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This e-book is intended to provide Malaysian Polytechnics’

students with a clear yet simple explanations of the basic

theory and applications of fluid mechanics. The FLUID

MECHANICS VOL.1 e-book covers the first three (3) topics in

the Polytechnics’ Fluid Mechanics syllabus namely;

introduction to fluid mechanics, physical properties of fluid

and fluid statics.

The explanations in this book are mostly aided by diagrams

for better understanding. Also, every topic in this e-book

contained solved examples and tutorial questions for the

students to enhance their knowledge of the topic. With

these features, it is hoped that the book will be useful and

tremendous help for the students in the basic of Fluid

Mechanics at diploma level.

A few notable reference books on Fluid Mechanics has been

referred while writing this e-book, in which are mentioned at

the last section of the book. Students are also encourages

to search and refer the books mentioned for further

reading.
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Chapter 1:

1.1 INTRODUCTION

Mechanics is a physical science that deals with both stationary and

moving bodies with under the effect of forces on the bodies. Statics is

the study of bodies at rest, and dynamics is the study of bodies in

motion under the action of forces.

Fluid Mechanics is a branch of applied mechanics which studies the

statics and dynamics behaviour of liquid and gas. In other words, Fluid

Mechanics is the study of behaviour of fluid (gas or liquid) that is either

at rest or in motion. The subcategories of this subject includes:

a) Fluid Statics - study of behaviour of fluid at rest

b) Fluid Dynamics - study of behaviour of fluid in motion

c) Hydrodynamics - study of motion of incompressible fluids (e.g;

liquids and gasses at low speed)

d) Gas Dynamics - study of flow of fluids that undergo significant

density changes (e.g; flow of gases through nozzles at high

speed)

e) Aerodynamics - study of flow of gases (especially air) over bodies

such as aircraft, rockets and automobiles at high or low speeds.



Fluid Mechanics become important because the use of fluids are so

common in many engineering disciplines. The applications of this

subject can be seen in the following area (Figure 1.1);

a) Aeronautical and aerospace engineers – to study flight and to

design propulsion systems.

b) Civil engineers – to design channels, water networks, sewer

system and water resisting structures such as dam and levees.

c) Mechanical engineers – to design pumps, compressors, control

systems, heating and air conditioning equipment, wind

turbines and solar heating devices.

d) Chemical and petroleum engineers – to design equipment used

for filtering, pumping and mixing fluids.

e) Electronics and computer industry – to design switches, screen

displays and data storage equipment.

f) Also used in the field of biomechanics – to study circulatory,

digestive and respiratory systems

Industrial 
Application

Piping & 
Plumbing

Car Design

Plane Design Dams Power Industry

Figure 1.1: Some applications of Fluid Mechanics in engineering.



Generally, matter exists in 3 states;

Although all states of matter is different in many aspects, liquid and
gas have a common characteristics that differs them from solid state
(Figure 1.2). Liquid and gas; both are fluid in nature.

Fluid refers to substance that can flow and by definition, fluid consist
of substance in liquid or gas phase. Examples of fluid: water, oil,
mercury, air, helium, oxygen.

1.2 FLUID CHARACTERISTICS
S

O
L

ID

• Maintains a 

definite shape 

and volume

• Molecules or 

atoms of a solid 

are densely 

packed and are 

held tightly 

together

• Example: steel, 

aluminium, 

wood

L
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• Composed of 

molecules that 

are more 

mobile than 

those in solid

• Intermolecular 

forces are 

weaker, so 

liquids do not 

hold their 

shape

• Take the shape 

of their 

container

• Example: water, 

alcohol, oil

G
A

S • Flows until it 

fills the entire 

volume of its 

container

• Molecules 

farther apart 

than those of 

liquid

• Molecules are 

free to travel 

away from one 

another

• Example: He, 

nitrogen, air

Figure 1.2: Characteristics of matter; solid, liquid and gas.



The general characteristics of fluid are;

a) Does not have a definite shape

b) Fluid will takes in the shape of the container it is in, although gas

will expands until it encounters the walls of the container and fills

the entire available space.

c) Fluid flows continuously under the influence of shear stress, no

matter how small the shear stress is applied.

d) Fluid when at rest is at the state of zero shear stress.

e) Fluid contains molecules that are not closed bonded.

