcontroller board based on the ATmega328P. It has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs,

a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a

reset button. It contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with a AC-to-DC adapter or

battery to get started.. You can tinker with your UNO without worring too much

about doing something wrong, worst case scenario you can replace the chip for a

few dollars and start over again.

"Uno" means one in Italian and was chosen to mark the release of Arduino

Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) were

the reference versions of Arduino, now evolved to newer releases. The Uno board

is the first in a series of USB Arduino boards, and the reference model for the

Arduino platform; for an extensive list of current, past or outdated boards see the

Arduino index of boards.

8

Summary

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output) : 0-13

Analog Input Pins 6 (A0-A5)

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

Flash Memory 32KB (ATmega328) of which 0.5KB used by bootloader

SRAM 2KB (ATmega328)

EEPROM 1KB (ATmega328)

Clock Speed 16MHz

Figure 1: Arduino UNO R3 Board

Figure 1 shows the Arduino Uno Board. For more information please refer to the datasheet.

The data sheet can be found at https://www.farnell.com/datasheets/1682209.pdf

9

4.0 Hardware and Software Preparation

This Arduino UNO R3 DIY Module Embedded Robotic covers the basic concept and

application of microcontroller systems based on the Arduino Uno R3. Users will learn

software and hardware development on Arduino development system such as Arduino

Software (IDE) and understand how to do interfacing with external devices using suitable

internal chip features. Users are also exposed to the new Microcontroller Unit (MCU)

simulation software such as Proteus.

Hardware Setup

The basic hardware in this teaching kit are Arduino Uno R3, computer/laptop and USB cable.

Basic hardware connection to a computer/laptop as shown in Figure 2.

Figure 2: Basic Hardware Connection

Computer/Laptop

Arduino Uno

USB Cable

10

Arduino Software (IDE)

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the

board. This software can be used with any Arduino board. Arduino is an open-source

physical computing platform based on a simple I/O board and a development environment

that implements the Processing/Wiring language. Arduino can be used to develop stand-

alone interactive objects or can be connected to software on your computer (e.g. Flash,

Processing and MaxMSP). The boards can be assembled by hand or purchased

preassembled; the open-source IDE can be downloaded for free at https://arduino.cc

Figure 3: Arduino

Active development of the Arduino software is hosted by GitHub. This organisation contains

the official Arduino tools (IDE, CLI...), documentation and cores. See @arduino-libraries for

the official libraries or https://github.com/arduino

Figure 4: Arduino Editor

https://www.arduino.cc/en/Main/Software
https://github.com/arduino/Arduino/
https://github.com/arduino-libraries

11

Proteus 7/8 Professional

Proteus is simulator software which is capable to simulate any circuit and scenario. Mainly, it

is best for microcontrollers. Proteus professional design combines the ISIS schematic

capture and ARES PCB layout programs to provide a powerful, integrated and easy to use

tools suite for education and professional PCB Design.

The Proteus Professional are software for automated design of electronic circuits. The

package is a system of circuit simulation, based on the models of electronic components in

SPICE. A distinctive feature of the package Proteus Professional is the possibility of

modelling of the programmable devices: microcontrollers, microprocessors, DSP and others.

Figure 5: Proteus Workspace

12

5.0 Hardware Specification

Table 1 shows the hardware specification for Arduino UNO R3 DIY Kit.

Table 1: Arduino UNO R3 DIY Kit Hardware Specification

No Components Quantity

1 Arduino UNO R3 1

2 2WD Smart Robot Car Chassis 1

3 Ultrasonic Sensor HC-SR04 1

4 Auto-calibration Line Sensor 1

5 Bluetooth Module HC-05 1

6 Dual H-Bridge Driver L293D 1

7 LiPO Rechargeable Battery 11.1V 2200mAh 1

8 Multi-Function LiPO Balance Charger 1

9 Arduino Editor 1

10 Proteus Software 1

11 Computer/Laptop 1

6.0 Arduino UNO R3 DIY Kit

Figure 6: Hardware Specification

13

7.0 DIY Kit Operational Procedure

i. Prepare all the equipment and material use such as Arduino UNO R3, input-output

(I/O) components, robot mobile and USB cable.

ii. Plug one end of the USB cable into the USB Arduino board. Plug the other end into a

USB port on your PC.

iii. The lights indicator on the Arduino board will turn on. It shows that the equipment is in

good condition.

iv. Open Arduino Editor workspace window. Select menu Tools – Board: “Arduino UNO”

– Select Arduino UNO.

v. Then, select menu File – Preferences – menu Settings – checked box “Show verbose

output during: √ compilation – then OK.

vi. Follow the next procedure to complete the practical work.

14

PRACTICAL TASK

15

[CONTENT OF PRACTICAL TASK]

1. PT1 : INTRODUCTION TO ARDUINO EDITOR AND PROTEUS SOFTWARE

2. PT2 : BASIC ROBOTIC PROGRAMMING IN C

3. PT3 : ARDUINO UNO R3 MICROCONTROLLER

4. PT4 : ROBOTIC CONTROLLER PROGRAMMING IN C

5. PT5 : MOBILE ROBOT DESIGN

6. PT6 : SUMO ROBOT DESIGN

16

PRACTICAL TASK 1

INTRODUCTION TO ARDUINO EDITOR AND PROTEUS
SOFTWARE

LEARNING OBJECTIVES:

Students will be able to;

1. Perform an installation of Proteus software and Arduino Editor.

2. Write a C program that will run on the Arduino Uno.

3. Assembles a C program to define input and output programming.

4. Make an observation on the output of C program using Proteus.

EQUIPMENTS:

 1. Arduino IDE Installer

 2. Proteus Installer

 3. Computer

THEORY:

ARDUINO UNO

Arduino Uno is a microcontroller board based on the ATmega328P (datasheet). It

has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6

analog inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP

header and a reset button. It contains everything needed to support the

microcontroller; simply connect it to a computer with a USB cable or power it with

a AC-to-DC adapter or battery to get started.. You can tinker with your UNO

without worring too much about doing something wrong, worst case scenario you

can replace the chip for a few dollars and start over again.

