DATA TRANSMISSION AND NETWORKING MEDIA

<mark>Nafisah Bi</mark>nti Abdullah <mark>Nurulhuda Bi</mark>nti Hanzah Editor Nafisah Binti Abdullah Nurulhuda Binti Hanzah

Writer Nafisah Binti Abdullah Nurulhuda Binti Hanzah

Designer Nafisah Binti Abdullah Nurulhuda Binti Hanzah

First published 2024

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical method, without the prior written permission of publisher, except in the case of brief quotations embodied in critical reviews and certain other non commercial uses permitted by copy right law.

Published by :

POLITEKNIK TUANKU SYED SIRAJUDDIN Pauh Putra, 02600 Arau, Perlis

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

A catalogue record for this book is available from the National Library of Malaysia

elSBN 978-629-7514-64-2

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and Merciful, Alhamdullillah, and all glory to Allah for the strength and blessings that enabled us to finish this e-book. We would like to convey our sincere thanks and appreciation to Mr Azman Bin Mat Hussin, our Head of Department of Politeknik Tuanku Syed Sirajuddin's Electrical Engineering Department, for his support.

We would like to acknowledge our colleagues and students for encouraging us to keep writing and for supporting us in transforming our teaching experiences in this field in to an e-book for further reference.

Thank you very much.

PREFACE

This e-book is based on the polytechnic syllabus for Electrical and Electronic Engineering, especially in the field of communication and computers. This e-book intends to provide students with information and abilities in data transmission and networking media. Data transmission and networking media are fundamental components of modern communication systems, enabling the transfer of data between devices across various distances and environments. Data transmission refers to the process of sending and receiving data between devices over a communication medium. This can involve either digital or analog signals and is essential for various applications. Networking media refers to the physical pathways that connect devices in a network, facilitating data transmission. These media can be categorized into wired and wireless types. There are several topics included exercises to test students' understanding. Some of the topics in this e-book have been accompanied by YouTube links and QR codes to help students better understand the topics. Understanding data transmission and networking media is crucial for developing efficient communication systems. As technology evolves, the choice of transmission media will continue to impact speed, reliability, and overall performance in data exchange across networks.

TABLE OF CONTENT

Introduction To Data Transmission1.1 Definition And Importance In Modern Technology11.2 Types Of Data Transmission11.3 Importance Of Data Transmission In Modern Technology11.4 Types Of Data Transmission2

Fundamentals Of Networking Media

2.1	Overview Of Networking Media	6
2.2	Types Of Networking Media	6
2.3	Types Of Wireless Media	7
2.4	Exercise	8

Characteristics And Properties Of Networking Media

3.1	Data Modulation	9
3.2	Transmission Modes	9
3.3	Data Transmission	10
3.4	Data Communication And Networking Concepts	12
3.5	Bandwidth And Throughput	13
3.6	Practical Examples	16
3.7	Exercise	17

Wired Networking Media

4.1 Networking Media	18
4.2 Twisted Pair Cable	18
4.2.1 Unshielded Twisted Pair (UTP)	18
4.2.2 Advantages Of UTP Cable	20
4.2.3 Shielded Twisted Pair (STP)	20
4.2.4 Coaxial Cable	22
4.2.5 Data Transfer Rate Of Coaxial Cable	23
4.2.6 Advantages Of Coaxial Cable	23
4.2.7 Ticknet Cable	23
4.3 Fiber – Optic Cable	25
4.3.1 SMF (Single Mode Fiber)	27
4.3.2 MMF (Multimode Fiber)	27
4.3.3 Fiber – Optic Connectors	28
4.4 The Differentiation Of Cable	30
4.5 Best Practices For Cabling Buildings And Work Areas	31
4.6 Tools For Network Cabling Preparation	33
4.6.1 Straight-Through UTP Cable	34
4.6.2 Preparing Straight-Through UTP Cable TIA/EIA568A	35
4.6.3 Cross-Over UTP Cable	40
4.6.4 Preparing Cross-Over UTP Cable TIA/EIA 568A/568B	41
4.7 Exercise	43

Wireless Networking Media

5.1 Wireless Networking Media 4		
5.2 Radio Transmission	44	
5.2.1 Radio Waves	45	
5.2.2 Micro Waves	46	
5.2.3 Infrared (IR)	47	
5.3 Characteristics Of Wireless Transmission	49	
5.3.1. Signal Propagation	49	
5.3.2 Signal Degradation	50	
5.3.3 Narrowband, Broadband and Spread Spectrum Signals	50	
5.3.4 Fixed And Mobile Wireless Communication	51	

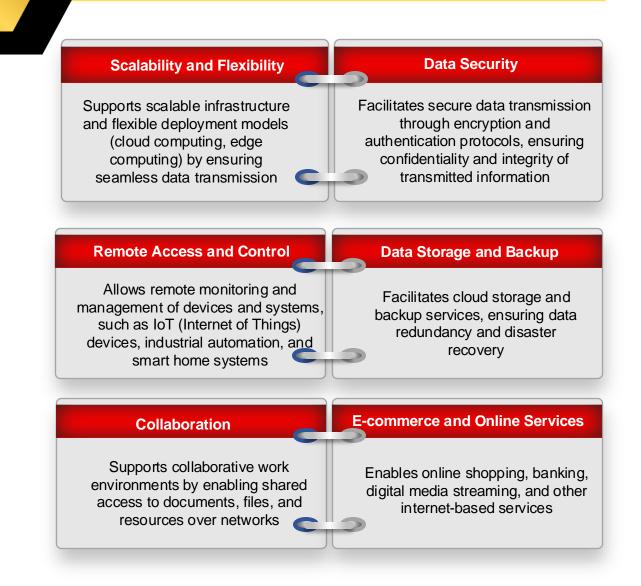
Choosing The Right Networking Media

6.1 Factors To Consider In Choosing Networking Cable	52
6.1.1 Option In Distance Requirements	53
6.1.2 Option In Bandwidth Needs	54
6.1.3 Option In Environmental Factors	55
6.2 Recommendations Based on Factors	

Future Trends In Data Transmission & Networking Media

7.1	Emerging Technologies	57
7.2	Advantages Of Quantum Networking	58
7.3	Potential Applications	58
7.4	5G And Beyond	59
7.5	Future Networking Trends	59
7.6	Preparing For The Future	60
7.7	Sustainability Considerations In Networking Media	60

1.1 Definition Of Data Transmission Data transmission refers to the process of sending digital or analog data over a communication channel from one device to another. It is a fundamental concept in modern technology, enabling the exchange of information between computers, servers, smartphones, and various other digital devices.



1.2 Key Elements Involving Data Transmission

Data transmission involves the following key elements :		
Sender and Receiver	Devices that initiate (sender) and receive (receiver) data	
Communication ChannelMedium through which data is transmitted, such as wired (Ethernet cables) or wireless (radio waves, Wi-Fi, Bluetod)		
Data Format	Digital bits organized into packets or frames for efficient transmission and error detection/correction	
Protocols	Rules and conventions governing how data is formatted, transmitted, received, and interpreted	

1.3 Importance Of Data Transmission in Modern Technology

Connectivity	Information Exchange
Enables devices and systems to	Facilitates real-time or near-real-time
communicate, facilitating	transfer of data critical for applications
interconnectedness in networks	like instant messaging, video
(local, wide-area, and global).	conferencing, and online transactions

1.4 Types Of Data Transmission

Analog and digital signals are the types of signals carrying information. The major difference between both signals is that the analog signals have continuous electrical signals, while digital signals have non-continuous electrical signals. The difference between analog and digital signal can be observed with the examples of different types of waves.

INTRODUCTION TO DATA TRANSMISSION

Analog signals were used in many systems to produce signals to carry information. These signals are continuous in both values and time. The use of analog signals has declined with the arrival of digital signals. In short, to understand analog signals – all signals that are natural or come naturally are analog signals

Figure 1.1 Analog Signal

Figure 1.2 Digital Signal

лППп

Digital signals are not continuous,

but signals are discrete in value

and time. These signals are

represented by binary numbers

and consist of different voltage

values

DIFFERENCES	ANALOG	DIGITAL
SIGNAL	Analog signal is a continuous signal which represents physical measurements.	Digital signals are discrete time signals generated by digital modulation.
WAVES	Denoted by sine waves	Denoted by square waves
REPRESENTATION	Uses continuous range of values to represent information	Uses discrete or discontinuous values to represent information
EXAMPLE	Human voice in air, analog electronic devices.	Computers, CDs, DVDs, and other digital electronic devices.
RESPONSE TO NOISE	response are analog	
		Best suited for Computing and digital electronics.

Table 1.1 Differences Between Analog And Digital Signal

Serial and parallel transmission are two methods used to transfer data between devices in computing and telecommunications. Serial transmission sends data bits one after another over a single channel or wire. Parallel transmission sends multiple data bits simultaneously over multiple channels or wires.