The comparison of fluid in liquid and gas phase is shown in Figure 1.3.

Liquid Gas

Unable to form free surface (Fig. 
1.4) .

Cohesive forces between molecules 
are very small.

Molecules are widely spaced, 
moves about randomly.

Have neither definite shape nor 
definite volume

Able to form free surface (Fig. 1.4) 
in open container.

Cohesive forces between 
molecules stronger than gas.

Molecules move relative to each 
other.

Does not have a definite shape, but 
volume remain unchanged.

Gas unable to form free surface
because of the molecules are
widely spaced and cohesive
forces between them are too
small.

Figure 1.3: Comparisons of liquid and gas phase.

Figure 1.4: Free surface of liquid vs gas. 
(Source: Cengel & Cimbala) 



Any physical quantity can be characterized by dimensions.

Magnitudes assigned to the dimensions are called units. A fluid and

its flow characteristics can be described by combinations of units

based on primary or fundamental dimensions; length, mass, time

and temperature. Other dimensions such as velocity, pressure, volume

and energy are expressed in terms of primary dimensions are called

secondary or derived dimensions.

Unit systems that is widely used for scientific and engineering work in

most industrialized nations is the metric SI system, also known as the

International System. The SI unit system is a simple system based on

a decimal relationship between various units. The primary dimensions

and the common prefixes used to express multiples of various units in

SI system is shown in Table 1.1.

1.3 DIMENSIONS AND UNITS

Primary Dimension Unit

Length, L meter (m)

Mass, m kilogram (kg)

Time, t second (s)

Temperature, T Kelvin (K)

Electric current, I Ampere (A)

Luminous intensity, lV candela (cd)

Amount of matter, n mole (mol)

Exponential Form Prefix

Multiple 1000 000 000
1000 000
1000
100

109

106

103

102

Giga (G)
Mega (M) 
kilo (k) 
hecto (h)

Submultiple 0.01
0.001
0.000 001
0.000 000 001

10-2

10-3

10-6

10-9

centi (c)
mili (m)
micro (μ)
nano (n)

Table 1.1: SI system primary dimensions and common prefixes.



Pressure refers to physical force exerted on an object. In physics term,

pressure is a force applied perpendicular to the surface of an object

per unit area,

In Fluid Mechanics, pressure is defined by a normal force exerted by a

fluid per unit area. It has units of N/m2, which normally referred as

pascal (Pa). That is,

1 𝑃𝑎 = 1 𝑁/𝑚2

The pressure unit pascal, is relatively too small for most pressures in

engineering practice, therefore, kilopascal (1 kPa = 103 Pa) and

megapascal (1 MPa = 106 Pa) is often used. Also, other pressure units

commonly used in practice are; bar and standard atmosphere:

1 𝑏𝑎𝑟 = 105𝑃𝑎 = 0.1 𝑀𝑃𝑎 = 100 𝑘𝑃𝑎

1 𝑎𝑡𝑚 = 101325 𝑃𝑎 = 101.325 𝑘𝑃𝑎 = 1.01325 𝑏𝑎𝑟

In perfect vacuum, which is completely empty space, the pressure is

called zero absolute pressure (p = 0 Pa). Absolute pressure, Pabs

refers to actual pressure measured above the zero absolute pressure

(absolute vacuum). On that account, the standard atmospheric

pressure, Patm refers to the absolute pressure measured at sea level

and at a temperature of 15°C. The value of atmospheric pressure is,

𝑝𝑎𝑡𝑚 = 1.013 × 105𝑁/𝑚2

= 101.3 𝑘𝑃𝑎 = 1 𝑎𝑡𝑚

Gauge pressure, Pg refers to any pressure measured above

atmospheric pressure. It is often used to measure pressure relative to

the atmospheric pressure.