"Uno" means one in Italian and was chosen to mark the release of Arduino

Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE)

were the reference versions of Arduino, now evolved to newer releases. The Uno

board is the first in a series of USB Arduino boards, and the reference model for

the Arduino platform; for an extensive list of current, past or outdated boards see

the Arduino index of boards.

http://www.atmel.com/Images/doc8161.pdf

17

Figure 1 : Arduino Uno Board

PROTEUS

Proteus Professional is a software which can be used to draw schematics, PCB layout,

code and even simulate the schematic. It is developed by Labcenter Electronic Ltd.

It is a software suite containing schematic, simulation as well as PCB designing. ISIS is

the software used to draw schematics and simulate the circuits in real time. The simulation

allows human access during run time, thus providing real time simulation.

ISIS has wide range of components in its library. It has sources, signal generators,

measurement and analysis tools like oscilloscope, voltmeter, ammeter etc., probes for real

time monitoring of the parameters of the circuit, switches, displays, loads like motors and

lamps, discrete components like resistors, capacitors, inductors, transformers, digital and

analog Integrated circuits, semi-conductor switches, relays, microcontrollers, processors,

sensors etc.

http://www.circuitstoday.com/best-analog-oscilloscope-guide
http://www.circuitstoday.com/proteus-tutorial-switches-and-relays
http://www.circuitstoday.com/proteus-tutorial-led-and-bar-graph

18

PROCEDURES A

A. Arduino Software Installation

1. Double-click to arduino-1.8.3-windows file in your Installer Folder.

2. Finish the installation.

3. Create an Arduino desktop shortcut.

B. Proteus Software Installation

1. Follow all the instructions in Proteus Installation Note file in your Installer Folder.

2. Finish the installation.

3. Create a Proteus desktop shortcut.

C. How to Add Arduino Board to Proteus 7

1. Copy Arduino Library files.

2. Open file location of Proteus 7.

3. Browse Labcenter Electronics folder in Program Files (x86).

4. Open LIBRRAY folder.

5. Paste Arduino Library into LIBRARY folder.

6. Arduino Library allocate in the LIBRARY Proteus 7.

D. How to Add Arduino Board to Proteus 8

1. Copy Arduino Library files (*.LIB dan *.IDX).

2. Open Folder Options and on radio button for “Show hidden files, folders, and

drivers”. Then select Apply.

3. Browse Labcenter Electronics folder in Program Files.

4. Open LIBRRAY folder.

5. Paste Arduino Library into LIBRARY folder.

6. Arduino Library allocate in the LIBRARY Proteus 8.

19

Figure 2 : Folder Options for Show Hidden Files

20

QUESTIONS & ANSWERS

1. Explain the function of Proteus software.

Proteus 7/8 Professional is a software which can be used to draw schematics, PCB

layout, code and even simulate the schematic.

2. What is Arduino Editor?

The open-source Arduino Software (IDE) makes it easy to write code and upload it to

the board. This software can be used with any Arduino board.

3. What is C programming language?

C is a powerful general-purpose programming language. It can be used to develop

software like operating systems, databases, compilers, and so on.

21

PRACTICAL TASK 2

BASIC ROBOTIC PROGRAMMING IN C

LEARNING OBJECTIVES:

Students will be able to;

1. Write a C program for the Delay subroutine and language subroutines.

2. Assembles a C program to define analog and digital input output.

3. Sketch a schematic circuit of LED Blink, Seven Segment and LCD Display using

Proteus.

4. Make an observation on the output of C program using Proteus.

EQUIPMENTS:

 1. Arduino Editor

 2. Proteus Software

 3. Computer

THEORY:

ARDUINO EDITOR

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the

board. It runs on Windows, Mac OS X, and Linux. The environment is written in Java and

based on Processing and other open-source software.

This software can be used with any Arduino board. The Arduino Web Editor allows you to

write code, save it to the cloud and upload sketches to any Arduino board and Intel®-

based platforms from your web browser after installing a simple plug-in.

22

Figure 1 : Arduino Editor

PROTEUS

Proteus 7 Professional is a software which can be used to draw schematics, PCB layout,

code and even simulate the schematic. It is developed by Labcenter Electronic Ltd.

It is a software suite containing schematic, simulation as well as PCB designing. ISIS is

the software used to draw schematics and simulate the circuits in real time. The simulation

allows human access during run time, thus providing real time simulation.

ISIS has wide range of components in its library. It has sources, signal generators,

measurement and analysis tools like oscilloscope, voltmeter, ammeter etc., probes for real

time monitoring of the parameters of the circuit, switches, displays, loads like motors and

lamps, discrete components like resistors, capacitors, inductors, transformers, digital and

analog Integrated circuits, semi-conductor switches, relays, microcontrollers, processors,

sensors etc.

SEVEN-SEGMENT DISPLAY

A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display

device for displaying decimal numerals that is an alternative to the more complex dot-

matrix displays. Seven-segment displays are widely used in digital clocks, electronic

meters, and other electronic devices for displaying numerical information.

The seven elements of the display can be lit in different combinations to represent

the arabic numerals. Often the seven segments are arranged in anoblique (slanted)

arrangement, which aids readability. In most applications, the seven segments are of

nearly uniform shape and size (usually elongated hexagons, though trapezoids and

http://www.circuitstoday.com/best-analog-oscilloscope-guide
http://www.circuitstoday.com/proteus-tutorial-switches-and-relays
http://www.circuitstoday.com/proteus-tutorial-led-and-bar-graph
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Dot-matrix
http://en.wikipedia.org/wiki/Dot-matrix
http://en.wikipedia.org/wiki/Digital_clock
http://en.wikipedia.org/wiki/Arabic_numerals
http://en.wikipedia.org/wiki/Oblique_type
http://en.wikipedia.org/wiki/Hexagon
http://en.wikipedia.org/wiki/Trapezoid

23

rectangles can also be used), though in the case of adding machines, the vertical

segments are longer and more oddly shaped at the ends in an effort to further enhance

readability. The numerals 6, 7 and 9 may be represented by two or more different glyphs

on seven-segment displays. The seven segments are arranged as a rectangle of two

vertical segments on each side with one horizontal segment on the top, middle, and

bottom. Additionally, the seventh segment bisects the rectangle horizontally. There are

also fourteen-segment displays and sixteen-segment displays (for full alphanumerics);

however, these have mostly been replaced by dot-matrix displays. The segments of a 7-

segment display are referred to by the letters A to G, where the optional DP decimal

point (an "eighth segment") is used for the display of non-integer numbers.