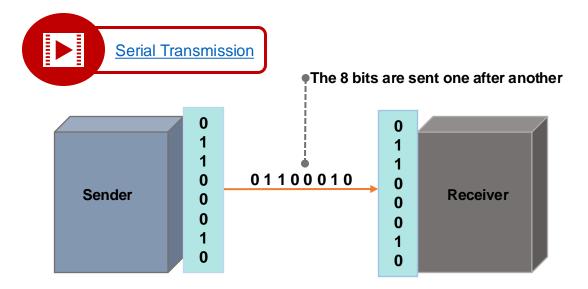
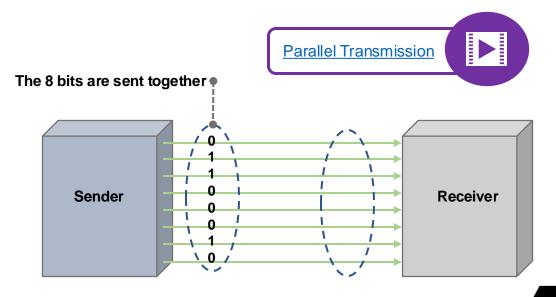



Figure 1.3 Serial Transmission

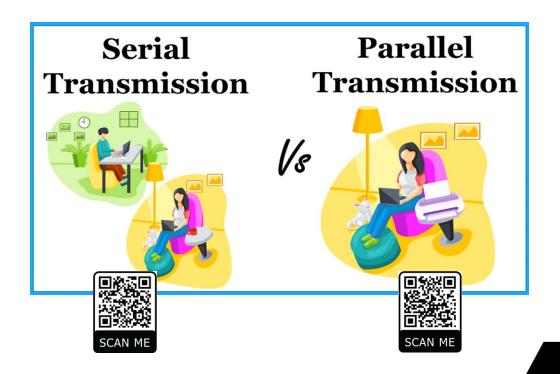


Figure 1.4 Parallel Transmission

1

FEATURE	SERIAL TRANSMISSION	PARALLEL TRANSMISSION
Data Transfer Sequential, one bit at a time		Simultaneous, multiple bits at a time
No. of wires	Fewer (typically 2-4)	More (one per bit, plus control wires)
Speed Slower over short distances, faster over long distances		Faster over short distances
Distance	Suitable for long distances	Limited to short distances
Interference	Less susceptible to crosstalk and EMI	More susceptible to crosstalk and EMI
Complexity Simpler wiring and setup		More complex wiring and setup
Uses cases USB, Ethemet, long-distance communication		Internal computer buses, older printers

Table 1.2 Comparison between Serial Transmission And Parallel Transmission

2.1 Overview Of Networking Media

Networking media refers to the various physical pathways or channels through which data is transmitted between devices in a network. The choice of networking media affects the speed, distance, reliability, and cost of a network. Here is an overview of different types of networking media, along with their definitions and roles in networking.

2.2 Types Of Wired Media

Wired media, essential for data communication, can be categorized into three primary types: twisted pair cables, coaxial cables, and fiber optic cables. Each type has distinct characteristics, advantages, and applications.

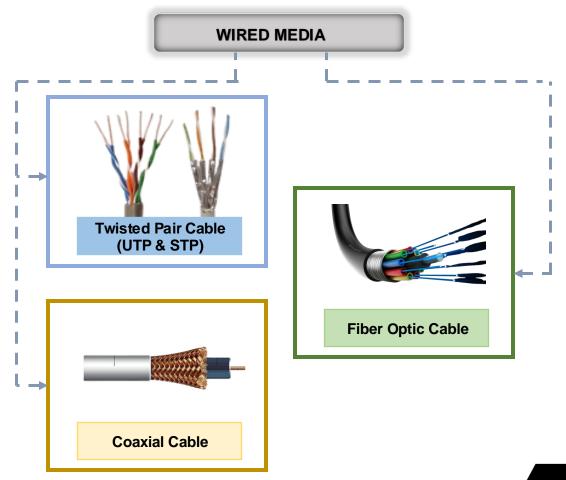


Figure 2.1 Types Of Wired Media

2.3 Types Of Wireless Media

Wireless media refers to the transmission of data without the use of physical connections, utilizing electromagnetic waves to facilitate communication. This type of media can be categorized into several types, each serving different applications and environments.

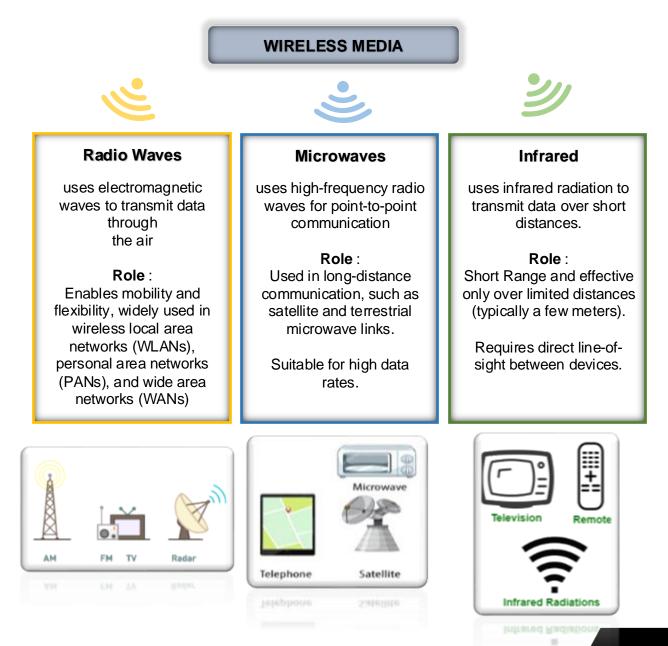


Figure 2.2 Types Of Wireless Media

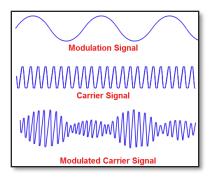
2.4 EXERCISE

- 1. A transmission technology that divides that transmission medium into discrete channels so that multiple signals can share the same cable is known as
 - a. duplex communication
 - b. baseband communication
 - c. sideband communication
 - d. broadband communication
- 2. Data transmission involves the following key elements EXCEPT
 - a. Devices that initiated as sender and receiver data
 - b. Medium through which data is transmitted
 - c. Format of data
 - d. Type of hardware used
- 3. The importance of data transmission is a fundamental aspect of modern technology are as below **EXCEPT**
 - a. Do not allows remote monitoring and management of devices and systems
 - b. Enables devices and systems to communicate
 - c. Supports scalable infrastructure and flexible deployment models
 - d. Facilitates cloud storage and backup services,
- 4. Analog signal can be used in analog devices only.
 - a. Yes
 - b. No
- 5. Digital signals are discrete time signals generated by digital modulation. It is denoted by _____.

9' B

2' D

ANSWERS


A.E

1. D

- a. arbitrary
- b. square waves
- c. sine waves
- d. ramp waves

3.1 Data Modulation

In electronics and telecommunications, **modulation** is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted.

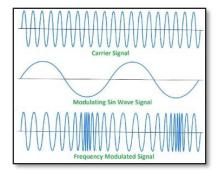


Figure 3.1 Modulation Signal

3.2 Transmission Modes

Transmission modes refer to the ways in which data can be transmitted between two devices. They are crucial in determining how data flows in communication systems. The primary transmission modes are simplex, half duplex and full duplex transmission:

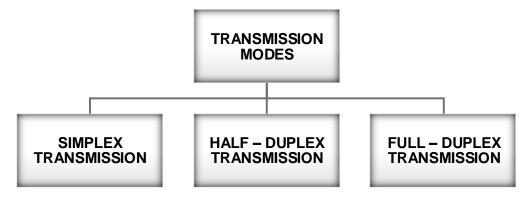
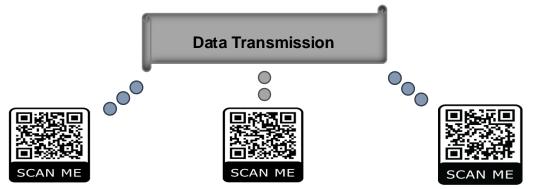



Figure 3.2 Transmission Modes

3.3 Data Transmission

SIMPLEX

Definition:

Data flows in only one direction. One device is the transmitter, and the other is the receiver. Communication is unidirectional.

Examples:

Television broadcast: The TV station sends the signal, and the TV receives it. Keyboard to computer: The keyboard sends input to the computer, but the computer does not send data back to the keyboard.

Usage:

Used in situations where communication in one direction is sufficient. Simplex mode is less common in modern communication systems due to its limitations.

HALF - DUPLEX

Definition: Data can flow in both directions, but not simultaneously. Devices take turns transmitting and receiving data. Communication is bidirectional but alternate.

Examples:

Walkie-talkies: One person speaks while the other listens, and they switch roles to respond. CB radios: Users need to take turns speaking and listening.

Usage:

Suitable for systems where two-way communication is needed but simultaneous transmission is not necessary. Used in older Ethernet networks and some wireless communication systems

SCAN ME

FULL - DUPLEX

Definition:

Data can flow in both directions simultaneously. Both devices can send and receive data at the same time. Communication is bidirectional and concurrent.

Examples:

Telephone calls: Both parties can speak and listen at the same time. Modern Ethernet networks: Devices can send and receive data concurrently, improving efficiency and speed.

Usage:

Widely used in modern communication systems, including computer networks and telecommunication systems. Enhances performance and reduces communication delays.

