

ELECTRICAL WIRING Safety, Accessories, Thors, & Wiring System

HABSHAH ROSLIAH SHAHRUL RADZI

Editor

Habshah Binti Abu Bakar Rosliah Binti Abu Bakar Shahrul Radzi Bin Mad Zaki @ Abdullah

Writer

Habshah Binti Abu Bakar Rosliah Binti Abu Bakar Shahrul Radzi Bin Mad Zaki @ Abdullah

First published 2024

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording, or other electronics or mechanical method, without the prior written permission of published except in the case of brief quotations embodied in critical reviews and certain order other noncommercial uses permitted by copyright law.

Published by :

POLITEKNIK TUANKU SYED SIRAJUDDIN Pauh Putra 02600 Arau Perlis

Data Pengkatalogan-dalam-Penerbitan

Perpustakaan Negara Malaysia

Rekod katalog untuk buku ini boleh didapati dari Perpustakaan Negara Malaysia

elSBN 978-629-7514-61-1

Acknowledgements

Firstly, we would like to thank to the Great Almighty ALLAH S.W.T., the author of knowledge and wisdom and for His countless love that we were able to finish this eBook. Thanks to Head Department of Electrical Engineering, Mr. Azman Bin Mat Hussin and Head Of Program, Mrs Azyan Binti Md Zahri with their valuable insights and inspiration for the content of this book. There are a lot of things we have gained during completing this eBook. Alhamdulillah, after all the great works, finally this eBook is completed.

We would like to offer our special thanks to our colleagues that gives different ideas, invaluable support and contributions. Our family for never ending moral support, understanding and encouragement. Alhamdulillah, all praises to Allah for the good health and enough time that has given to us. Our team at Jabatan Kejuruteraan Elektrik (JKE), Politeknik Tuanku Syed Sirajuddin (PTSS) and Jabatan Pengajian Politeknik (JPP) for their professionalism, expertise and cooperation in bringing this eBook a reality.

Lastly, we would like to thank to all persons who had involved in this eBook either directly or indirectly. They had been a great helper to us.

Preface

This Vol. 1 of ELECTRICAL WIRING: Safety, Accessories, Tools & Wiring System is based on the polytechnic syllabus for Electrical Wiring course. This eBook gives a detailed summary of electrical safety, wiring accessories & tools, and wiring system in electrical wiring installation. Chapter 1 begins with the electrical supply systems according to the Electricity Supply Act 1990. The electrical hazard in wiring installation and workplace are also covered in this chapter. It offers instructions on how to handle electricity. The causes and risks of electric shock, which can cause death or serious injury are also discussed. It offers advice on how to safely handle waste management in the workplace.

Tools and accessories for electrical wiring are covered in Chapter 2. It explains how electrical installation accessories work. This covers how to install switches, lamp holders, and ceiling rose. Also detailed are plugs, sockets, and kWh meters. Additionally described are safety equipment used for short circuit and overload protection, such as distribution boards and Earth Leakage Circuit Breakers (ELCBs). It then goes over how to install wiring using simple tools.

Chapter 3 covers the the concept of consumer circuits includes the wiring and schematics diagrams in electrical wiring. The domestic electrical installation was then described. There is also discussion of the electricity cost based on Malaysia's domestic tariff rates.

TABLE OF CONTENTS

Content	Page
Chapter 1: Electrical Safety	01
1-1 Electrical Supply System	03
1-2 Electrical Hazards	08
1-3 Danger of Electrical Shocks	11
1-4 Working Environment Safety	15
1-5 Working Practices Safety	20
Chapter 2: Accessories & Tools in Electrical Installation	22
2-1 Installation method of the wiring accessories	24
2-2 Electrical installation tools	37
Chapter 3: Wiring System	39
3-1 Concept Of Consumer Circuits	40
3-2 Domestic Electrical Installation	49
3-3 Domestic Tariff Rates In Malaysia	57

Chapter 1 ELECTRICAL SAFETY

0

0

Ñ

1

Learning Outcomes

Apply the concept and principle of electrical safety and regulation in performing electrical wiring according to MS IEC 60364

1-2 Electrical Hazards

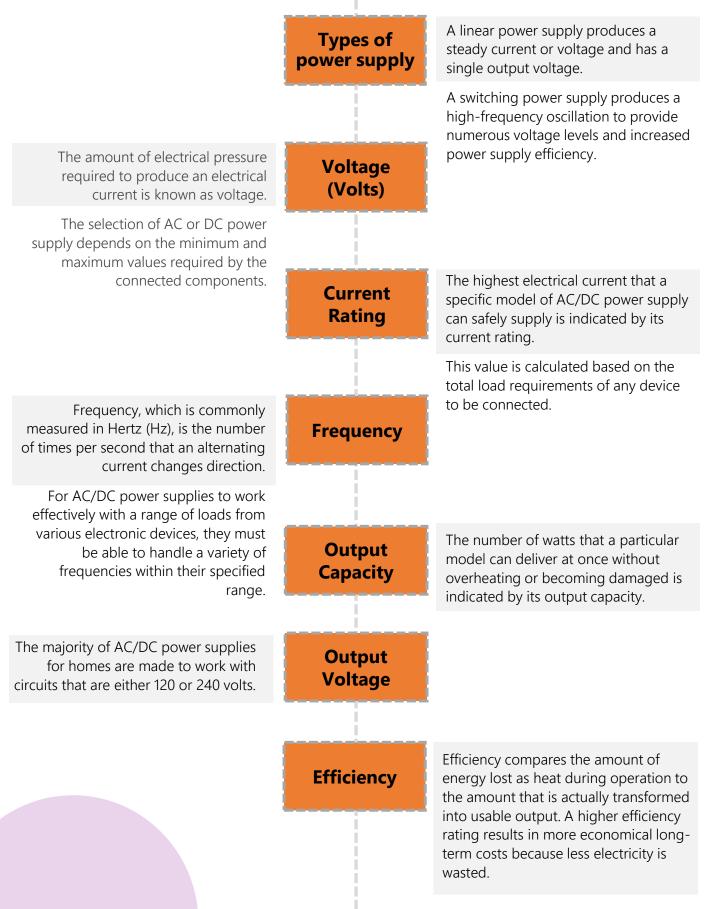
What You Should Know

- **1.** Remember electrical supply
 - system
- 2. Remember electrical hazards
- 3. Remember dangers of electrical shocks
- **4.** Understand working environment safety
- **5.** Apply working practices safety

Electrical Supply System

TWO main categories of power supply:

DC Power Supply AC Power Supply



A power supply is what provides electricity to an electrical load. In order to power the load, the power supply's primary job is to transform electric current from a source into the appropriate voltage, current, and frequency.

Power sources include outlets for electricity, energy storage devices including batteries, fuel cells, generators, and solar power converters.