In a simple LED package, typically all of the cathodes (negative terminals) or all of

the anodes (positive terminals) of the segment LEDs are connected and brought out to a

common pin; this is referred to as a "common cathode" or "common anode" device. Hence

a 7 segment plus decimal point package will only require nine pins (though commercial

products typically contain more pins, and/or spaces where pins would go, in order to match

standard IC sockets. For example, all the anodes of the A segments of each digit position

would be connected together and to a driver pin, while the cathodes of all segments for

each digit would be connected. To operate any particular segment of any digit, the

controlling integrated circuit would turn on the cathode driver for the selected digit, and the

anode drivers for the desired segments; then after a short blanking interval the next digit

would be selected and new segments lit, in a sequential fashion. In this manner an eight

digit display with seven segments and a decimal point would require only 8 cathode drivers

and 8 anode drivers, instead of sixty-four drivers and IC pins. A single byte can encode the

full state of a 7-segment-display. The most popular bit encodings are gfedcba and abcdefg,

where each letter represents a particular segment in the display. In

the gfedcba representation, a byte value of 0x06 would (in a common-anode circuit) turn on

segments 'c' and 'b', which would display a '1'.

Figure 2 : Interfacing LED's to Microcontroller

http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Adding_machine
http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Fourteen-segment_display
http://en.wikipedia.org/wiki/Sixteen-segment_display
http://en.wiktionary.org/wiki/alphanumeric
http://en.wikipedia.org/wiki/Dot-matrix
http://en.wikipedia.org/wiki/Decimal_point
http://en.wikipedia.org/wiki/Decimal_point
http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Anode
http://en.wikipedia.org/wiki/Integrated_circuit

24

Basically there are two types of 7-Segment displays:

1. Common Cathode where all the segments share the same Cathode.

2. Common Anode where all the segments share the same Anode.

Common Anode is order to turn ON a segment the corresponding pin must be set to 0.

And to turn it OFF if set to 1. Whereas Common Cathode is order to turn ON a segment the

corresponding pin must be set to 1. And to turn it OFF if set to 0. Figure 2 and 3 shown

truth table for Seven Segment decoder outputs.

Hex
No.

Seven Segment Conversion 7segment
equivalent dot g f e d c b a

0 1 1 0 0 0 0 0 0 CO

1 1 1 1 1 1 0 0 1 F9

2 1 0 1 0 0 1 0 0 A4

3 1 0 1 0 0 0 0 0 B0

4 1 0 0 0 1 0 0 1 99

5 1 0 0 0 0 0 1 0 92

6 1 0 0 0 0 0 1 0 82

7 1 1 1 1 1 0 0 0 F8

8 1 0 0 0 0 0 0 0 80

9 1 0 0 1 1 0 0 0 98

Figure 3: Common Anode (active Low) decoder outputs

Hex
No.

Seven Segment Conversion 7segment
equivalent dot g f e d c b a

0 0 0 1 1 1 1 1 1 3F

1 0 0 0 0 0 1 1 0 06

2 0 1 0 1 1 0 1 1 5B

3 0 1 0 0 1 1 1 1 4F

4 0 1 1 0 0 1 1 0 66

5 0 1 1 0 1 1 0 1 6D

6 0 1 1 1 1 1 0 1 7D

7 0 0 0 0 0 1 1 1 07

8 0 1 1 1 1 1 1 1 7F

9 0 1 1 0 1 1 1 1 6F

Figure 4: Common cathode (active High) decoder outputs

25

LCD Display

The 2x16 character LCD offers character display for embedded system. It can be used to

display numerical information, text message and also special symbol. We can control a

LCD using either 8 pins (8-bit interface) or 4 pins (4-bit interface), depending on the I/O

pins that we have.

Figure 5 : Connection of a 2x16 character LCD

PROCEDURES

A. Write and Compile Source Code

1. Open Arduino Editor.

2. Write and compile three (3) source codes as below.

i. LED Blink Source Code

void setup () {
 // initialize digital pin LED_13 as an output.

 pinMode (13, OUTPUT);
}

// the loop function runs over and over again forever
void loop () {
 digitalWrite (13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay (1000); // wait for a second
 digitalWrite (13, LOW); // turn the LED off by making the voltage LOW
 delay (1000); // wait for a second
}

26

ii. Seven Segment Source Code

void setup() {
 // put your setup code here, to run once:
pinMode(2,OUTPUT);
pinMode(3,OUTPUT);
pinMode(4,OUTPUT);
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
pinMode(7,OUTPUT);
pinMode(8,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
zero();
one();
two();
three();
four();
five();
six();
seven();
eight();
nine();

}
void zero() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,HIGH);
 digitalWrite(7,HIGH);
 digitalWrite(8,LOW);
 delay (1000);
}
void one() {
 digitalWrite(2,LOW);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,LOW);
 digitalWrite(6,LOW);
 digitalWrite(7,LOW);
 digitalWrite(8,LOW);
 delay (1000);
}

void two() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,LOW);
 digitalWrite(5,HIGH);
 digitalWrite(6,HIGH);
 digitalWrite(7,LOW);
 digitalWrite(8,HIGH);
 delay (1000);
}
void three() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,LOW);
 digitalWrite(7,LOW);
 digitalWrite(8,HIGH);
 delay (1000);
}
void four() {
 digitalWrite(2,LOW);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,LOW);
 digitalWrite(6,LOW);
 digitalWrite(7,HIGH);
 digitalWrite(8,HIGH);
 delay (1000);
}
void five() {
 digitalWrite(2,HIGH);
 digitalWrite(3,LOW);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,LOW);
 digitalWrite(7,HIGH);
 digitalWrite(8,HIGH);
 delay (1000);
}