Table 3.1 Comparison Between Simplex, Half-duplex And Full-duplex

Feature	Simplex	Half-Duplex	Full-Duplex
Direction	One-way	Two-way (alternate)	Two-way (simultaneous)
Communication	Unidirectional	Bidirectional (alternate)	Bidirectional (concurrent)
Example	TV broadcast	Walkie-talkie	Telephone
Usage	Limited applications	Some legacy systems	Most modern systems
Efficiency	Least efficient	Moderately efficient	Most efficient

SIMPLEX TRANSMISSION

Simplex One direction - one channel

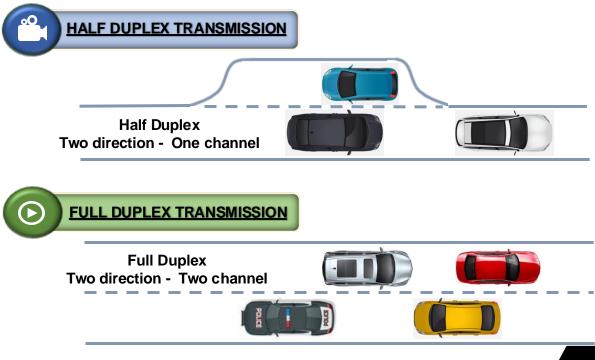


Figure 3.3 Direction of Transmission Modes

3.4 Data Communication And Networking Concepts

Multiplexing, point-to-point, and broadcast transmission are fundamental concepts in data communication and networking. There are closely related to how data is transmitted and managed over communication channels. Multiplexing techniques are used to allow many users to share a common transmission resource. In our case the users are mobile and the transmission resource is the radio spectrum. Sharing a common resource requires an access mechanism that will control the multiplexing mechanism. As in wire line systems, it is desirable to allow the simultaneous transmission of information between two users engaged in a connection. This is called duplexing.

Two types of duplexing exist :

Frequency division duplexing (FDD), whereby two frequency channels are assigned to a connection, one channel for each direction of transmission.

Time division duplexing (TDD), whereby two time slots (closely placed in time for duplex effect) are assigned to a connection, one slot for each direction of transmission.

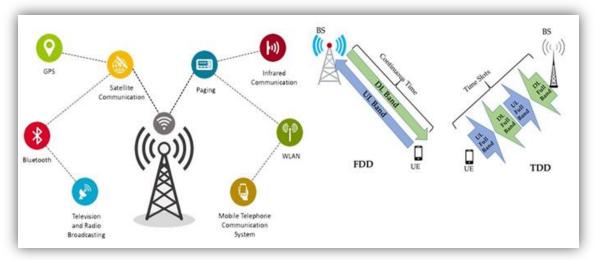
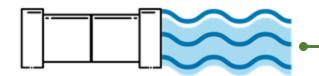


Figure 3.4 FDD And TDD Technique In Telecommunication

3.5 Bandwidth And Throughput


Bandwidth and throughput are two critical concepts in networking, often used to describe the performance and capacity of a network. Although they are related, they are not the same and understanding their differences is important.

THROUGHPUT	
Definition: Throughput is the actual	
rate at which data is successfully	
transferred over a network channel. It	
is the measure of how much data is	
transmitted from source to destination	
in a given amount of time, considering	
real-world conditions and constraints.	
Characteristics:	
Actual Performance: Represents the	
real-world performance of a network	
connection.	
Measurement: Measured in bits per	
second (bps) or multiples such as	
Kbps, Mbps, and Gbps, similar to	
bandwidth.	

Table 3.2 Comparison Bandwidth And Throughput

Table 3.3 Factors Influencing Bandwidth And Throughput

BANDWIDTH	THROUGHPUT	
Factors Influencing Bandwidth:	Factors Influencing Throughput:	
□ Type of networking media (e.g.,	Network congestion and traffic load.	
fibre optic vs. copper cabling).	Latency and delays in data	
Network technology and protocols	transmission.	
used.	Packet loss and error rates.	
□ Hardware capabilities (e.g.,	Quality of network equipment and	
network interface cards, routers).	configurations.	
	Interference and signal degradation	
	in wireless networks.	

Bandwidth is a theoretical metric that measures potential packet delivery

Throughput is a practical metric that measures actual / achieved packet delivery

In other words, throughput is the amount of data that is able to travel through total bandwidth given the external factors

Figure 3.5 Bandwidth vs Throughput

While bandwidth represents the maximum potential data transfer capacity of a network, throughput reflects the actual data transfer rate achieved under real-world conditions. Both are essential for understanding and optimizing network performance, with bandwidth providing a benchmark for capacity and throughput indicating the effectiveness of the network in practice.

Table 3.4 Summarize Between Bandwidth And Throughput

FEATURE	BANDWIDTH	THROUGHPUT	
Definition	Theoretical maximum data transfer rate	Actual data transfer rate achieved	
Measurement	Measured in bits per second (bps)	Measured in bits per second (bps)	
Nature Capacity and potential of the network		Real-world performance of the network	
Influencing factors	Type of media, network technology, hardware	Congestion, latency, packet loss, interference	
Usage	Used to specify network capability and plan capacity	Used to measure and evaluate network performance	

3.6 Practical Examples

Internet Connection :

A broadband provider may advertise a bandwidth of 100 Mbps, but the actual throughput experienced by users may be lower due to network congestion or equipment limitations.

File Transfer :

A network with a bandwidth of 1 Gbps should theoretically transfer data at 1 Gbps. However, if there is high traffic or interference, the throughput may be significantly lower, resulting in slower file transfer rates.

S

Streaming Video :

A streaming service might require a minimum bandwidth of 5 Mbps for HD video. If the actual throughput is lower than this, users may experience buffering or lower video quality.

3.7 EXERCISE

- 1. Transmission modes enable communication between devices and are classified into three types of the following **EXCEPT**
 - a. simplex transmission
 - b. semi simplex transmission
 - c. half duplex transmission
 - d. full duplex transmission
- 2. Which transmission data can flow in both directions simultaneously.
 - a. simplex transmission
 - b. semi simplex transmission
 - c. half duplex transmission
 - d. full duplex transmission
- Data transmit in both directions, but not simultaneously. The devices take turns transmitting and receiving data and communication is bidirectional but alternate. This description refers to ______.
 - a. simplex transmission
 - b. semi simplex transmission
 - c. half duplex transmission
 - d. full duplex transmission
- 4. ______ is the maximum rate at which data can be transferred over a network channel or communication path.
 - a. Bandwidth
 - b. Throughput
 - c. Point to point
 - d. Broadband
- 5. These area the factors influencing throughput **EXCEPT**
 - a. Network technology and protocols used
 - b. Latency and delays in data transmission
 - c. Quality of network equipment and configurations.
 - d. Interference and signal degradation in wireless networks.

4.1 Networking Media

Network media is the actual path over which an electrical signal travels as it moves from one component to another. This chapter describes the common types of wired networking media including twisted-paired cable, coaxial cable and fiber-optic cable.

4.2 Twisted Pair Cable

Twisted-pair cable is a type of cabling that is used for telephone communications and most modern Ethernet networks. A pair of wires forms a circuit that can transmit data. The pairs are twisted to provide protection against crosstalk, the noise generated by adjacent pairs. When electrical current flows through a wire, it creates a small, circular magnetic field around the wire. When two wires in an electrical circuit are placed close together, their magnetic fields are the exact opposite of each other. Thus, the two magnetic fields cancel each other out. They also cancel out any outside magnetic fields. Twisting the wires can enhance this cancellation effect. Using cancellation together with twisting the wires, cable designers can effectively provide self-shielding for wire pairs within the network media. Two basic types of twisted-pair cable exist: unshielded twisted pair (UTP) and shielded twisted pair (STP). The following sections discuss UTP and STP cable in more detail.

4.2.1 Unshielded Twisted Pair (UTP)

- Consists of 4 pairs (8 wires) of insulated copper wires typically about 1 mm thick.
- The wires are twisted together in a helical form.
- Twisting reduces the interference between pairs of wires.
- High bandwidth and High attenuation channel.
- Flexible and cheap cable.

-

- Category rating based on number of twists per inch and the material used.
- The wires are twisted together in a helical form.

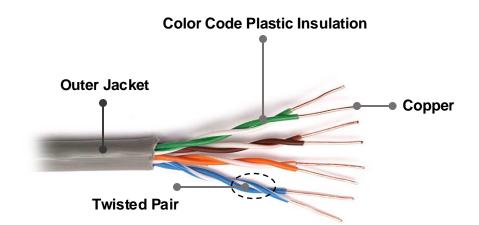
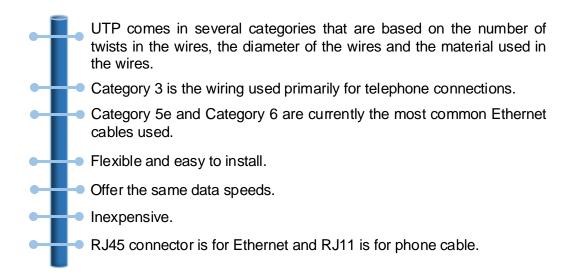
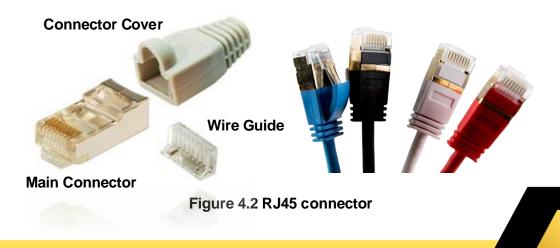




Figure 4.1 Unshielded Twisted Pair

4.2.2 Advantages Of UTP cable

UTP has an external diameter of approximately 0.43 cm (0.17 inches), its small size can be advantageous during installation. Because it has such a small external diameter, UTP does not fill up wiring ducts as rapidly as other types of cable. UTP cable is easy to install and is less expensive than other types of networking media. In fact, UTP costs less per meter than any other type of LAN cabling. And because UTP can be used with most of the major networking architectures, it continues to grow in popularity. Disadvantages also are involved in using twisted-pair cabling, however. UTP cable is more prone to electrical noise and interference than other types of networking media, and the distance between signal boosts is shorter for UTP than it is for coaxial and fiber-optic cables.