CHAPTER 1 Electrical Safety

Electrical Supply Specifications

Panning of Electrical Wiring Task

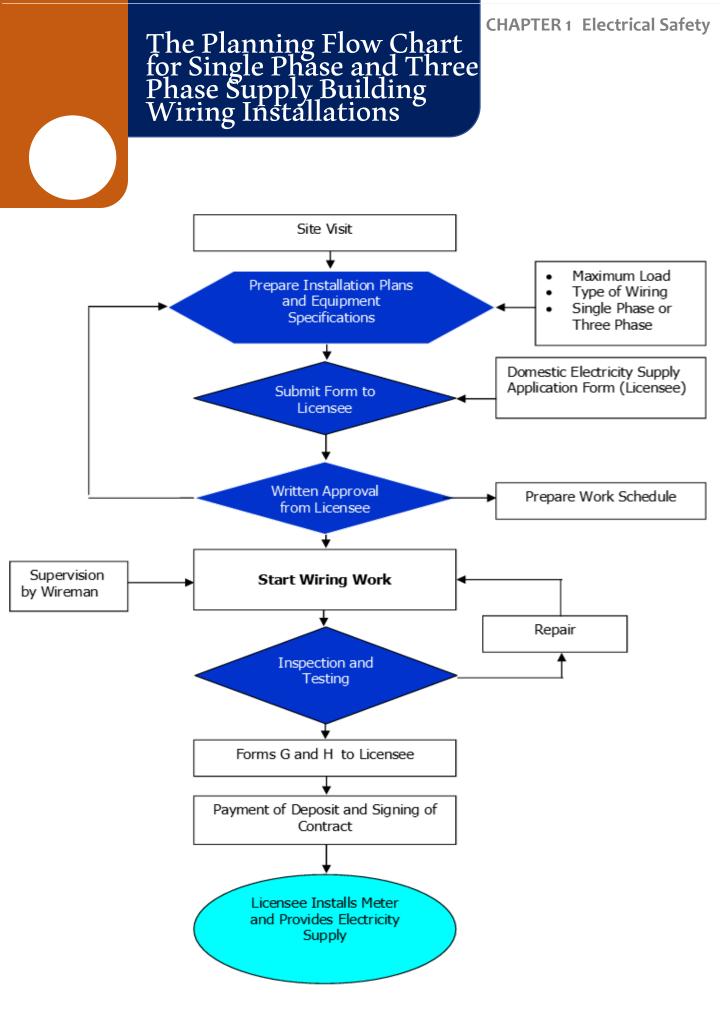
O2 Determine the Consumer Load Requirement

Building floor plans are used to determine installation requirements including proposed load, electrical equipment placement, and installation design plans

O4 Submit the plans, drawings and specifications

Regulation 65 of the Electricity Regulations 1994 states that the eligibility to submit plans is as follows:

- i. Wireman with Single Phase Restriction – Low voltage single phase up to 60 amperes.
- ii. Wireman with Three Phase Restriction – Low voltage up to 60 amperes.


O1 Site Visit

Purpose of site visit:

- Electrical equipment suitable for use
- Maximum load demand
- Type of incoming supply (Single or Three Phase)
- Type of wiring
- Equipment arrangement.

O3 Calculate the maximum load demand

The estimation of the maximum load demand is used to develop the electrical installation plans and determine the specifications of the wiring equipment.

Electrical Supply System

Essential requirements for domestic electrical wiring installation

LAWS OF MALAYSIA

ONLINE VERSION OF UPDATED TEXT OF REPRINT

Act 447

ELECTRICITY SUPPLY ACT 1990

As at 1 July 2016

- 1. Electrical Wiring
 - Legal Requirements
 - Planning of Wiring Work
 - Features of Electrical Wiring
 - Schematic Wiring for Lighting Circuits and Socket Outlets
- 2. Control & Protection System
 - Selection of Control and Protection System for Electrical Wiring
 - Isolation and Switching
 - Protection
- 3. Selection of Cables
- 4. Electrical Accessories
- 5. Earthing of Electrical installation
- 6. Electrical Inspection & Testing
 - Legal Reguirements
 - Testing

7

CHAPTER 1 Electrical Safety

Electrical Hazards

The term "electrical hazards" describes the possible risks and dangers connected to electrical systems.

When handling electricity, the primary risks are electric shock, arc flash, burns, electrocution, and other severe injuries.

https://www.youtube.com/watc h?v=-KTjGuSNBnw

Hazards In Electrical Installation

Overloaded sockets

Do not overload the extension lead by plugging in several appliances that exceed the maximum electrical current level stated for the extension lead. Never plug an extension lead into another extension lead.

Be Very Careful of Water

Using electrical equipment near water or with wet hands

Water can significantly increase the chance of electrocution so electrical equipment should not be used near a source of water or operated with wet hands.

3

Incorrect use of replacement fuses

- If you're fitting or replacing a fuse, you must use the right fuse for the appliance so that it doesn't overheat.
- Check the manual or the label on the appliance to find out the wattage and the correct fuse required.

Improper grounding

- All electrical equipment and devices must be earthed or grounded.
- If not, you're at risk of electrocution. Make sure that electrical equipment is periodically checked and certified by a qualified person.

Electrical Hazards

Hazards of Faulty Electrical Parts

Damaged equipment and power tools

- Using damaged electrical equipment, can be very dangerous.
 - Broken tools and equipment should not be used until they are fixed and certified by someone qualified to do so.

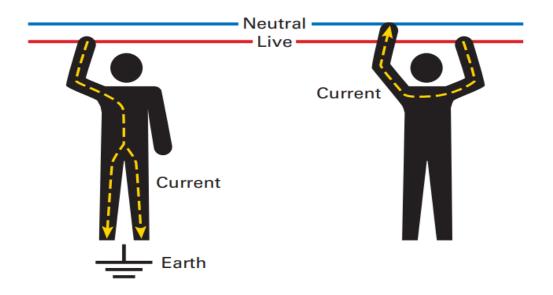
Frayed, loose or exposed electrical cables

- Electrical cords on equipment contain securely insulated live wires.
- If the cable becomes frayed or cracked, the live wire can be exposed and lead to electrical fires or electric shock.


Smoke and smells from equipment

A smell of hot plastic, sparks or smoke coming from plugs, appliances or sockets are signs of an electrical hazard so keep an eye out for these danger signs.

Overhead power lines

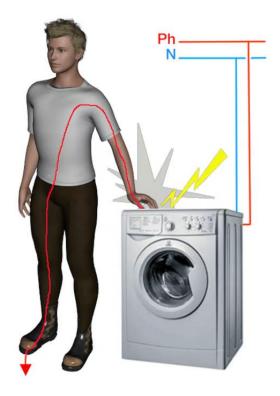

- The high voltage in overhead electrical lines can result in significant burns and electrocution.
- If you have workers working near overhead power lines, it is recommended that a minimum distance of 10 feet from the lines and nearby equipment is maintained.