27

iii. LCD Display Source Code

void six() {
 digitalWrite(2,HIGH);
 digitalWrite(3,LOW);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,HIGH);
 digitalWrite(7,HIGH);
 digitalWrite(8,HIGH);
 delay (1000);
}
void seven() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,LOW);
 digitalWrite(6,LOW);
 digitalWrite(7,LOW);
 digitalWrite(8,LOW);
 delay (1000);
}

void eight() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,HIGH);
 digitalWrite(7,HIGH);
 digitalWrite(8,HIGH);
 delay (1000);
}
void nine() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,LOW);
 digitalWrite(7,HIGH);
 digitalWrite(8,HIGH);
 delay (1000);
}

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (12, 11, 5, 4, 3, 2);

void setup () {
 // set up the LCD's number of columns and rows:
 lcd.begin (16, 2);
 // Print a message to the LCD.
 lcd.print ("Embedded Robotic");
}

void loop () {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor (0, 1);
 // print the number of seconds since reset:
 lcd.print(millis () / 1000);
}

28

B. Sketches Schematic Circuits

1. Open Proteus ISIS Schematic Capture.

2. Select the Component Mode from the left Toolbar.

3. Click On P (Pick From Libraries). D1 – common catod

4. Add all the required components.

5. Place the components on the workspace.

6. Wire up the circuit. R1= 330R

7. Click on Play Button on the bottom left to start simulation.

Figure 6 : LED Blink Schematic Circuits

29

Figure 7 : Seven Segment Schematic Circuits

Figure 8 : LCD Display Schematic Circuits

30

RESULTS

1. LED BLINK

LED on pin 13 is ON and OFF after 1 second continuously.

2. SEVEN SEGMENT

Seven segment will display number 0 to 9 continously.

3. LCD DISPLAY

LCD display “Embedded Robotic” and at the second row, it wil display counting number

start from 0 to infinity.

QUESTIONS & ANSWERS

1. Write a source code to blink TWO LEDs alternately.

void setup () {
// initialize digital pin LED_BUILTIN as an output.

pinMode (13, OUTPUT);
pinMode (10, OUTPUT);
}

// the loop function runs over and over again forever
void loop () {
 digitalWrite (13, HIGH); // turn the LED on (HIGH is the voltage level)
 digitalWrite (10, LOW); // turn the LED off by making the voltage LOW
 delay (1000); // wait for a second
 digitalWrite (10, HIGH); // turn the LED on by making the voltage HIGH
 digitalWrite (13, LOW); // turn the LED off by making the voltage LOW
 delay (1000); // wait for a second
}

31

2. Write a source code to display number 9 to 0 on seven segment.

void setup() {
 // put your setup code here, to run once:
pinMode(2,OUTPUT);
pinMode(3,OUTPUT);
pinMode(4,OUTPUT);
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
pinMode(7,OUTPUT);
pinMode(8,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
nine();
eight();
seven();
six();
five();
four();
three();
two();
one();
zero();
}
void zero() {
 digitalWrite(2,HIGH);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,HIGH);
 digitalWrite(6,HIGH);
 digitalWrite(7,HIGH);
 digitalWrite(8,LOW);
 delay (1000);
}
void one() {
 digitalWrite(2,LOW);
 digitalWrite(3,HIGH);
 digitalWrite(4,HIGH);
 digitalWrite(5,LOW);
 digitalWrite(6,LOW);
 digitalWrite(7,LOW);
 digitalWrite(8,LOW);
 delay (1000);
}
…………………..

32

3. Write a source code to display TWO lines message on LCD display.

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (12, 11, 5, 4, 3, 2);

void setup () {
 // set up the LCD's number of columns and rows:
 lcd.begin (16, 2);
 // Print a message to the LCD.
 lcd.print ("Embedded Robotic");
 lcd.setCursor (2,1);
 lcd.print (“PTSN Hebat”);
}

void loop () {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor (0, 1);
 // print the number of seconds since reset:
 lcd.print(millis () / 1000);
}

33

PRACTICAL TASK 3

ARDUINO UNI R3 MICROCONTROLLER

LEARNING OBJECTIVES:

Students will be able to;

1. Assembles a C program to control DC motors, LM35, LDR and ultrasonic sensor.

2. Sketch a schematic circuit of Arduino Uno using Proteus.

3. Make an observation on the output of C program using Proteus.

EQUIPMENTS:

1. Arduino Editor

2. Proteus Software

3. Computer

THEORY:

CIRCUIT SIMULATION IN PROTEUS

Proteus in Education Circuit simulation gives students a fast and fun practical learning tool.

A software solution allows instructors to prepare and re-use virtual labs. Flexible licensing

gives freedom for classes and assignments to be completed anywhere.

It is a software suite containing schematic, simulation as well as PCB designing. ISIS is

the software used to draw schematics and simulate the circuits in real time.

The simulation allows human access during run time, thus providing real time simulation.

LM35 temperature sensor

LM35 is a temperature sensor that outputs an analog signal which is proportional to the

instantaneous temperature. The output voltage can easily be interpreted to obtain a

temperature reading in Celsius. The advantage of lm35 over thermistor is it does not

require any external calibration.

LDR sensors

An LDR is a component that has a (variable) resistance that changes with the light intensity

that falls upon it. This allows them to be used in light sensing circuits. Light Dependent

Resistors (LDR) are also called photoresistors. They are made of high resistance

semiconductor material.

34

Ultrasonic Sensor

An ultrasonic sensor is an instrument that measures the distance to an object using

ultrasonic sound waves. An ultrasonic sensor uses a transducer to send and receive

ultrasonic pulses that relay back information about an object's proximity.