4.2.3 Shielded Twisted Pair (STP)

Shielded twisted-pair (STP) cable combines the techniques of shielding, cancellation, and wire twisting. Each pair of wires is wrapped in a metallic foil (see Figure 4.3). The four pairs of wires then are wrapped in an overall metallic braid or foil, usually 150-ohm cable. As specified for use in Ethernet network installations, STP reduces electrical noise both within the cable (pair to-pair coupling, or crosstalk) and from outside the cable (EMI and RFI). STP usually is installed with STP data connector, which is created especially for the STP cable. However, STP cabling also can use the same RJ connectors that UTP uses.

Figure 4.3 Shielded Twisted Pair

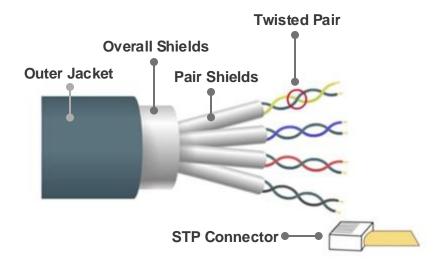


Figure 4.4 Shielded Twisted Pair

FEATURE	UNSHIELDED TWISTED PAIR (UTP)	SHIELDED TWISTED PAIR (STP)	
Speed and Throughput	10 to 1000 Mbps 10 to 100 Mbps		
Average cost per node	Least expensive	Moderately expensive	
Media and connector size	Small	Medium to large	
Maximum cable length	100m (short)	rt) 100m (short)	

4.2.4 Coaxial Cable

A coaxial cable consists of a hollow outer cylindrical conductor that surrounds a single inner wire made of two conducting elements. At the center of the cable is a copper conductor, which is surrounded by a layer of flexible insulation. Over this insulating material, there is a woven copper braid or metallic foil. This braid or foil acts both as the second wire in the circuit and as a shield for the inner conductor, helping to reduce the amount of outside interference. Finally, the cable jacket covers this shield.

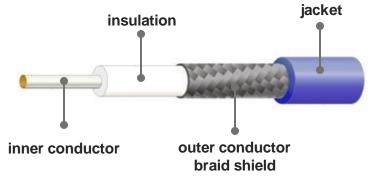


Figure 4.5 Coaxial Cable Structure

Coaxial cabling comes in hundreds of specifications, which are all assigned an RG (radio guide) specification number. Each type of coax is suited to a different purpose. The larger the AWG size, the smaller the diameter of the core wire.

Table 3.2	Coaxial	Cable	Specifications
-----------	---------	-------	-----------------------

TYPE	IMPEDANCE	CORE	USES
RG – 59	75 ohms	20 / 22 AWG core, made of braided copper	Used for short connection. Example : distributing video signals from central receiver to multiple monitors within a building
RG – 6	75 ohms	18 AWG conducting core, made of solid copper	Used for long distances. Example : deliver broadband cable internet service and TV cable,

4.2.5 Data Transfer Rate Of Coaxial Cable

Coaxial cable supports data transfer rates of 10 to 100 Mbps and is relatively inexpensive, though it is costlier than UTP on a per-unit length. However, it can be cheaper for a physical bus topology since less cable is needed. Coaxial cable can be cabled over longer distances than twisted-pair cable. For instance, Ethernet using twisted-pair cabling can run approximately 100 meters (328 feet), whereas using coaxial cable increases this distance to 500 meters (1640.4 feet).

4.2.6 Advantages Of Coaxial Cable

For LANs, coaxial cable offers several advantages. It requires fewer boosts from repeaters for longer distances between network nodes compared to STP or UTP cables. Repeaters regenerate the signals in a network to cover greater distances. Coaxial cable is also less expensive than fiber-optic cable, and the technology is well-known, having been used for many years for various types of data communication.

4.2.7 Ticknet Cable

When working with coaxial cable, its size must be considered. As the thickness or diameter of the cable increases, it becomes more difficult to work with. Often, the cable must be pulled through existing conduits and troughs that have limited space. Coaxial cable comes in a variety of sizes, with the largest diameter (1 centimeter) specified for use as Ethernet backbone cable due to its greater transmission length and noise-rejection characteristics. This type of coaxial cable is often referred to as *Thicknet*. However, *Thicknet* can be too rigid to install easily in some situations due to its thickness and is more expensive to install than twisted-pair cable.

WIRED NETWORKING MEDIA

Thicknet cable is rarely used today except for special-purpose installations. A device known as a vampire tap was used to connect network devices to Thicknet. The vampire tap was then connected to computers via a more flexible cable called the attachment unit interface (AUI). Special care had to be taken to ensure proper grounding of the outer copper or metallic braid, which comprises half the electrical circuit. Grounding was achieved by ensuring a solid electrical connection at both ends of the cable. Improper grounding resulted in electrical noise, interfering with signal transmission.

Figure 4.6 Thicknet Cable

Despite its smaller diameter, Thinnet is no longer commonly used in Ethernet networks. The most common connectors used with Thinnet are BNC connectors (see Figure 4.7), short for British Naval Connector or Bayonet Neill Concelman connectors. The basic BNC connector is a male type mounted at each end of a cable, with a center pin connected to the center cable conductor and a metal tube connected to the outer cable shield. A rotating ring outside the tube locks the cable to any female connector. BNC T-connectors are female devices for connecting two cables to a network interface card (NIC), while a BNC barrel connector facilitates connecting two cables together.

Figure 4.7 BNC Connector

4.3 Fiber – Optic Cable

Fiber-optic cable used for networking consists of two fibers encased in separate sheaths. In a cross-sectional view, you would see that each optical fiber is surrounded by layers of protective buffer material, usually a plastic shield, followed by a layer of plastic such as Kevlar, and finally an outer jacket. The outer jacket provides protection for the entire cable and ensures compliance with appropriate fire and building codes. The Kevlar layer offers additional cushioning and protection for the fragile, hair-thin glass fibers (see Figure 4.8). In situations where buried fiber-optic cables are required by codes, a stainless-steel wire is sometimes included for added strength.

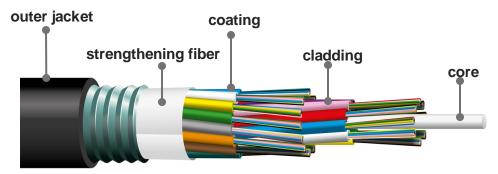


Figure 4.8 A Fiber Optic Cable

Surrounding the fibers is a layer of glass or plastic called cladding. The cladding is less dense than the glass or plastic in the strands and so reflects light back to the core in patterns that vary depending on the transmission mode. Outside the cladding, a plastic buffer protects the cladding and core. Because the buffer is opaque, it also absorbs any light that might escape. To prevent the cable from stretching, and to protect the inner core further, strands of Kevlar (a polymeric fiber) surround the plastic buffer. Finally, a plastic sheath covers the strands of Kevlar. Figure 4.8 shows a fiber-optic cable with multiple, insulated fibers. The clear strands you see protruding from each line are not the actual cores – these are the visible cladding around each core. The core itself is microscopic in width.

Fiber optic cable is the industry standard for high-speed networking and provides the following benefits over copper cabling:

- Extremely high throughput
- Very high resistance to noise
- Excellent security
- Ability to carry signals for much longer distances before requiring repeaters

Fiber optic cable requires special equipment for splicing, or joining, which means that quickly repairing a fiber-optic cable in the field can be difficult. The characteristic of fiber optic in terms of :

Throughput

Fiber has proved reliable in transmitting data at rates that can reach 100 gigabits (or 100,000 megabits) per second per channel. The lightbased signals can be transmitted at faster rates with fewer errors than electrical pulses so that its high throughput capability makes it suitable for network backbones and for supporting applications such as video or audio conferencing.

Cost

Fiber optic cable is the most expensive transmission medium. Not only the cable itself is more expensive than copper cable, fiber optic transmitters and connecting equipment can cost five times more than those designed for UTP networks.

Noise immunity

Because fiber does not conduct electrical current to transmit signals, it is unaffected by EMI. Its impressive noise resistance is one reason why fiber can span such long distances

Size and scalability

Depending on the type of fiber-optic cable used, segment lengths vary from 2 to 40,000 meters. The distance a cable can carry light depends partly on the light's wavelength. It also depends on whether the cable is single mode or multimode.

4.3.1 SMF (Single Mode Fiber)

Single Mode Fiber consists of a narrow core of 8 to 10 microns in diameter. Laser generated light travels a single path over the core, reflecting very little. Because it reflects little, the light does not disperse as the signal travels along the fiber. This continuity allows SMF to accommodate the highest bandwidths and longest distances (without requiring repeaters) of all network transmission media. Figure 4.9 depicts a simplified version of how signals travel over single mode fiber.

Figure 4.9 Transmission Over Single Mode Fiber Optic Cable

The Internet backbone depends on single mode fiber. However, because of its relatively high cost, SMF is rarely used for short connections, such as those between a server and switch.

4.3.2 MMF (Multimode Fiber)

Multimode Fiber contains a core with a larger diameter than SMF, usually 50 or 62.5 microns, over which many pulses of light generated by a laser or LED light source travel at various angles. Signals traveling over multimode fiber experience greater attenuation than those traversing single mode fiber. Therefore, MMF is not suited to distances longer than a few kilometers. On the other hand, MMF is less expensive to install and therefore typically used to connect routers, switches, and servers on the backbone of a network or to connect a desktop workstation to the network. Figure 4.10 depicts a simplified view of how signals travel over multimode fiber.