Dangers Of Electric Shock

DIRECT CONTACT of electrical shock

Direct contact occurs when someone touches an exposed live part, such as a bare wire. The current flow when direct contact occurs is seen in the figure below.


The user gets a shock by touching the live conductor directly.

For example holding a damaged cable (without insulation), touching an exposed part of the live conductor.

INDIRECT CONTACTS of electrical shocks

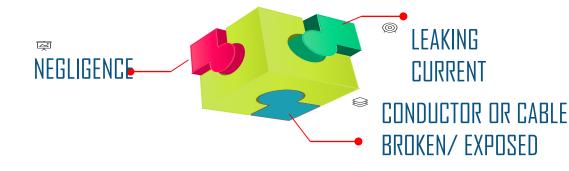
Indirect contact occurs when someone touches a part which is not normally live. It becomes live due to a fault in the electrical installation or appliance.

An electric shock that occurs due to contact of something connected to an electrical installation but not direct contact with a live conductor, may be due to damage to equipment or installations.

This shock may occur due to contact that occurs between the user with installations or equipment that are not directly connected to the electrical supply but become a source of life in the event of damage.

Examples of indirect contact:

- Touching electrical equipment with wet hands
- Using electrical equipment outside when it is raining
- \checkmark Cleaning or repairing equipment that is plugged in
 - Drying wet clothes above an electric heater


Danger of Electrical Shocks

Current rating	\$	Danger to the user who touches it
lmA	•	No danger
10mA – 15mA	\$	Stiff & numb
25mA – 30mA	•	More pronounced stiffness to paralysis
Above 50mA		Stopping the heartbeat can be fatal.

Dangers of Electrical Shocks

Cause of Electrical Shocks

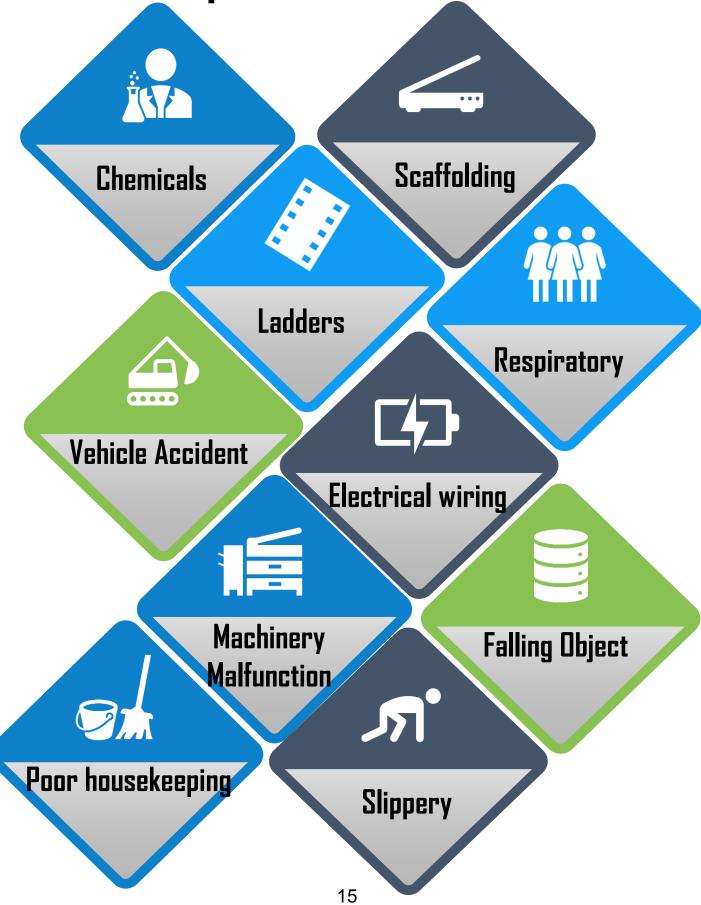
Negligence

 If the work is done without full concentration, negligence in handling the work will occur.

Leaking Current

Leaking currents can cause the metal frame to come to life and can pose a danger of electric shock when the user holds the metal frame.

Conductor or Cable Broken/ Exposed


- Conductors or cables are cut off and live or exposed is dangerous.
- → Avoid holding the cable and must report to the responsible parties immediately.

CHAPTER 1 Electrical Safety

10 Top Most Common Hazards in the Workplace

SAFE WORKING ENVIRONMENT

RULES AND PERSONAL SAFETY

- Proper dressed and short –haired
- Wear appropriate safety shoes when in the workshop.
- Eg; Rubber soles.
- Prohibited from wearing jewelry.
- Use special gloves appropriate to the task.
- Always be calm in carrying out tasks.
- No smoking

SAFETY IN THE WORKSHOP

a) Personal safety.

- Use appropriate gloves according to the work movement done.
- Do not do things outside the instructor's instructions.
- Clean the workplace and tools after finishing work.
- If there is something dangerous report it to the instructor.
- Smoking is not allowed in the workshop because it will cause neglect to make something work.

b) Clothes in the workshop.

- Clothing must be appropriate for the task being performed.
- Wear shoes with thick soles and sewn around them and resistant to external pressure.

SAFE WORKING ENVIRONMENT

c) Conditions in the workshop.

- Tools used must be stored properly in their original place after use.
- The floor in the workshop should be clean especially from dirt and greasy.
- The workshop should have an emergency door which when in the event of an emergency can be opened easily.
- Electrical control main switches, fire extinguishers and even switch mirrors and fire warning bells are in good condition.
- Always practice the nature of helping each other.

d) Running the machine.

- Before a machine is run, be sure to get a briefing from the instructor.
- Trainees should know the location of the emergency switch as well as the switch starter and power cutter switch.
- In case of damage determine the machine is not currently operating fix it.
- Put a label that indicates the machine is being repaired

e) Self -control during an accident.

- To prevent injury or damage to damage can be used by taking simple steps as before lifting the full attention span.
- The route area for lifting loads should be clean of oil spills, high sections that roll and litter or a smooth round object.
- Make sure the conditions around the workplace are safe.
- Do not panic or be anxious when an accident happens.

Safety When Working with Machine and Tools

To ensure safety when using tools and machines, the following steps must be followed:-

1. Do not use a tool or machine without knowing the correct way how to use it.

How?