PROCEDURES A - SKETCHES CIRCUIT DIAGRAM

1. Open Proteus ISIS Schematic Capture.

2. Select the Component Mode from the left Toolbar.

3. Click On P (Pick From Libraries)

4. Add all the required components.

5. Place the components on the workspace.

6. Wire up the circuit.

7. Save as your design.

Figure 1 : Click Play to Run Simulation

PROCEDURES B - WRITING SOURCE CODE

1. Verify Arduino source code (A-D) until Done compiling.

2. Copy *.hex file from the location:

C://users/user/AppsData/Local/Temp/ArduinoBuild/

3. Copy *.hex file to your folder.

4. Open Proteus circuit.

5. Double-click Arduino Uno R3 board.

6. Browse *.hex file in your folder.

7. Click on Play Button on the bottom left to start simulation.

8. Observe the output of the simulation.

35

A. DC MOTOR

Figure 2 : DC Motor Schematic Diagram

- Double clicks on Motor component. Set 5V for Input setting.

- Double clicks on U1(EN1) component. Set 5V for Input setting.

int val = 200; //analog value 0-255

void setup () {
 // put your setup code here, to run once:

}

void loop () {
 // put your main code here, to run repeatedly:
analogWrite (9,val);
analogWrite (10,0);
delay (10);
}

36

B. LM35

int val;
int tempPin = 1;

void setup() {
 // use a for loop to initialize each pin as an output:
pinMode (12, OUTPUT);
pinMode (13, OUTPUT);
Serial.begin (9600);
}

void loop() {
 // loop from the lowest pin to the highest:
val = analogRead (tempPin);
float mv = (val/1024.0) *5000;
float cel = mv/10;

Serial.print (“TEMPRATURE = “);
Serial.print (cel);
Serial.print (“*C”);
Serial.println ();

if (cel<30)
{
 digitalWrite (12,HIGH);
 digitalWrite (13,LOW);
}
else {
 digitalWrite (13,HIGH);
 digitalWrite (12,LOW);
}
delay (500);
}

37

Figure 3 : LM35 Schematic Diagram

C. LDR WITH TORCH

void setup () {
 // use a for loop to initialize each pin as an output:
pinMode (10, OUTPUT);
Serial.begin (9600);
}

// the loop routine runs over and over again forever:
void loop () {
// read the input on analog pin 0:
Int sensorValue = analogRead(A0); //A0 is set here

//printout the value you read:
Serial.println(sensorValue);

if (sensorValue<15)
{
 digitalWrite (10,HIGH);
}
else
{
 digitalWrite (10,LOW);
}
delay (1); //delay in between reads for stability
}

38

Figure 4 : LDR With Torch Schematic Diagram

D. LED KNIGHT RIDER

int timer = 100; //the higher the number, the slower the timing

void setup() {
 // use a for loop to initialize each pin as an output:
for (int thisPin = 2; thisPin < 8; thisPin++) {
 pinMode (thisPin, OUTPUT); }
}

// the loop routine runs over and over again forever:
void loop() {
// loop from the lowest pin to the highest:
for (int thisPin = 2; thisPin < 8; thisPin++) {
 //turn the pin on:
 digitalWrite (thisPin, HIGH);
 delay(timer);
 //turn the pin off:
 digitalWrite (thisPin, LOW); }

// loop from the highest pin to the lowest:
for (int thisPin = 7; thisPin >= 2; thisPin--) {
 //turn the pin ON:
 digitalWrite (thisPin, HIGH);
 delay(timer);
 //turn the pin OFF:
 digitalWrite (thisPin, LOW); }
}

39

Figure 5 : LED Knight Rider Schematic Diagram

RESULTS

1. DC MOTOR

DC motor rotate clockwise

2. LM35

Green LED will ON if the temperature less than 30°C and red LED will ON if the
temperature more than 31°C.

3. LDR WITH TORCH

Green LED turn ON when the sensor value less than 15 and turn OFF if the sensor
value more than 15.

4. LED KNIGHT RIDER

The LED will turn ON start from D4, D5, D6, D3, D2, D1 and back to D4 continously.

40

QUESTIONS & ANSWERS

Explain the function of the source code below:

1. int val = 200;

int for Integers are the primary data type for storage of numbers without decimal

points and store a 16-bit value with a range of 32,767 to -32,768.

2. if (cel<30)……..else……..

if statements test whether a certain condition has been reached, such as an analog

value being above a certain number and executes any statements inside the

bracket if the statement is TRUE. If FALSE, the program skips over the statement.

3. Serial.begin (9600);

Open serial port and sets the baud rate for serial data transmission. The typical

baud rate for communicating with the computer is 9600 although other speeda are

supported.

4. int sensorValue = analogRead(A0);

Reads the value from a specified analog pin with a 10-bit resolution. This function

only works on the analog pins (0-5). The resulting integer values range from 0 to

1023.

// set ‘value’ equal to ‘A0’

5. for (int thisPin = 7; thisPin >=2; thisPin--)

for statement is used to repeat a block of statements enclosed in curly braces a

specified number of times. An increment counter is often used to increment and

terminate the loop.

// declares thisPin equal to 7, test if more than or equal to 2, increments thisPin by -

1

41

PRACTICAL TASK 4

ROBOTIC CONTROLLER PROGRAMMING IN C

LEARNING OBJECTIVES:

Students will be able to;

1. Assembles a C program to control DC motors.

2. Complete the hardware installation of robot base with two DC motors.

3. Build a C program to control DC motor directions forward and reverse.

4. Make an observations of program C on DC motors.

EQUIPMENTS / COMPONENTS:

1. ARDUINO UNO Board

2. DC motors

3. L298 (Dual full-bridge driver)

THEORY:

Let’s start with how actually DC motor runs. Direction control of a DC motor is very simple, just

reverse the polarity to make it reverse rotation. Mean to say that every DC motor has two

terminals out. When we apply DC voltage with proper current to a motor, it rotates in a

particular direction but when we reverse the connection of voltage between two

terminals, motor rotates in another direction.

Figure 1 : Motor Direction Control

It is a special circuit which allows motor rotation in both directions. From four terminals of a

H bridge you can control the direction of a DC motor. Depending on current & power

requirements, we can make our own H bridge using transistors/MOSFETs but it will be

42

better to demonstrate the working, if we use some ready-made IC such as L298, it’s a

dual full-bridge driver.