Figure 4.10 Transmission Over Multimode Fiber Optic Cable

4.3.3 Fiber – Optic Connectors

Fiber-optic connectors come in single-mode and multimode varieties. The greatest difference between single-mode connectors and multimode connectors is the precision in the manufacturing process. The hole in the single-mode connector is slightly smaller than in the multimode connector. This ensures tighter tolerances in the assembly of the connector. The tighter tolerances make field assembly slightly more difficult.

A number of different types of fiber-optic connectors are used in the communications industry. The following list briefly describes two of the commonly used connectors:

SC - SC type connectors feature a push-pull connect and disconnect method. To make a connection, the connector is simply pushed into the receptacle. To disconnect, the connector is simply pulled out (see Figure 4.11).

ST - ST fiber-optic connector is a bayonet type of connector. The connector is fully inserted into the receptacle and is then twisted in a clockwise direction to lock it into place (see Figure 4.12).

Figure 4.11 SC Connectors

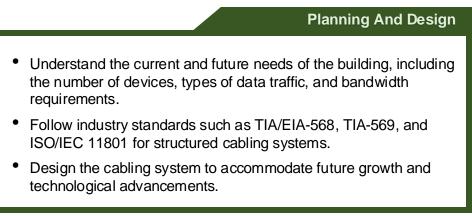
Figure 4.12 ST Connectors

WIRED NETWORKING MEDIA

 Table 3.3 Media Type Comparison

	UTP /	STP	COAXIAL	FIBER-OPTIC
MEDIA TYPE				
MAX SEGMENT LENGTH	100m	100m	500m (Thicknet) 185m (Thinnet)	10km and farther (single mode) 22km and farther (multimode)
SPEED	10Mbps to 1000Mbps	10Mbps to 100Mbps	10Mbps to 100Mbps	100 Mbps to 100 Gbps (single mode) 100 Mbps to 9.92 Gbps (multimode)
COST	Least expensive	More expensive than UTP	Relatively inexpensive, but more costly than UTP	Expensive
ADVANTAGES	Easy to install; widely available and widely used	Reduced crosstalk; more resistant to EMI than Thinnet or UTP	Less susceptible to EMI interference than other types of copper media	Cannot be tapped, so security is better; can be used over great distances; is not susceptible to EMI; has a higher data rate than coaxial and twisted-pair cable
DISADVANTAGES	Susceptible to interference; can cover only a limited distance	Difficult to work with; can cover only a limited distance	Difficult to work with Thicknet; Limited bandwidth; limited application (Thinnet; damage to cable can bring down entire Network	Difficult to terminate

4


4.4 The Differentiation Of Cable

Wired networking media, such as twisted pair cables, coaxial cables, and fiber optics, are fundamental to network infrastructure. Each type offers specific benefits and faces distinct limitations. Table 3.4 below shows the differentiation of performance in terms of throughput, noise immunity, size and scalability, and cost, providing insights to help choose the most suitable medium for various networking needs.

NETWORKING MEDIA	THROUGHPUT	NOISE IMMUNITY	SIZE AND SCALABILITY	COST
Twisted Pair Cables (Cat 5e, Cat 6)	Up to 1 Gbps (Cat 5e), 10 Gbps (Cat 6)	Moderate due to twisted-pair design. Because of its shielding, STP is more noise-resistant than UTP.	Easy to install and expand; suitable for small to medium-sized networks	Low cost; economical for most applications
Coaxial Cables	Up to 1 Gbps	Better than twisted-pair due to shielding	Suitable for longer distances than twisted-pair without significant signal degradation	higher than twisted-pair but lower than fiber-
Fiber-Optic Cables	Extremely high, up to 100 Gbps and beyond	Excellent; immune to EMI	Ideal for large- scale networks; supports long distances without signal loss	Higher initial cost; good long-term value

Table 3.4 The Differentiation Of Cable Performance

4.5 Best Practices For Cabling Buildings And Work Areas

Cable Selection

- Use high-quality cables and connectors that meet or exceed performance specifications.
- Choose the appropriate type of cable (e.g., Cat5e, Cat6, Cat6a, fiber optic) based on the requirements and distances involved.

Installation Practices

- Clearly label all cables and connections at both ends to facilitate troubleshooting and future modifications.
- Separate power and data cables to avoid electromagnetic interference (EMI).
- Avoid sharp bends and kinks in cables to maintain signal integrity.
- Use cable management systems such as trays, conduits, and racks to organize and protect cables.
- Route cables away from sources of interference, such as fluorescent lights and machinery.
- Maintain detailed records of the cabling layout, including cable routes, termination points, and test results.

- Ensure cables are terminated correctly using appropriate connectors and techniques.
- Test all cables for continuity, signal loss, and interference using proper testing equipment.
- Certify the installation to ensure it meets performance standards and specifications.

Cable Selection

- Follow local building codes and safety regulations during installation.
- Use plenum-rated cables in areas where fire safety is a concern.
- Conduct regular inspections and maintenance to identify and rectify any issues.
- Protect cables from environmental factors such as moisture, heat, and physical damage.

Aesthetic and accessibility

- Design the cabling system to be aesthetically pleasing and unobtrusive.
- Ensure cables and connections are easily accessible for maintenance and upgrades.

4.6 Tools For Network Cabling Preparation

When preparing network cabling, having the right tools is essential for ensuring a successful installation. Below is an overview of the necessary tools in preparing network cable.

Figure 4.13 Network Cabling Tools

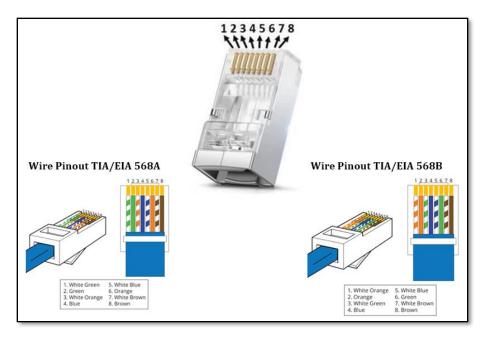


Figure 4.14 Network Connector

4.6.1 Straight-Through UTP Cable

A Straight through Cables gets their name from how they are made. Straightthrough cable is a type of twisted pair copper wire cable for local area network (LAN) which the RJ-45 connectors at each end have the same pinout. Straight Through Cables are primarily used for connecting unlike devices.

Straight-through UTP Cable Typically Used In The Following Situations :

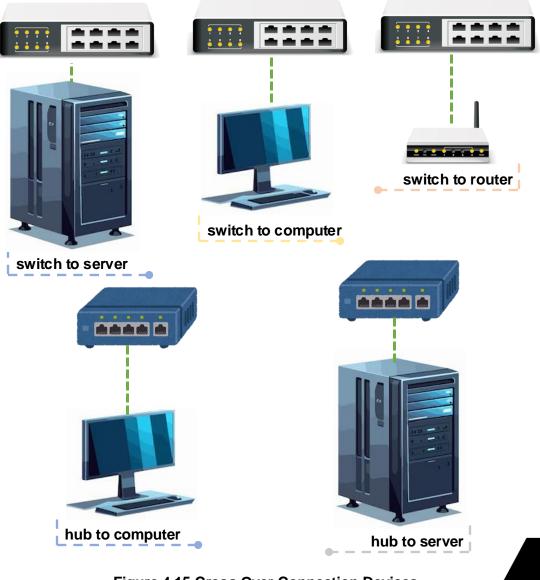


Figure 4.15 Cross Over Connection Devices

4.6.2 Preparing Straight-Through UTP Cable TIA/EIA 568A

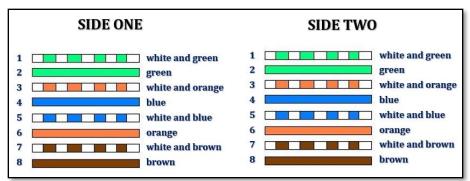


Figure 4.16 Straight – Through UTP Cable Colour Arrangement

In a straight-through cable, each wire connects to the same pin on each end. For example, the green/white wire goes straight through from pin 1 to pin 1. To create a straight-through patch cable using Cat 5e twisted-pair cabling:

- Using the wire cutter, make a clean cut at both ends of the twisted-pair cable. Cut the cable the length you want the final cable to be, plus a few extra inches. If you're using a boot, slide one onto each end of the cable with the smaller opening facing the length of the cable and the larger opening facing the cut end that you're terminating.
- 2. Using the wire stripper, remove the sheath off of one end of the twisted-pair cable, beginning at approximately 1 inch from the end. This is easier if you first score the sheath with a pair of scissors or a small knife. Be careful to neither damage nor remove the insulation that's on the twisted-pair wires inside.

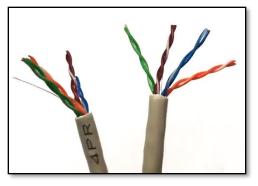
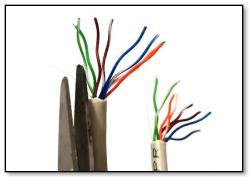
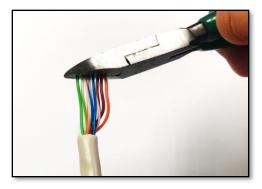


Figure 4.17 Cut At Both Ends Using Wire Cutter

WIRED NETWORKING MEDIA

3. In addition to the four wire pairs, inside the sheath you'll find a string. This string, known as a strip string or rip cord, is included to make it possible to remove an additional length of the outer sheath beyond the point where your cutting tool might have nicked the wire pairs. Use a pocketknife, wire cutters, or scissors to start a new cut at the edge of the sheath, then pull the string through the cut to expose an additional inch of the inner wires, as shown in Figure 4.18.