- 2. Do not use tools or machines without permission from the teacher or supervisor.
- 3. Tools or machines that are damaged or slightly damaged should be repaired before use.
- 4. Work equipment should be stored in the right place so that it is easy to find when needed.
- 5. Clean the tool after use and store it in its original place.
- 6. Do not leave the machine running unattended.
- 7. Wear goggles, face, ears or nose in the workplace that needs it.
- 8. Follow the rules of its use even if you are familiar with it.
- 9. Do not close or remove instruction or warning signs found on devices or machines as other users may not be aware of them.
- 10. Do not attempt to repair tools or machines without the knowledge of the teacher or supervisor.

WASTE MANAGEMENT PRACTICES

Video on waste management practices.

https://youtu.be/_NkqwMitQ8o

Safety Working Practices

SAFE WORKING PRACTICES

7 Ineffective Safety Practices and What To Do Instead

What's Wrong

Focusing on lagging indicator : Reactive safety management only takes action when there is a problem

Injury based inventive systems: Misplaced reinforcement – reinforce non-reporting injury through sheer luck

Awareness Training: Necessary but Not Sufficient – only training will not change behavior, it rarely solves safety problem.

Motivational Signs: Little to no impact – signs are often ignored and have a short –term effect.

Blame and Discipline: Destructive to engagement - discipline is often misused and that leads to wrong actions.

Discouraging near – miss reporting: Reactivesafety management only takes action when there is a problem.

Safety Cop: Focus on what is wrong – safety tours that focuss on pointing what is wrong undermines engagement.

What to Do Instead

Focus on leading Indicators: Proactive – safety management keeps an eye on what can be done to prevent accidents.

Behavior-Based Reinforcement system: Reinforce correct behavior- Identify and strengthen high impact safety behaviors to ensure sustainable safety improvement

Need-Based Training : Better analysis leads to a correct solution- Train to fluency to change the consequences.

Motivational Consequences: Actions speak louder than words- Demonstrate commitment to safety through actions and consequences not signs

Analysis and action : create forward looking accountability – rather than blaming, build joint accountability for corrective actions

Encouraging Near – Miss Reporting: Approach misses as learning opportunities –leads to problem solving and willingness to report incidents

Safety coach : Build on what is right – Shaping improvements through positive reinforcement strengthens safe behavior and builds engagement

https://create.kahoot.it/details/7635477e-9ca4-4d75-b4dc-2ee9531e6405

Chapter 2

ACCESSORIES & TOOLS IN ELECTRICAL INSTALLATION

Splice Connector Wire Stripp

plier

Volt

Voltmete

tard

Screwdriver

Tap Measure

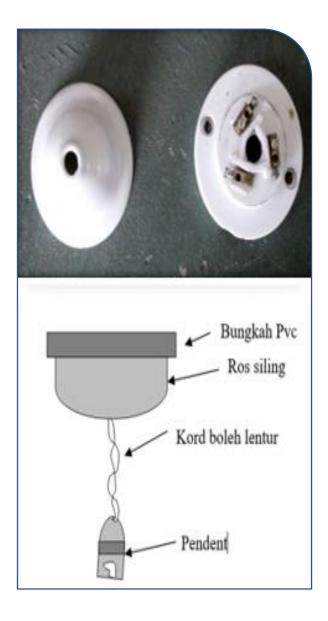
Electric Tape

CHAPTER 2 Accessories & Tools In Electrical Installation

What You Should Know

Remember the function and installation method of the accessories for electrical installation.

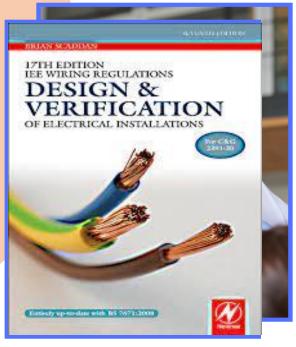
Understand the usage of the electrical installation tools



Domestic Installation Accessories

Ceiling Ros Lamps Holder Switch Switch Socket Outlet Plug kWh meter **Distribution Box (DB)** Circuit Breaker Main Switch Earth Leakage Circuit Breaker Miniature Circuit Breaker

1. Ceiling Rose


 The ceiling rose is the finishing connection point for fixed wiring

 From the Ceiling Rose will be connected to a flexible cord for connection to loads such as lights, fans and etc Function And Installation Methods Of The Accessories For Electrical Installation

IEE Regulation Ceiling Rose

Õ

Ceiling roses shall not be installed in any circuit operating at a voltage not normally exceeding 250 only.

The earth source of the ceiling rose shall be connected to the earth continuity conductor for each and sub circuit.

Ceiling roses cannot be used for the installation of more than one product unless they are specifically designed for multiple products.

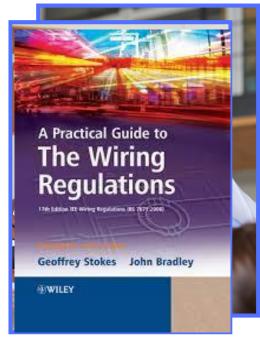
Permanent phase twists should not be used on fixed wiring unless it is not easily touched.

Bayonet

2. Lamp Holders

Used to hold the lamp and can facilitate the connection of the lamp to the supply.

It is designed so that the lamp can be removed and replaced quickly.


The lamp holder has two terminals namely for the phase conductor connection source and neutral to connect to the lamp.

Types of Lamp Holder:

- 1. Bayonet up to 150W
- 2. Edison screw up to 200W
- Goliath screw more than
 200W

- Supply voltage does not exceed 250V
- Types of torque bases installed in damp & easily accessible areas must be earthed.
- Must be heat resistant

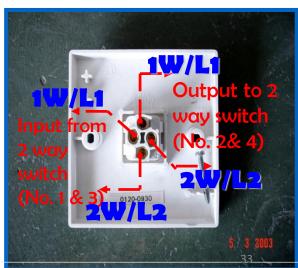
3. Switch

A switch is and additional then can disconnect and connect electrical circuit manually either directly or through the intermediate of a rope or stalk on the normal current of the circuit. The switch must also be able to withstand the excess current due to the load redundancy or short circuit.

This type of switch has two terminals for the connection of the supply phase conductor and to the load.

The switch is used to control a lamp or load in one position such as in a room.

2 Way Switch


For the use of two way switch control must have two units two way switches.

The intermediate switch has four screwed terminals and has different operation of the two way switch.

This switch is used to control lights at more than two positions along with two units two way switch.

Its use as in long corridors and stair in tall building

Intermediate Switch

CHAPTER 2 Accessories & Tools In Electrical Installation

SWITCH SOCKET OUTLET

DESCRIPTION

- An outlet socket is a device that has several currentcarrying contacts and is used to allow portable electrical appliances such as radios, table fans, table lamps etc.
- To be connected to the final small circuit to receive electrical supply using a suitable plug.