Figure 2 : Dual Full-Bridge Driver

PROCEDURE

PART A

1. Open the Proteus software, select the following part from library

a. Arduino Uno R3

b. L298, dual full-bridge driver

c. Motor, simple DC motor model

2. Create new project, use naming profile <PW4_X>, with X indicate your group

number.

3. Drag all component into schematic layout, and use your own creativity for

component arrangement and pin connection. Use below schematic

diagram for guideline.

4. Save your project.

43

Figure 3 : DC Motors Schematic Diagram

PART B

1. Open the Arduino software. Click on the ‘File’ menu and select ‘Preferences’.

Click on the checkbox like below.

Figure 4 : Preferences Setting

2. Click ‘OK’ to close the pop-up window.

3. Write the following code and save it using the same naming profile as before.

4. Compile the code and find the hex file location. If any error occurs, solve the

error until it “ Done compiling”.

44

PART C

1. Double click the Arduino Uno R3 component in Proteus to invoke the ‘Edit

Component’ window. On part ‘Program Files’, point it to your hex file location on

PART B, then click ‘OK’.

2. On the lower left side of your schematic layout, click the play button to start

the simulation. Observe the output.

//declaration
#define motorA 8 //motor A enable pin connect to pin 8
#define motorB 3 //motor B enable pin connect to pin 3

void setup () {
// put your setup code here, to run once:
pinMode (1, OUTPUT); //make pin as output
pinMode (2, OUTPUT);

 pinMode (motorB, OUTPUT);
 pinMode (motorA, OUTPUT);
 pinMode (9, OUTPUT);
 pinMode (10, OUTPUT); }

void loop () {

 // put your main code here, to run repeatedly:
//rotate motorA CW
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, HIGH); //change both signal to change rotation
digitalWrite (10, LOW);

delay (1000); //delay 1 second

//rotate motorB CCW
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, HIGH); //change both signal to change rotation
digitalWrite (2, LOW); }

45

QUESTIONS & ANSWERS

1. Sketch and simulate a code to make both your DC motor to rotate at

the same time.

//declaration
#define motorA 8 //motor A enable pin connect to pin 8
#define motorB 3 //motor B enable pin connect to pin 3

void setup () {
// put your setup code here, to run once:
pinMode (1, OUTPUT); //make pin as output
pinMode (2, OUTPUT);

 pinMode (motorB, OUTPUT);
 pinMode (motorA, OUTPUT);
 pinMode (9, OUTPUT);
 pinMode (10, OUTPUT); }

void loop () {

 // put your main code here, to run repeatedly:
//rotate motorA CW
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, HIGH); //change both signal to change rotation
digitalWrite (10, LOW);

delay (0); //no delay

//rotate motorB CCW
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, HIGH); //change both signal to change rotation
digitalWrite (2, LOW); }

2. Sketch and simulate a code to make motor A and motor B to rotate CW for 1

second and rotate CCW for 1 second. Make it run on infinity looping.

//declaration
#define motorA 8 //motor A enable pin connect to pin 8
#define motorB 3 //motor B enable pin connect to pin 3

void setup () {
// put your setup code here, to run once:
pinMode (1, OUTPUT); //make pin as output
pinMode (2, OUTPUT);

 pinMode (motorB, OUTPUT);
 pinMode (motorA, OUTPUT);
 pinMode (9, OUTPUT);

46

 pinMode (10, OUTPUT); }

void loop () {

 // put your main code here, to run repeatedly:
//rotate motorA CW
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, HIGH); //change both signal to change rotation
digitalWrite (10, LOW);
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, HIGH); //change both signal to change rotation
digitalWrite (2, LOW);

delay (1000); //delay 1 second

//rotate motorB CCW
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, LOW); //change both signal to change rotation
digitalWrite (2, HIGH);
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, LOW); //change both signal to change rotation
digitalWrite (10, HIGH);
 }

3. Sketch a program to make robot spin CW for 5 seconds, Stop 1 second and

then spin CCW for 5 seconds and completely stop.

//declaration
#define motorA 8 //motor A enable pin connect to pin 8
#define motorB 3 //motor B enable pin connect to pin 3

void setup () {
// put your setup code here, to run once:
pinMode (1, OUTPUT); //make pin as output
pinMode (2, OUTPUT);

 pinMode (motorB, OUTPUT);
 pinMode (motorA, OUTPUT);
 pinMode (9, OUTPUT);
 pinMode (10, OUTPUT); }

void loop () {

 // put your main code here, to run repeatedly:
//rotate motorA CW
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, HIGH); //change both signal to change rotation
digitalWrite (10, LOW);
//rotate motorB CW
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, HIGH); //change both signal to change rotation
digitalWrite (2, LOW);
delay (5000); //delay 5 second

47

digitalWrite (motorA, LOW); //stop motorA
digitalWrite (motorB, LOW); // stop motorB
delay (1000); //delay 1 second

//rotate motorA CCW
digitalWrite (motorA, HIGH); //enable pin for motorA
digitalWrite (9, LOW); //change both signal to change rotation
digitalWrite (10, HIGH);
//rotate motorB CCW
digitalWrite (motorB, HIGH); //enable pin for motorB
digitalWrite (1, LOW); //change both signal to change rotation
digitalWrite (2, HIGH);
delay (5000); //delay 5 second

//rotate motorB CCW
digitalWrite (motorA, LOW); //stop motorA
digitalWrite (motorB, LOW); // stop motorB
for(;;){} //motor completely stop
 }

48

PRACTICAL TASK 5

MOBILE ROBOT DESIGN

LEARNING OBJECTIVES:

Students will be able to;

1. Assembles a C program to control DC motors and sensors.

2. Complete the hardware installation of Line Follower Robot (LFR).

3. Perform an application of LFR using DC motors, ultrasonic sensor and line sensor.

4. Make an observation on the movement of LFR.

EQUIPMENTS / COMPONENTS:

1. ARDUINO UNO Board a n d DC motors with L298 (Dual full-bridge driver)

2. HC-SR04 ultrasonic sensor

THEORY:

The human ear can hear sound frequency around 20Hz and 20KHz, and ultrasonic

is the sound wave beyond the human ability of 20KHz.