Figure 4.18 Cut Off The Excess String And Sheath

- 4. Carefully unwind each pair and straighten each wire. Make a clean cut evenly across the wires about an inch from the opening in the sheath.
- 5. To make a straight-through cable, align all eight wires on a flat surface, one next to the other, ordered according to their colours and positions listed earlier in Figure 4.19. It might be helpful first to groom or pull steadily across the length of the unwound section of each wire to straighten it out and help it stay in place.

Figure 4.19 Straighten The Wires

6. Measure 1/2 inch from the end of the wires, and cleanly cut the wires straight across at this length as you can see in Figure 4.20.

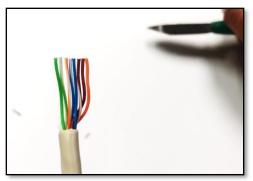


Figure 4.20 Cut Half Inch Of The End Wires

7. Keeping the wires in line and in order, gently slide them into their positions in the RJ-45 plug as in Figure 4.21. The plug should be positioned with the flat side facing toward you and the pin side facing away from you, so the appropriate wires enter the correct slots for the wiring standard. The sheath should extend into the plug about 3/8 of an inch.

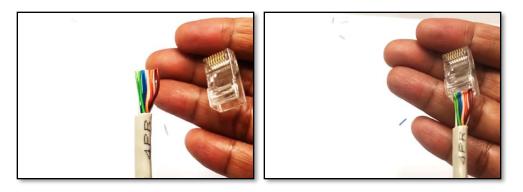


Figure 4.21 Slide In The RJ 45 Plug

8. After the wires are fully inserted, place the RJ-45 plug in the crimping tool and press firmly to crimp the wires into place. Be careful not to rotate your hand or the wire as you do this, otherwise only some of the wires will be properly terminated.

Figure 4.22 Clamp The Plug

9. Repeat step 7 for the other end of the UTP cable. Make sure to use the same colour standard as the first end.

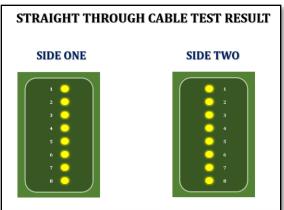
Figure 4.23 The Cable is Crimped Here

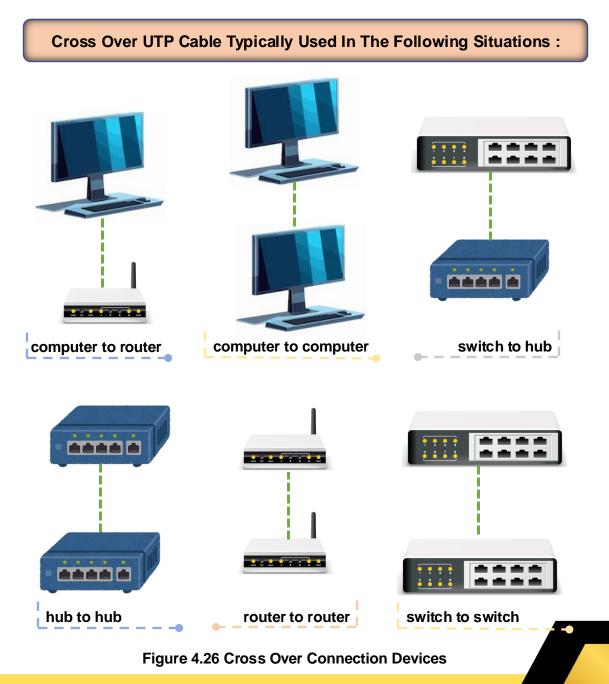
10. Test the finish cable using a RJ45 UTP cable tester.

Figure 4.24 UTP Cable Tester

11. Video in making straight through cable.

12. Video on testing straight through cable




Figure 4.25 Testing Straight Through Cable

4.6.3 Cross-Over UTP Cable

Crossover cables are very similar to straight-through cables, except that they have pairs of wires that crisscross. This allows for two devices to communicate at the same time. Unlike straight-through cables, crossover cables used to connect same devices.

4.6.4 Preparing Cross-Over UTP Cable TIA/EIA 568A / 568B

In making a cross-over cable, repeat steps 1 to 10 in a Straight-Through UTP Cable. Refer Figure 4.27 for UTP Cable TIA/EIA 568A and Figure 4.28 for UTP Cable TIA/EIA 568B.

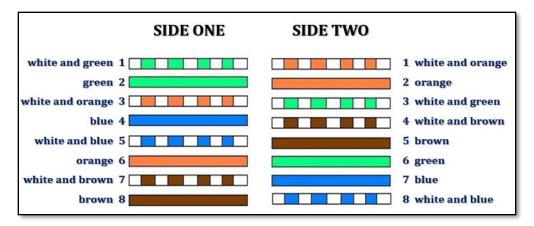


Figure 4.27 Colour arrangement of Cross-Over using UTP Cable TIA/EIA 568A

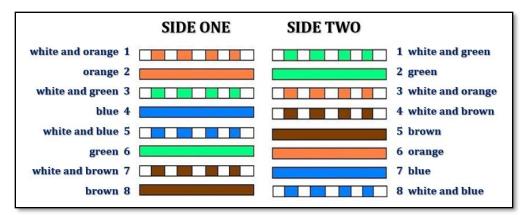


Figure 4.28 Colour arrangement of Cross-Over using UTP Cable TIA/EIA 568B

1. Video on testing cross over cable.

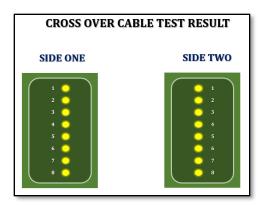


Figure 4.29 Testing Straight Through Cable

EXERCISE

- 1. What is the maximum cable length for STP?
 - a. 100 feet
 - b. 150 feet
 - c. 100 meters
 - d. 1000 meters
- 2. TWhich connector does UTP use?
 - a. STP
 - b. BNC
 - c. RJ-45
 - d. RJ-69
- 3. What is an advantage that coaxial cable has over STP or UTP?
 - a. It is capable of achieving 10 Mbps to 100 Mbps.
 - b. It is inexpensive
 - c. It can run for a longer distance unboosted
 - d. None of the above
- 4. A ______ fiber optic cable transmits multiple streams of LED-generated light.
 - a. multimode
 - b. multichannel
 - c. multiphase
 - d. None of the above
- 5. Wireless communication uses which of the following to transmit data between devices on a LAN?
 - a. Radio frequencies
 - b. LED-generated light
 - c. Fiber optics
 - d. None of the above
- 6. What is one advantage of using fiber optic cable in networks?
 - a. It is inexpensive.
 - b. It is easy to install.
 - c. It is an industry standard and is available at any electronics store.
 - d. It is capable of higher data rates than either coaxial or twisted-pair cable

1. A 2. C 3.B 4. A 5. C 6. D

5.1 Wireless Networking Media

The age of circulation has made people fond of sharing information that requires them to be online all the time every time no matter where. For these mobile users, twisted pair, coax, and fiber optics are of no use. They need to get their "hits" of data for their laptop, notebook, shirt pocket, palmtop, or wristwatch computers without being tethered to the terrestrial communication infrastructure. For these users, wireless communication is the answer.

When talking about headsets or earphones, we usually mean two types: wired

earphones that connect to our phones physically, and wireless. Bluetooth headsets that connect via Bluetooth. Bluetooth transmission is a common example of wireless data transmission. Wireless data transmission is also called "unguided transmission" because it doesn't use physical connections. When we turn on

Bluetooth on our phone and connect a headset, they communicate using ultra high-frequency radio waves. There are three major wireless networking media around us:

5.2 Radio Transmission

Radio frequency (RF) waves are easy to generate, RF can travel long distances, and can penetrate buildings easily, so they are widely used for communication, both indoors and outdoors. Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.Frequency bands and uses in wireless networking. The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through obstacles well, but the power falls off sharply with distance from the source.

5.2.1 Radio Waves

Radio waves are a type of electromagnetic radiation with wavelengths longer than infrared light. Table 5.1 shows they are used extensively in wireless communication due to their ability to travel long distances and penetrate through various materials.

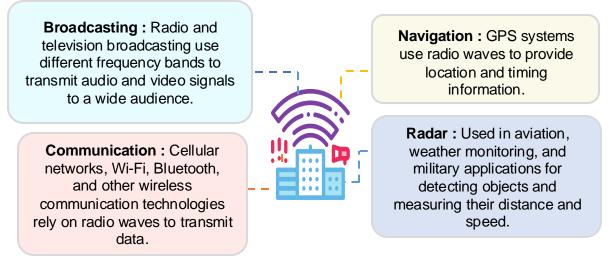


Figure 5.1 The Applications Of Radio Waves

Table 5.1 Types Of Frequency Band And the Usage

Frequency Band	Frequency Range	Uses	
Very Low Frequency (VLF)	3 kHz to 30 kHz	Submarine communication	
Low Frequency (LF)	30 kHz to 300 kHz	Navigation and time signals	
Medium Frequency (MF)	300 kHz to 3 MHz	AM radio broadcasting	
High Frequency (HF)	3 MHz to 30 MHz	Shortwave radio and amateur radio	
Very High Frequency (VHF)	30 MHz to 300 MHz	FM radio, television broadcasts, and aircraft communication	

Frequency Band	Frequency Range	Uses	
Ultra High Frequency (UHF)	300 MHz to 3 GHz	Television broadcasts, GPS, Bluetooth, Wi- Fi, and cellular phones	
Super High Frequency (SHF)	3 GHz to 30 GHz	Satellite communication, radar, and microwave links	
Extremely High Frequency (EHF)	30 GHz to 300 GHz	Advanced radar, satellite communication, and experimental applications	

Table 5.2 Types Of Frequency Band And The Usage

5.2.2 Micro Waves

Microwaves are a subset of the radio wave spectrum with frequencies ranging from 300 MHz to 300 GHz. They are characterized by shorter wavelengths and higher frequencies than radio waves. Microwaves can travel in straight lines and require line-of-sight transmission. They are capable of high data transmission rates and can carry large amounts of data. Microwave signals can be affected by atmospheric conditions, such as rain and fog.