A Practical Guide to The Wiring Regulations

- The earth source of each socket shall be earthed.
- It is not allowed to install in a bathroom that has a fountain or shower.
- For floor sockets, protection efforts should be made during floor washing work.
- Only the supply voltage does not exceed 250V, unless it is specially made.
- S.A.K for whole household use must be of type MS 589

Function And Installation Methods Of The Accessories For Electrical Installation

PLUG

A plug is a device that has several contact pins connected to a flexible cord and can be connected to an outlet socket with the pins located on the plug.

Plugs are used as supply connectors from outlet sockets to electrical appliances such as table fans, table lamps, scrubbers and more via flexible cords.

Global plug types can be classified into approximately fifteen distinct standards, designated alphabetically from A to O.

CHAPTER 2 Accessories & Tools In Electrical Installation

DISTRIBUTION BOARD (SINGLE PHASE)

BEFORE WIRING

Function And Installation Methods Of The Accessories For Electrical Installation

DISTRIBUTION BOARD

There are two types of Distribution Fuse Boxes that are commonly used in installation work, namely:

- i. Single phase Distribution Fuse Box supplied with a voltage of 240 volts
- ii. Three -phase Distribution Fuse Box supplied with a voltage of 415 volts.

The body of the distribution board is made of wood, PVC or metal.

Inside there are several sites for Phase, Neutral and earth conductors. Each terminal is segregated.


The rate of the protection device depends on the amount of load current in the circuit.

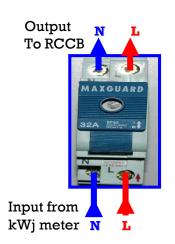
CIRCUIT BREAKER

- When there is a fault in an electrical
 circuit, a current larger than normal
 current called fault current or short
 circuit current that may be many
 times larger than normal current will
 flow and if this current is not
 protected or allowed to continue
 flowing, then it will endanger the
 system and users.
- One device used to eliminate these faulty currents or short -circuit currents is a circuit breaker.

kWh Meter

The kWh Meter is installed after the circuit breaker.

Install the 1-Phase kWh meter


- The left side of the kWh Meter is connected to 230V~ from the breaker.
 - The right side of the kWh Meter is
 connected to the SOURCE of which
 you want to get insight into. Such
 as solar panels, a car charger, heat
 pump, main connection etc.

Install the 3-Phase kWh meter

- The top side of the kWh meter is connected to 230V~ from the breaker.
- The bottom side of the meter is connected to the SOURCE of which you want to get insight into.
 Such as solar panels, a car charger, heat pump, mains connection etc.

Function And Installation Methods Of The Accessories For Electrical Installation

MAIN SWITCH

Output to MCB Input Neutral End

Serves as a device that can disconnect the distribution supply to the user by simultaneously opening the live and neutral wires if one of the poles of the supply is not grounded by using a networked two-pole switch.

The purpose of having an isolator is to protect the user from getting a continuous electric shock. Therefore isolators must be installed at the beginning of the wiring circuit for each installation as required by electrical regulations.

EARTH LEAKAGE CIRCUIT BREAKER (ELCB)

Serves as earth current leakage protection and circuit isolator.

Circuit breakers are made in various forms and types of operation, among which are the oil-filled type, the gas blown type, the air blown type (wind), the vacuum type and the miniature type.

MINIATURE CIRCUIT BREAKER (MCB)

A circuit breaker specified in BS 3871 is an overcurrent protection device that has a high breaking rate and is used to connect and disconnect circuits under normal and abnormal conditions such as short circuits and over currents.

MCB Lighting Circuit 6A @ 10A (lamp, fan, bell) MCB Power Circuit 16A, 20A, 32A (Air-conditioner, electric motor, electrical appliances).

MCB RATING VS CABLE SIZE

TYPES OF CIRCUIT	UNIT	SIZE OF CABLE (mm ²)	MCB VALUE (Ampere)
Light/ Fan circuit	13	1.5	6
Air-Conditioner with DP (double pole) switch	1	4	20
Water heater with DP switch	1	4	20
13A Switch Socket Outlet - Radial Circuit	2	2.5	20
13A Switch Socket Outlet - Radial Circuit	4	4	32
13A Switch Socket Outlet - Ring Circuit	6	2.5/4	32

IEE REGULATIONS

- Switches used to control lighting equipment and electrical equipment must be isolated from such equipment unless the live conductor of the switch shall be as short as possible and constrained around it.
- Every switch used for the bathroom must be placed in a place that is not easily accessible by the user.

A Practical Guide to The Wiring Regulations

17th Edition IEE Wiring Regulations (85 7877-2006)

Geoffrey Stokes John Bradi

WILEY

The nominal current of each switch controlling the discharge lamp circuit must not be less than twice the amount of constant current flowing in the circuit.

If the switch is used to control filament and discharge lamps, the nominal current must not be less than the total current of the filament lamp and twice the total constant current of the discharge lamp. CHAPTER 2 Accessories & Tools In Electrical Installation

WIRING TOOLS

<u>https://www.yout ube.com/watch?v</u> =0103hKyN7ko

Hammer

A tool specially designed for nailing clips or tins to grip wiring. Have a different head. One side is round and the other side is flat

Cable cutter

There are various types of cable cutters on the market, the following are examples of cable cutters that are commonly used in wiring works.

It is used to cut the cable and also remove the PVC wrap on a cable

Plier

There are various types of joint pliers on the market, the following are examples of cable joint pliers that are commonly used in wiring works.

It is used to hold, grip, cut, bend and shape cables.

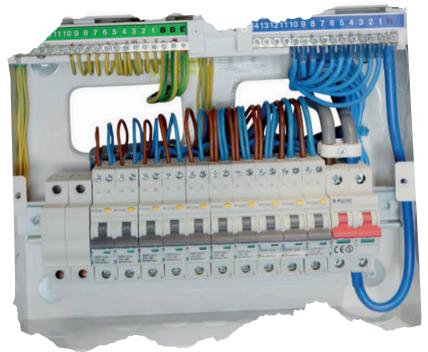
Usage of Electrical Installation Tools

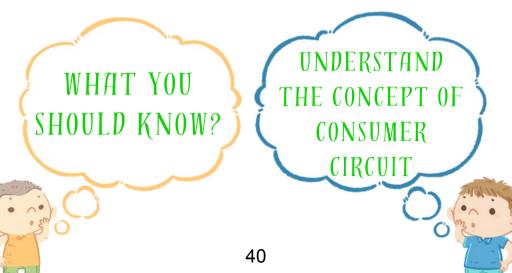
WIRING TOOLS

There are different types of screwdrivers. It is used to install and remove screws.

The correct use of a Phillips or plate screwdriver depends on the shape of the screw head

To detect leakage of electric current or live cables. In addition, it can also be used for light work such as tightening small screws.