Ultrasonic distance measurement principle

Ultrasonic transmitter emitted an ultrasonic wave in one direction, and started timing

when it launched. Ultrasonic spread in the air, and would return immediately when it

encountered obstacles on the way. At last, the ultrasonic receiver would stop timing

when it received the reflected wave.

As ultrasonic spread velocity is 340 m/s in the air, based on the timer record t, we can

calculate the distance (s) between the obstacle and transmitter, namely: s = 340*t/2,

which is so called time difference distance measurement principle.

The principle of ultrasonic distance measurement used the already-known air

spreading velocity, measuring the time from launch to reflection when it encountered

obstacle, and the calculate the distance between the transmitter and the obstacle

according to the time and the velocity. Thus, the principle of ultrasonic distance

measurement is the same with radar. Distance measurement formula is expressed

as: L = CXT. In the formula, L is the measured distance, and C is the ultrasonic spreading

velocity in air, also, T represents time (T is half the time value from transmitting to

receiving).

49

Ultrasonic Application Technology is the thing which developed in recent decades.

With the ultrasonic advance, and the electronic technology development, especially

as high-power semiconductor device technology matures, the application of ultrasonic

has become increasingly widespread:

i. Ultrasonic measurement of distance, depth and thickness;

ii. Ultrasonic testing;

iii. Ultrasound imaging;

iv. Ultrasonic machining, such as polishing, drilling;

v. Ultrasonic cleaning;

vi. Ultrasonic welding;

PROCEDURE

PART A

1. Open the Proteus software, select the following part from library

a. Arduino Uno R3

b. LM016L, 16x2 LCD display

c. SRF04, ultrasonic sensor

2. Create new project, use naming profile as PW5_X, with X indicate your

group number.

3. Drag all component into schematic layout, and use your own creativity

for component arrangement and pin connection. Use below schematic

diagram for guideline.

4. Save your project.

Figure 1 : Ultrasonic Schematic Diagram

50

#include <NewPing.h> //ultrasonic library
#include <LiquidCrystal.h> //lcd display library

//for ultrasonic sensor setup pin
#define TRIGGER_PIN 2 // Arduino pin tied to trigger pin on the ultrasonic sensor.
#define ECHO_PIN 1 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 200 // Maximum distance we want to ping for (in centimeters). Maximum sensor

 // distance is rated at 400-500cm

NewPing sonar (TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and maximum
 //distance. Built-in function wihtin newping library

LiquidCrystal lcd (12, 13, 8, 9, 10, 11); // for lcd display. Initialize the library with the numbers of
 //the interface pins

void setup () { // set up the LCD's number of columns and rows:
lcd.begin (16, 2);
lcd.print ("Ultrasonic Sensor"); //Print a message to the LCD
}

void loop () {
delay (50); // Wait 50ms between pings (about 20 pings/sec). 29ms should be the shortest
 //delay between pings

 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor (0, 1); // set the cursor to column 0, line 1

 lcd.print ("Ping: ");
 lcd.print (sonar.ping_cm()); // Send ping, get distance in cm and print result (0 = outside set distance
 // range)
 lcd.println ("cm"); }

PART B

1. Open the Arduino editor.

2. Write the following code and save it using the same naming profile as before.

3. Compile the code and find the hex file location. If any error occurs, solve the error

until it fixes.

51

PART C

1. Double click the Arduino Uno R3 component in Proteus to invoke the ‘Edit

Component’ window. On part ‘Program Files’, point it to your hex file location on

PART B, then click ‘OK’.

2. On the lower left side of your schematic layout, click the play button to start the

simulation. Observe the output.

QUESTIONS & ANSWER

Sketch and simulate a code to make both your DC motor to STOP rotation IF

ultrasonic sensor reading below 20cm. DC motor will resume rotation if the ultrasonic

sensor reading more than 20cm. You can remove the LCD display during simulation.

//ultrasonic sensor & actuator/motor control using L298 (dual full-bridge motor drivers)
//
//Example NewPing library sketch that does ping about 20 times per second and lcd display
//library
//
#include <NewPing.h> //ultrasonic library
#include<LiquidCrystal.h> //lcd display library

//for ultrasonic sensor setup pin
#define TRIGGER_PIN 2 //Arduino pin tied to trigger pin on the ultrasonic sensor.
#define ECHO_PIN 1 //Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 200
//Maximum distance we want to ping for (in centimeters). Maximum sensor distance is
//rated at 400-500 cm.

NewPing sonar (TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
// NewPing setup of pins and maximum distance. Built-in function wihtin newping library

LiquidCrystal lcd (12,13,8,9,10,11);
//for lcd display. Initialize the library with the numbers of the interface pins

void setup () {
//set up the LCD's number of columns and rows:

52

lcd.begin (16, 2);
//Print a message to the LCD.
lcd.print ("Ultrasonic Sensor");
}
void loop () {
delay (50); //Wait 50ms between pings (about 20pings/sec). 29ms should be the shortest
//delay between pings
// set the cursor to column 0, line 1
//(note:line1is the second row, since counting begins with 0):
lcd.setCursor (0, 1);
lcd.print ("Ping: ");
lcd.print (sonar.ping_cm());
// Send ping, get distance in cm and print result (0=outside set distance range)
lcd.println ("cm");
}

53

PRACTICAL TASK 6

SUMO ROBOT DESIGN

LEARNING OBJECTIVES:

Students will be able to;

1. Complete the hardware installation of Land Mobile Robot (LMR) using DC motors

and Bluetooth module.

2. Perform an application of Robot Sumo using LMR and Bluetooth module.

3. Organizes a Robot Sumo Competition.

EQUIPMENTS / COMPONENTS:

1. ARDUINO UNO Board

2. DC motors with L298 (Dual full-bridge driver)

3. HC-SR04 ultrasonic sensor

4. Differential drive mobile robot

PROCEDURE

1. With help from the previous practical work, built an obstacle avoidance

differential drive mobile robot.