Microwaves are used to transmit data between the Earth and satellites. This enables longdistance telephone calls, television broadcasts, and internet services.


Microwave Links : Point-topoint communication links that use microwave frequencies to connect two distant locations, often used in remote areas where laying cables is impractical. Wi-Fi : Operates in the microwave range (2.4 GHz and 5 GHz bands) to provide wireless internet access.

Bluetooth : Uses microwave frequencies to enable shortrange wireless communication between devices.

Figure 5.2 The Applications of Micro Waves

5.2.3 Infrared (IR)

Infrared (IR) communication utilizes infrared light, a type of electromagnetic radiation with wavelengths longer than visible light but shorter than microwave radiation. It's commonly used for short-range communication due to its unique properties.

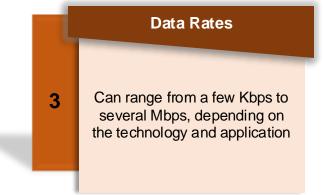


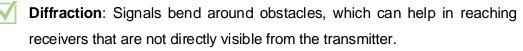
Figure 5.3 Characteristics Of Infrared

Table 5.3 Applications Of Infrared

APPLICATION	USE	MECHANISM / ADVANTAGES
Remote Controls	Operate televisions, DVD players, air conditioners, and other home appliances	Modulated IR signals encode command information, which is then decoded by the receiver in the device.
Data Transmission	Infrared Data Association (IrDA) standards for wireless data exchange over short distances.	Devices: Laptops, PDAs, mobile phones, and printers.
Wireless Peripheral Devices	Connect wireless keyboards, mice, and headphones.	Reduced clutter and enhanced mobility within a short range.
Medical Applications	Non-invasive medical devices like pulse oximeters use IR light to measure blood oxygen levels.	Safe and reliable for continuous monitoring.
Proximity Sensors	Automatic doors, faucets, and lighting systems.	IR sensors detect the presence of an object or person and activate the device.

In summary, wireless networking media encompass various technologies, each suited to different applications based on their unique characteristics. Radio waves offer broad coverage and versatility, microwaves enable high-speed long-distance communication, and infrared provides secure short-range communication solutions.

5.3 Characteristics Of Wireless Transmission


5.3.1 Signal Propagation

Signal propagation refers to how wireless signals travel from the transmitter to the receiver. It is influenced by factors such as:

Line of Sight (LOS): The direct path between the transmitter and receiver, typically resulting in stronger signals.

Reflection: Signals can bounce off surfaces like buildings and terrain, which can extend their reach but may also cause multipath interference.

Scattering: Small particles or irregularities can scatter the signal in various directions, impacting its strength and direction.

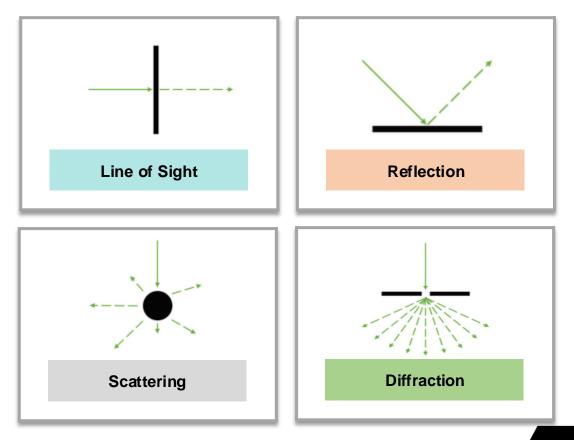


Figure 5.4 Signal Propagation

5.3.2 Signal Degradation

Signal degradation refers to the loss of signal quality as it travels through the air. Causes of degradation include:

- Attenuation: The gradual loss of signal strength over distance.
- Interference: Other signals or electronic devices can disrupt the signal.
- Noise: Background electromagnetic noise can affect signal clarity.

Multipath Effects: The interference caused by signals taking multiple paths to reach the receiver, leading to phase shifts and signal distortion.

5.3.3 Narrowband, Broadband And Spread Spectrum Signals

Wireless signals can be narrowband, using a small frequency range, or broadband, using a wider range. Spread spectrum techniques use a wide frequency band but with low power density.

Narrowband Signals: These signals occupy a small portion of the frequency spectrum. They are efficient for simple communication needs but are more susceptible to interference.

 \checkmark

Broadband Signals: These signals use a wider range of frequencies, allowing for higher data rates and better performance over long distances. They are more resilient to interference.

Spread Spectrum Signals: These signals spread the data over a wide range of frequencies. This includes techniques like Frequency Hopping and Direct Sequence Spread Spectrum (DSSS), which enhance security, reduce interference, and improve signal reliability.

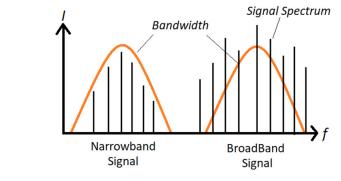


Figure 5.5 Narrowband, Broadband And Spread Spectrum Signals

5.3.4 Fixed And Mobile Wireless Communication

- **Fixed Wireless Communication** : This involves stationary devices that communicate wirelessly over set locations, such as fixed wireless access points or satellite communications. It typically offers higher stability and bandwidth.

Mobile Wireless Communication : This involves devices that move around while maintaining a wireless connection, such as smartphones and tablets. It requires robust handoff mechanisms to maintain connectivity as the devices move between different coverage areas.

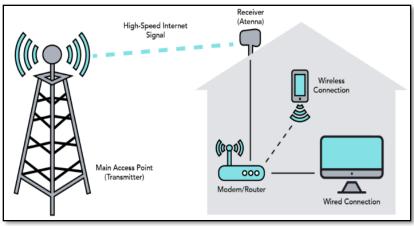


Figure 5.6 Fixed Wireless Communication

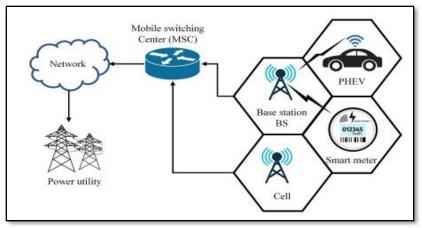


Figure 5.7 Mobile Wireless Communication

6.1 Factors To Consider In Choosing Networking Cable

Choosing the right networking media is crucial for optimizing network performance. Here's a breakdown of factors to consider:

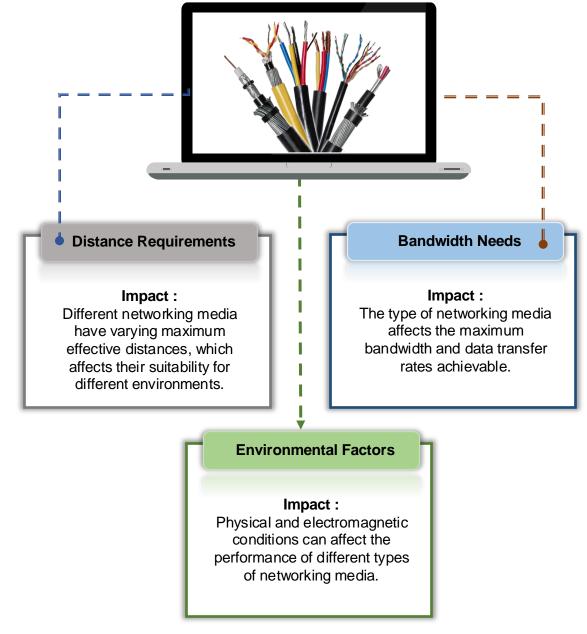


Figure 6.1 Factors To Consider In Choosing Networking Cable

6.1.1 Option In Distance Requirements

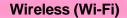
Twisted Pair Cables (Ethernet)

Cat5e / Cat6 :

Effective up to 100 meters (328 feet) for standard Ethemet applications. Suitable for most office and home environments.

Cat6a / Cat7 :

Can handle higher speeds and frequencies, and still effective up to 100 meters. Cat7 offers better shielding, useful in environments with more interference.


Fiber Optic Cables

Single-mode Fiber :

Effective for very long distances, ranging from kilometers to tens of kilometers, ideal for high-speed backbone connections.

Multi-mode Fiber :

Suitable for shorter distances (up to 2 km) but offers higher bandwidths compared to copper cables.

Coverage :

Limited by the range of the access points and the number of obstacles between the transmitter and receiver. Typically effective up to 30 meters (100 feet) indoors, with reduced performance due to obstructions.

Figure 6.2 Option In Distance Requirements

CHOOSING THE RIGHT NETWORKING MEDIA

6.1.2 Option In Bandwidth Needs

Twisted Pair Cables (Ethernet)

Cat5e : Supports up to 1 Gbps (Gigabit Ethernet).

Cat6 / Cat6a : Supports up to 10 Gbps (10-Gigabit Ethernet) for shorter distances (up to 55 meters for Cat6 and up to 100 meters for Cat6a).