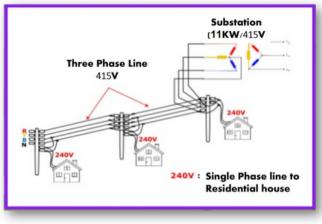

This test pen is suitable and safe to use to detect voltage 50 ~ 500V.



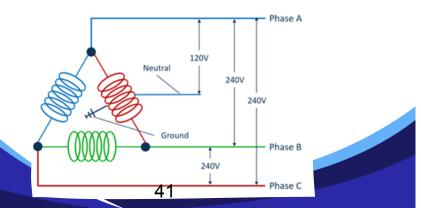
TOPIC 3 WIRING SYSTEM

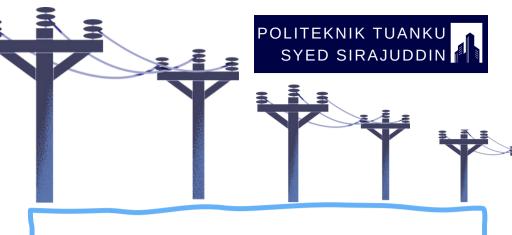
SUB TOPIC 3.1 Concept of Consumer Circuit

WIRING SYSTEM


A wiring system is a system of installation of electrical circuits that includes conductors, insulation and mechanical protection for the cables used. The electrical wiring system is divided into 2 parts, namely:

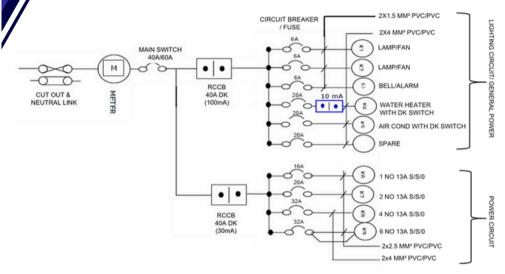
Single phase wiring system


Common in small and medium residential areas


Three phase wiring system

Industrial and commercial areas

- The electricity supply received in a residential house (small/medium) is usually a 1-phase AC 240 V, 50 hz.
- This supply is obtained from a connection between a line (either r, y or b) and a neutral from a 3 -phase 4 wire system (y -connection).
- The 3 -phase source is from a nearby substation.



Cables or lines entering the building are directly connected to a connecting board (service base).

On this board there is a service fuse and a neutral line. These two tools belong to TNB and are its responsibility.

After the service base, the electricity supply will be connected to the kilowatt hour meter (Watt hour meter).

SINGLE PHASE COMSUMER ELECTRICAL WIRING DIAGRAM

SEQUENCE CONTROL CIRCUIT 1.CUT OUT/ NUETRAL LINK

- It is the place of connection of electricity supply from the supplier to the consumer.
- Is A service fuse was the first live conductor used to limit current and protect a consumer's main circuit.
- It is also the absolute right of the supplier (TNB), must be sealed and cannot be modified by the consumer.
- The most commonly used service fuse sizes are 30A, 60A and 100A of the HRC or Cartridge type.

SEQUENCE CONTROL CIRCUIT

2. KILOWATT HOUR METER

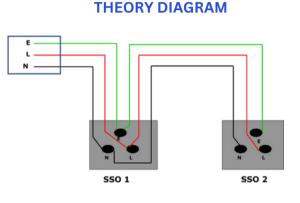
- kilowatt hour is used to measure the amount of energy consumed by a consumer in a given period of time.
- Its basic construction consists of a current coil and a voltage coil.

3. MAIN SWITCH

- It is a mechanical device that can manually open and connect circuits.
- It is used to ensure that there is no danger in the event of overloads and short circuits."

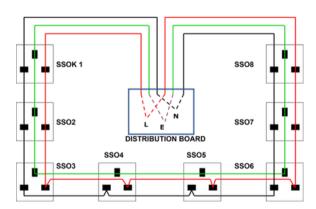
4. RESIDUAL CURRENT CIRCUIT BREAKER

- RCCB used to control earth leakage circuits.
- It is turned on manually and will disconnect the circuit automatically in the event of a current leakage to earth


5. MINIATURE CIRCUIT BREAKER (MCB)

 Is an Electrical Switch that automatically switches off the electrical circuit during an abnormal condition of the network means an overload condition as well as a faulty condition

FINAL CIRCUIT IN ELECTRICAL WIRING : POWER CIRCUIT


1. RADIAL POWER CIRCUIT

- The final circuit of the radial circuit type is a common wiring circuit in which the cable live, neutral and earth are taken from the consumer distribution box through one MCB with size 16 A or 20 A.
- At the end of the wiring will be connected to the outlet socket

2. RING POWER CIRCUIT

45

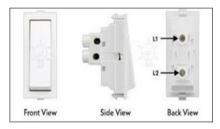
The ring circuit installation shall start from one MCB in the consumer's distribution box and its leads shall be connected to each termination point at the outlet socket which then returns to the same MCB

THEORY DIAGRAM

IEE REGULATIONS FOR OUTLET SOCKET CIRCUITS

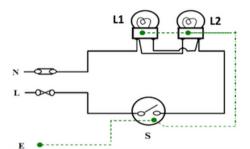
RADIAL CIRCUIT

- IEE regulation 16 specifies the number of outlet sockets depending on the floor area of the room, the size of the conductor, and the degree of protection.
- This circuit must be controlled by a protective device either a fuse or an MCB
- The cable used is PVC coated copper cable and the cable size must not be less than 2.5mm2.

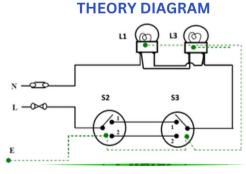

RING CIRCUIT

- The IEE regulations have stipulated that the Ring Circuit can only be installed on an area that does not exceed 100 square meters.
- The total number of sockets that can be installed is not limited.
- However, the amount of current used must not exceed the current rating of the fuse that controls the circuit.
- The rating of the overcurrent protection device is 30 Amp. / 32 Amp.
- The size of the cable used must not be less than 2.5mm2.

FINAL CIRCUIT IN ELECTRICAL WIRING : LIGHTING CIRCUIT


1. ONE WAY SWITCH

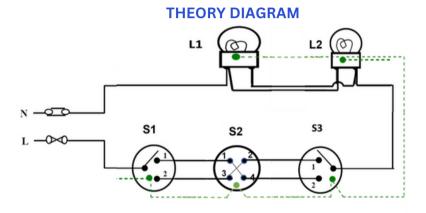
- There are two terminals in a one way light switch. When the switch is on, both terminals are connected together.
- This is the most common type of switch, and is used where a light is controlled from a single switch


2. TWO WAY SWITCH

- 2 way switching means having two or more switches in different locations to control one lamp. They are wired so that operation of either switch will control the light.
 - This arrangement is often found in stairways, with one switch upstairs and one switch downstairs or in long hallways with a switch at either end.