2. Student must use ultrasonic sensor as the detector for obstacle.

3. Set the limit range of 15 cm between mobile robot and obstacle. Mobile robot will

turn right about 90 degrees before moving straight again.

4. Upload your code into mobile robot and observe the output.

HINTS

1. Use every knowledge from previous practical work.

2. Divide your code into smaller section (create user define function) for more

convenient and easy to troubleshoot.

3. Optimize the use of built-in delay function to make the mobile robot turn

approximately 90 degrees.

4. There is no right or wrong in programming IF you can achieve your objective, the

difference is only about efficiency, optimization and how you manage your

resource.

54

QUESTIONS & ANSWER

 Suggest how to make the mobile robot to move smoothly. Describe your solution in detail.

int EN1= 11; // Enable Pin 11 for motor right
int EN2 = 10 ;// Enable Pin 10 for motor left
int IN1= 13; // Control pin 13 for motor right
int IN2 = 12; // Control pin 12 for motor right
int IN3= 9; // Control pin 9 for motor left
int IN4 = 8;// Control pin 8 for motor left
char state;

void setup() {

Serial.begin(9600); // initialize serial communication:
pinMode(EN1, OUTPUT);
pinMode(EN2, OUTPUT);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);
pinMode(IN3, OUTPUT);
pinMode(IN4, OUTPUT);

}

void loop(){
 if(Serial.available() > 0)
 state = Serial.read();

 if(state=='A')
 forward();

 if(state=='B')
 reverse();

 if(state=='C')
 turnLeft();

 if(state=='D')
 turnRight();

 if(state=='E')
 stopRobot();

 if(state=='F')
 spinCW();

 if(state=='G')
 spinCCW();
 }

55

 void forward()
 {
 Serial.println("Forward");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, HIGH); // right motor forward
 digitalWrite(IN2, LOW); //
 digitalWrite(IN3, LOW); // left motor forward
 digitalWrite(IN4, HIGH); //
 }

 void reverse()
 {
 Serial.println("reverse");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, LOW); // right motor reverse
 digitalWrite(IN2, HIGH); //
 digitalWrite(IN3, HIGH); // left motor reverse
 digitalWrite(IN4, LOW); //

 }

 void turnLeft()
 {
 Serial.println("Turn Left");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, HIGH); // right motor forward
 digitalWrite(IN2, LOW); //
 digitalWrite(IN3, LOW); // left motor stop
 digitalWrite(IN4, LOW); //

 }

 void turnRight()
 {
 Serial.println("Turn Right");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, LOW); // right motor stop
 digitalWrite(IN2, LOW); //
 digitalWrite(IN3, LOW); // left motor forward
 digitalWrite(IN4, HIGH); //

 }

 void stopRobot()
 {
 Serial.println("stop");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, LOW); // right motor stop
 digitalWrite(IN2, LOW); //

56

 digitalWrite(IN3, LOW); // left motor stop
 digitalWrite(IN4, LOW); //

 }

 void spinCW()
 {
 Serial.println("spinCW");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, HIGH); // right motor reverse
 digitalWrite(IN2, LOW); //
 digitalWrite(IN3, LOW); // left motor forward
 digitalWrite(IN4, HIGH); //
 }

 void spinCCW()
 {
 Serial.println("spinCCW");
 analogWrite(EN1, 255); // Run in full speed
 analogWrite(EN2, 255); // Run in full speed
 digitalWrite(IN1, LOW); // right motor forward
 digitalWrite(IN2, HIGH); //
 digitalWrite(IN3, HIGH); // left motor reverse
 digitalWrite(IN4, LOW); //

 }

57

REFERENCES

1. Alba-Flores, R. (2007). Laboratory Enhancements for Improving Embedded

Systems Education. Proceeding of the 2007 American Society for Engineering

Educational Annual Conference & Exposition. American Society for Engineering

Education.

2. Jawaid, I., Javed, M. Y., Jaffery, M. H., Akram, A., Safder, U., & Hassan, S. (2020).

Robotic system education for young children by collaborative-project-based

learning. Computer Applications in Engineering Education, 28(1), 178–192.

https://doi.org/10.1002/cae.22184

3. Larson, J., Jordan, S. S., Lande, M., & Weiner, S. (2020). Supporting Self-Directed

Learning in a Project-Based Embedded Systems Design Course. IEEE

Transactions on Education, 63(2), 88–97. https://doi.org/10.1109/TE.2020.2975358

4. Rosa, A. H. R., Ferreira, R. V., & Pereira, C. A. (2021). Integrated PBL and HIL

practices for real-time simulations applied in technical and engineering teaching

using embedded systems. Przeglad Elektrotechniczny, 97(1), 46–52.

https://doi.org/10.15199/48.2021.01.08

5. Tian, J. (2021). Optimization of Embedded Mobile Teaching Model Based on

Network Streaming Media Technology. Complexity, 2021(4).

https://doi.org/10.1155/2021/3449338

6. Uzun, A. (2020). Using Educational Robotics as a Cognitive Tool for ICT Teachers

in an Authentic Learning Environment. International Education Studies, 13(4), 27.

https://doi.org/10.5539/ies.v13n4p27

7. https://www.arduino.cc/

8. https://www.theengineeringprojects.com/

9. https://www.labcenter.com/downloads/

10. https://edukits.co/support/amazing-annoyatron-support/installing-the-newping-

library/

https://doi.org/10.1002/cae.22184
https://doi.org/10.1109/TE.2020.2975358
https://doi.org/10.15199/48.2021.01.08
https://doi.org/10.1155/2021/3449338
https://doi.org/10.5539/ies.v13n4p27
https://www.theengineeringprojects.com/
https://www.labcenter.com/downloads/
https://edukits.co/support/amazing-annoyatron-support/installing-the-newping-library/
https://edukits.co/support/amazing-annoyatron-support/installing-the-newping-library/