Cat7 / Cat8 : Supports even higher speeds (up to 25-40 Gbps) but often for shorter distances

Twisted Pair Cables (Ethernet)

Single-mode Fiber : Supports very high bandwidths, up to 100 Gbps and beyond, depending on the transceivers used.

Multi-mode Fiber : Supports speeds from 1 Gbps to 10 Gbps over shorter distances.

Wireless (Wi-Fi)

Wi-Fi 5 (802.11ac) : Provides speeds up to 3.5 Gbps, depending on the number of spatial streams and channels.

Wi-Fi 6 (802.11ax) : Enhances speeds and efficiency, potentially exceeding 9 Gbps in ideal conditions

Figure 6.3 Option In Bandwidth Needs

6.1.3 Option In Environmental Factors

Twisted Pair Cables (Ethernet)

Shielded Twisted Pair (STP) vs. Unshielded Twisted Pair (UTP): STP cables offer better protection against electromagnetic interference (EMI) but are more expensive and less flexible

Fiber Optic Cables

Resilience : Immune to EMI and radio frequency interference (RFI), making them ideal for environments with high electrical noise.

Wireless (Wi-Fi)

Interference :

Susceptible to interference from other wireless devices, physical obstructions, and electronic noise. Use of dual-band (2.4 GHz and 5 GHz) or tri-band routers can help alleviate some of these issues.

Figure 6.4 Option In Environmental Factors

6.2 Recommendations Based On Factors

By considering these factors, you can select the most appropriate networking media for your specific needs, ensuring reliable and efficient performance.

For Long Distances And High Bandwidth : Fiber Optic Cables are ideal. They offer high bandwidth and can cover long distances without signal degradation.

For Moderate Distances And High-speed Needs : Cat6a or Cat7 Ethernet Cables provide high speeds and are suitable for distances up to 100 meters.

For Short Distances And Flexibility : Cat5e or Cat6 Ethernet Cables are cost – effective and sufficient for typical office and home setups.

For Wireless Connectivity :

Wi-Fi 6 Access Points offer the best performance and efficiency for modern wireless needs, with improvements in handling multiple devices and dealing with interference.

Figure 6.5 Factors Of Recommendation

7.1 Emerging Technologies

Quantum networking is an exciting new field that promises to revolutionize data transmission and security. By leveraging the principles of quantum mechanics, quantum networks can transmit data with unprecedented security and efficiency.

THE ASPECTS OF QUANTUM NETWORKING

Quantum Key Distribution

QKD allows two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. Any attempt by a third party to intercept the key will be detected, ensuring the security of the communication.

Quantum Repeater

Quantum signals degrade over long distances due to photon loss and decoherence. Quantum repeaters, which are still in development, will allow for the transmission of quantum states over long distances by amplifying and regenerating the signal without measuring or cloning the quantum state.

Quantum Teleportation

Quantum teleportation is the process of transferring a quantum state from one location to another, with the help of classical communication and previously shared quantum entanglement between the sender and receiver. This technology has potential applications in secure communication and distributed quantum computing

Cua The inter trans secu

Quantum Internet

The ultimate goal of quantum networking is to create a quantum internet, a network of interconnected quantum devices that can transmit quantum information and enable new applications such as secure communication, distributed quantum computing, and quantum sensing.

Figure 7.1 Aspect Of Quantum Networking

Challenges in developing quantum networks include the fragility of quantum states, the difficulty of creating reliable quantum devices, and the need for new protocols and algorithms to fully utilize the potential of quantum networking. However, with ongoing research and development, quantum networking is expected to become a reality in the coming decades, offering new possibilities for secure and efficient data transmission.

7.2 Advantages Of Quantum Networking

Unbreakable Security :

Quantum key distribution (QKD) ensures that any attempt to intercept communication can be detected, making it nearly impossible for hackers to breach.

Faster Data Transfer :

Quantum entanglement can potentially allow for instantaneous data transfer over long distances.

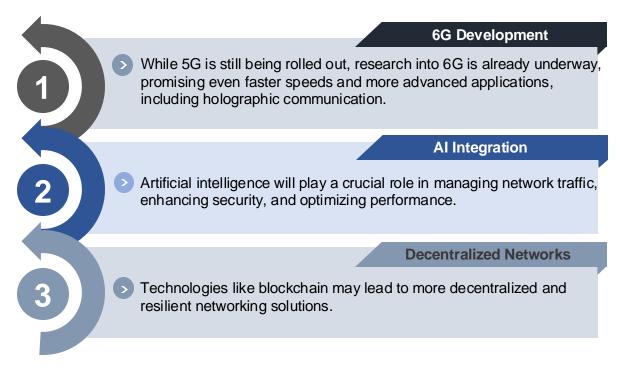
Enhanced Computational Power :

Quantum networks can support quantum computing applications, enabling complex problem – solving that classical computers cannot achieve.

7.3 Potential Applications

Secure Communications :

Governments and corporations can use quantum networking for secure data transmission.


Advanced Research :

Quantum networks can facilitate collaboration between quantum computers, enhancing research in various fields, including pharmaceuticals and materials science.

7.4 5G And Beyond

The rollout of 5G cellular networks is well underway, promising much faster speeds, lower latency, and support for massive numbers of connected devices. 5G networks use higher frequency millimeter waves, advanced antenna technology like massive MIMO, and network slicing to deliver these improvements. However, 5G is just the beginning, with research already underway on 6G and beyond. Future generations of cellular networks are expected to leverage technologies like terahertz waves, holographic beamforming, and artificial intelligence to further enhance speed, latency, and capacity. 6G networks could enable new applications like holographic communications, remote surgery, and autonomous vehicles at scale.

7.5 Future Networking Trends

7.6 Preparing For The Future

Invest In Infrastructure

Governments and businesses should invest in upgrading existing infrastructure to support next – generation technologies.

Focus On Cybersecurity

As networks become more advanced, the importance of robust cybersecurity measures cannot be overstated.

Promote Education And Training

Preparing the workforce for these technological advancements through education and training programs will be essential.

7.7 Sustainability Considerations In Networking Media

As data transmission networks continue to grow in size and complexity, it's important to consider their environmental impact and sustainability. The manufacture, deployment, and operation of networking equipment like routers, switches, and cell towers consumes significant energy and resources. There are also environmental concerns around the mining of rare earth metals used in networking hardware.

To address these issues, the networking industry is taking steps to improve sustainability:

Developing more energy – efficient networking equipment.

Transitioning to renewable energy sources to power networks.

Designing networking hardware for easier recycling and reuse

Optimizing network architectures and protocols for energy efficiency.

Exploring alternative materials that are more environmentally friendly.

As the world becomes increasingly reliant on digital networks, it's critical that the networking industry prioritizes sustainability to minimize its environmental footprint. Emerging technologies like quantum networking and 6G have the potential to transform data transmission, but they must be developed with sustainability in mind from the start.

REFERENCES

- Andrew S. Tanenbaum, D. J. (2011). *Computer Networks.* Amsterdam, Netherlands, Seattle, WA: Prentice Hall.
- Cable, E. W. (n.d.). *4 Types of Networking Cables*. Retrieved from exccable.com: https://www.exccable.com/4-types-of-networking-cables/
- CISCO. (2003, March 14). CCNA: Network Media Types. Retrieved from ciscopress.com: https://www.ciscopress.com/articles/article.asp?p=31276&seqNum=2
- Forouzan, B. A. (2006). *Data Communications and Networking.* USA: McGraw Hill Education.
- Geeksforgeeks. (2024, August). Difference Between Simplex, Half Duplex and Full Duplex Transmission Modes. Retrieved from geeksforgeeks.org: https://www.geeksforgeeks.org/difference-between-simplex-half-duplex-and-fullduplex-transmission-modes/
- Geeksforgeeks. (2024, October). *Types of Transmission Media*. Retrieved from Geeksforgeeks.org: https://www.geeksforgeeks.org/types-transmission-media/
- Ibe, O. C. (2017). *Fundamentals of Data Communication Networks*. Kannur University: www,Wiley.com.
- Jill West, J. A. (2019). *Network+ Guide to Netwroks* (Vol. Eighth Edition). Boston, USA: CompTIA Network+.
- Specialist, N. A. (2024, October). *Transmission Media in Computer Network and Its Types*. Retrieved from PyNetLabs: https://www.pynetlabs.com/transmission-media-and-itstypes/
- Stallings, W. (2014). *Data and Computer Communications* (Vol. Tenth Edition). Bangabasi College, Kolkata: Pearson Education.
- UKEssays. (2018, November). *Types of Network Media*. Retrieved from https://www.ukessays.com/essays/media/types-of-network-media.php?vref=1

BIBLIOGRAPHY

NAFISAH BINTI ABDULLAH

Nafisah binti Abdullah is a lecturer at Electrical Engineering Department, Politeknik Tuanku Syed Sirajuddin, Perlis. She obtained his Degree's in Electrical Engineering at Universiti Teknologi Mara (UiTM) in 2005. The author is certified as a Fiber Optic Specialist.

NURULHUDA BINTI HANZAH

Nurulhuda Binti Hanzah is a Senior Lecturer at the Electrical Engineering Department, Politeknik Tuanku Syed Sirajuddin in Perlis. She obtained a Bachelor Of Engineering (Electrical) with Honors, majoring in Computer from Kolej Universiti Teknologi Tun Hussein Onn in 2004, and completed her Master Of Electrical Engineering from Universiti Teknologi Tun Hussein Onn in 2014. The author specializes in computer engineering.