THEORY DIAGRAM

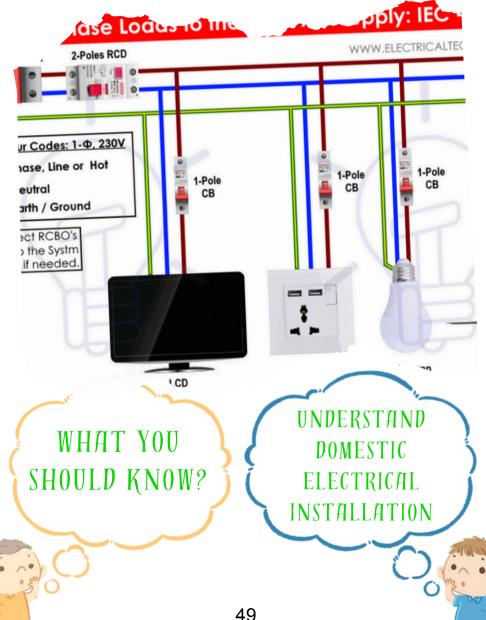
• Typically, these terminals will be marked COM and L1 (sometimes L1 and L2). Connect the permanent live (from the supply) to COM and the switched live (to the lamp) to L1.


17

FINAL CIRCUIT IN ELECTRICAL WIRING : LIGHTING CIRCUIT

3. INTERMEDIATE SWITCH

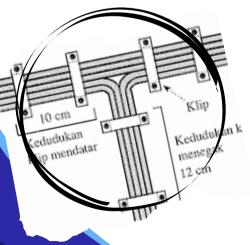
• An intermediate switch is a three way light switch. It is used when you have three or more switches controlling one light, the middle switch needs to be an intermediate light switch.



• The typical example of this is on a landing in a house, when perhaps there is a switch at the bottom of the stairs, one at the top of the stairs and one at the end of the landing.

• On this circuit you would need the middle switch (eg the one at the top of the stairs) to be an intermediate switch. This can be continued for multiple switches, so it applies to three or more switches.

SUB TOPIC 3.2 Domestic electrical Installtion


TYPES OF WIRING

CONCEAL WIRING

CONDUIT WIRING

SURFACE WIRING

MAIN WIRING (TRUNCKING)

SURFACE WIRING

- Surface wiring systems can be installed directly to wooden walls and ceilings or on wooden planks for concrete walls
- The cable used must be of the type that has layered insulation - as it is prone to mechanical damage

ADVANTAGES

DISADVANTAGES

Neat & good looking	Prone to mechanical damage (exposed)	
Suitable for small	Does not withstand hot	
installations	and humid	
(residential houses)	temperatures	
Easy and quick	Suitable only in certain	
installation	places	
Maintenance / additional work is easy to do and does not affect existing wiring	Durability period is SHORT	

The cheapest wiring cost

FEATURES OF SURFACE WIRING SELECTION

The building is made of - wood/stone

Low Voltage - single phase

A Number of final circuits - s litle

Installed Cable - not so much

Less risk of mechanical damage

Installation work - made quickly

Power load used - small

Installation cost - economical/ cheap

CONDUIT WIRING

Installed in places where there is a danger of mechanical damage, exposed to chemical action, liquids and outdoors. (Enterprise factories, laboratories, workshops, etc.).

This wiring system can be installed either surface or concealed.

The number of cables installed in a conduit must be according to the space factor which does not exceed 40%.

The conduit used in this wiring system can be divided into several types, namely : (a) Metal conduit (b) Non Metal conduit (PVC). (c) Flexible conduit (Metal & PVC

CONDUIT WIRING SYSTEM

ADVANTAGES	DISADVANTAGES
Has better mechanical protection	Untidy shape
Resistant to weather and heat e conditions	Requires special quipment - bending machine
Durable and rugged	Needs skilled workers
Can be used as an additional earth continuity conductor	High cost
Can be planted directly into the ground	The completion period is longer

CONDUIT WIRING System (Metal)

- a) Load / power used large.
- b) Requires supply voltage 1 phase& 3 Phase
- c) Factory buildings, workshops, commercial buildings and stalls.
- d) The wiring system is exposed to the danger of mechanical damage.

CONCEAL WIRING SYSTEM

- This wiring system is installed in a concrete wall/ceiling and is not directly visible except at the end of the cable used for connection to the wiring accessory terminal.
- 6
- Usually this wiring is done during the final stages of building construction (before the cement paving work is done).
- 6
- This wiring system is only allowed for low voltage only Concealed wiring systems can be divided into 2 types:

Concealed wiring system - insulated cable

56

TOPIC 3.3 Domestic tariff Rates in Malaysia

	TARIFF CATEGORY	UNIT	CURRENT RATE
	Tariff A - Domestic Tariff		
	For the first 200 kWh (1 - 200 kWh) per month	sen/kWh	21.80
	For the next 100 kWh (201 - 300 kWh) per month	sen/kWh	33.40
1.	For the next 300 kWh (301 - 600 kWh) per month	sen/kWh	51.60
	For the next 300 kWh (601 - 900 kWh) per month	sen/kWh	54.60
	For the next kWh (901 kWh onwards) per month	sen/kWh	57.10
	The minimum monthly charge is RM3.00		

WHAT YOU Should Know?

Understand Tariffs

Tariff is a payment scale that is charged to users depending on the amount of load, type of building and type of use

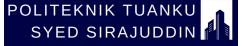
The tariff imposed must not burden the consumer and not disadvantage the supplier.

Therefore the tariff to be charged to the user must be approved by the Energy Commission

The purpose is to cover all costs incurred by the supplier starting from generation to supply to the consumer

58

TYPE OF COST


Fixed Cost

Fixed costs are expenses that must be paid by the supplier regardless of whether the electricity produced is large or small. These costs include capital to build generators, transmission and distribution, workers' wages, insurance and etc.

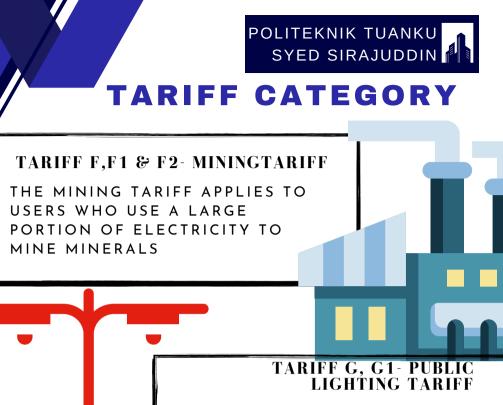
Variable costs are expenses incurred by the supplier whose rate depends on the amount of energy produced. These costs include the additional costs of fuel and water units, replacement of plant equipment and etc

Variable Cost

TARIFF CATEGORY

TARIFF A - RESIDENTIAL TARIFF RESIDENTIAL TARIFFS ARE USED FOR USERS WHO OCCUPY PRIVATE RESIDENCES, WHICH ARE NOT USED FOR THE PURPOSE OF CARRYING OUT BUSINESS ACTIVITIES

TARIFF B,C1 & C2- TRADE TARIFF


COMMERCIAL TARIFF IS USED FOR USERS WHO OCCUPY OR OPERATE A PREMISES TO CARRY OUT COMMERCIAL ACTIVITIES

TARIFF D,E1, E2,E3 INDUSTRIAL TARIFF

OPEN

THE INDUSTRIAL TARIFF APPLIES TO USERS INVOLVED IN MANUFACTURING, QUARRYING AND PUMPING ACTIVITIES FOR WATER TREATMENT PLANTS

60

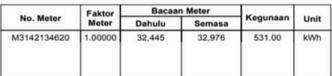
THE PUBLIC LIGHTING TARIFF APPLIES TO USERS WHO USE ELECTRICITY FOR PUBLIC LIGHTING, NEON LIGHTS AND FLOODLIGHTS

TARIFF H,H1 & H2- SPECIFIC AGRICULTURAL TARIFF

THE SPECIFIC AGRICULTURAL TARIFF IS USED FOR USERS WHO CARRY OUT SPECIFIC AGRICULTURAL ACTIVITIES. CONDUCT BUSINESS ACTIVITIES

61

EXAMPLE 1 ELECTRICAL BIL



Maklumat Terperinci Penggunaan Elektrik

Jenis Bacaan : Bacaan Sebenar

Pengiraan Penggunaan Elektrik Semasa

Tempoh Bil :	23.06	2022 - 22.07.2022 (30)hari) ^{Fa}	Faktor Prorata 1.00000	
Blok T	arif (kWh)	Blok Prorata (kWh)	Kadar (RM)	Amaun (RM)	
	200 100 300 Jumlah	200 100 231 531	0.218 0.334 0.516	43.60 33.40 119.20 196.20	

62

ENAGA

HOW TO CALCULATE

Kegunaan TNB	
No. MRU	: 24200223
No. Sequence	: 0015
Bil	: OPC

Bil Terperinci Anda

220396727403

ALAMAT PREMIS

16, JALAN BAWAL 4 TAMAN BAWAL 06150 AYER HITAM KEDAH

MAKLUMAT BAYARAN AKHIR Amaun : RM286.35 Tarikh : 27.06.2024

🖾 Anda Guna

EXCERSICE ELECTRICAL BIL CALCULATION

How to Wire Single-Phase Consumer Unit with RCD? IEC, UK & EU. (2021, March 18). ELECTRICAL TECHNOLOGY. https://www.electricaltechnology.org/2021/03/wiring-consumer-unit-distributionboard-rcd.html

Kahoot! (2024). Kahoot.it. https://create.kahoot.it/details/7635477e-9ca4-4d75-b4dc-2ee9531e6405

- Kitcher, C. (2018). Practical Guide to Inspection, Testing and Certification of Electrical Installations, 5th ed. London, United Kingdom: Taylor & Francis Ltd.
- Lembaga Penyelidikan Undang-undang (2016), Akta Bekalan Elektrik 1990 / Peraturan-peraturan Elektrik 1994 (pindaan Januari 2016), Kuala Lumpur: MDC Publisher sdn. Bhd., ISBN: 978-967-70-1397-1
- Leonardo_melo_costa. (2024). 8673-catalyst_17_3_316. Scribd. https://www.scribd.com/document/637346027/8673-catalyst-17-3-316
- Letstute. (2016). Introduction To Waste | Environmental Science | EVS | LetsTute [YouTube Video]. In YouTube. https://www.youtube.com/watch?v=_NkqwMitQ8o
- Md Nasir Abdul Manan. (2010). Pendawaian Elektrik Di Bangunan Kediaman Panduan Berpandukan MS IEC 60364. Kuala Lumpur, Malaysia: IBS Buku SDN. BHD.

Mohd. Isa Idris & Ramli Harun. (2011). Asas pendawaian. Petaling Jaya, Malaysia: IBS Buku Sdn. Bhd.

- Scaddan, B. (2011). 17th Edition IEE Wiring Regulations: Inspection, Testing and Certification. Oxford, United Kingdom: Taylor & Francis Ltd.
- Simmons, P. & Mullin R.C. (2011). Electrical Wiring Residential. Clifton Park, United States: Cengage Learning, Inc.
- Suruhanjaya Tenaga, (2022). Garis Panduan Pendawaian Elektrik Pepasangan Domestik. Putrajaya, Malaysia: Suruhanjaya Tenaga.
- SheelTalks. (2023, June 28). Electrical Hazards & Safety Training Video in English || Electrical Injuries || Shock Severity. YouTube. https://www.youtube.com/watch?v=-KTjGuSNBnw
- SheelTalks. (2024, June 22). Electrical Safety Quiz || 10 Important Questions #safetyfirst #electricalsafety. YouTube. https://www.youtube.com/watch?v=UJXPkOulYIA
- The Basics and Requirements of Home Wiring Installation. (2020). https://www.handykith.com/electrician-blog/wiring-installation-requirements

Habshah Abu Bakar is a Lecturer at the Electrical Engineering Department, Politeknik Tuanku Syed Sirajuddin in Perlis (PTSS). She obtained a Bachelor of Electrical Engineering with Honors, majoring in Communication from Universiti Teknologi Mara (UiTM), and completed her Master of Engineering (Communication & Computer) at Universiti Kebangsaan Malaysia (UKM) in 2015. The author specializes in communication engineering.

Rosliah Abu Bakar is a Senior Lecturer at the Electrical Engineering Department, Politeknik Tuanku Syed Sirajuddin in Perlis. She obtained a Bachelor of Electrical Engineering Science with Honors, majoring in Communication from Universiti Teknologi Malaysia (UTM) in 2002, and completed her Master of Technical Vocational Education at Kolej Universiti Teknologi Tun Hussein Onn (KuiTTHO) in 2003. The author is certified of Competency Building Wiring Installer (BWI)-Level 1 and certified as a Fiber Optic Specialist.

Shahrul Radzi Mad Zaki @ Abdullah is a lecturer at Electrical Engineering Department, Politeknik Tuanku Syed Sirajuddin, Perlis. He obtained his Master's in Electrical Engineering at Universiti Tun Hussein Onn Malaysia (UTHM) in 2013. He also earned his Bachelor of Electrical Engineering (Telecommunication) in 2006 at Universiti Teknologi Malaysia (UTM). The author is certified as a Fiber Optic Specialist.

65