1.4 TYPES OF PRESSURES



Pressure measuring devices (gauges) are mostly calibrated to read

zero in atmospheric surroundings. Thus, the gauge pressure readings

indicate the difference between absolute pressure and atmospheric

pressure. This pressure can be positive of negative, as pressures

below atmospheric pressure are sometimes referred as vacuum

pressure, Pvac. Absolute, gauge and vacuum pressures are related by,

𝑝𝑔 = 𝑝𝑎𝑏𝑠 − 𝑝𝑎𝑡𝑚
𝑝𝑣𝑎𝑐 = 𝑝𝑎𝑡𝑚 − 𝑝𝑎𝑏𝑠

The relation between the pressures is illustrated in Figure 1.5

Example 1.1:

The air pressure within the bicycle tyre is determined from a gauge to

be 70 kPa in the figure shown. If the local atmospheric pressure is 104

kPa, determine the absolute pressure in the tire.

Given: Pg = 70 kPa; Patm= 104 kPa

Solution:

Absolute pressure in the tyre,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝑝𝑔𝑎𝑢𝑔𝑒
𝑝𝑎𝑏𝑠 = 104 + 70 = 174 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Pabs = 0 Pa

Patm = 101.325 kPa

Pvac = Patm - Pabs

Pg = Pabs - Patm

Eq. 1-1

Eq. 1-2

Figure 1.5: Relation between types of pressures.



Example 1.2:

A vacuum gauge connected to a chamber reads 36 kPa at a location

where the atmospheric pressure is 92 kPa. Determine the absolute

pressure in the chamber.

Given: Pvac = 36 kPa; Patm= 92 kPa

Solution:

Absolute pressure in the chamber,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 − 𝑝𝑣𝑎𝑐
𝑝𝑎𝑏𝑠 = 92 − 36 = 56 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Example 1.3:

Calculate the pressure gauge of air in a cylinder when the measured

absolute pressure is 350 kN/m2 and the local atmospheric pressure is

101.3 kN/m2.

Given: Pabs = 350 kN/m2; Patm= 101.3 kN/m2 

Solution:

Gauge pressure in the cylinder,

𝑝𝑔 = 𝑝𝑎𝑏𝑠 − 𝑝𝑎𝑡𝑚

𝑝𝑔 = 350 − 101.3 = 248.7 𝑘𝑁/𝑚2 (𝐴𝑛𝑠)

TUTORIAL 1.1

Q1-1

A pressure gauge connected to a tank reads 500 kPa at a location

where the atmospheric pressure is 94 kPa. Determine the absolute

pressure in the tank. [Ans: 594 kPa]

Q1-2

The vacuum pressure of a condenser is given to be 80 kPa. If the

atmospheric pressure is 98 kPa, what is the absolute pressure?

[Ans: 18 kPa]

Pabs

Patm = 92 kPa

Pg = 36 kPa



Pressure within a hydrostatic fluid varies due to the weight of the fluid.

Consider a closed container filled with fluid (Figure 1.6), let P be the

hydrostatic pressure at the depth of h from the top surface of fluid as

follows,

The pressure at the depth h is due to the

pressure exerted by the fluid above it, that can

be proven from pressure equation,

𝑃 =
𝐹

𝐴
=
𝑚𝑔

𝐴

Known, that, 𝜌 =
𝑚

𝑉
, where 𝑉 = ℎ𝐴, the mass of

fluid becomes,

𝜌 =
𝑚

𝑉
=

𝑚

ℎ𝐴
→ 𝑚 = 𝜌ℎ𝐴

Thus, substituting mass into pressure equation gives,

∴ 𝑃 =
𝑚𝑔

𝐴
=
𝜌ℎ𝐴𝑔

𝐴
= 𝜌𝑔ℎ

From this equation, it can be concluded that, the pressure of

hydrostatic fluid will increase linearly with depth. Pressure of fluid

however does not change in horizontal direction. This is caused by

more fluid rests on deeper layers, which is balanced by an increased in

pressure. A simple experiment in Figure 1.7, demonstrated the

variation of pressure in hydrostatic liquid with depth.

1.4 PRESSURE AND DEPTH

Nozzles at the same depthNozzles at different depth

Eq. 1-3

Eq. 1-4

Figure 1.6: Fluid in 
closed container.

Figure 1.7: Variation of pressure with depth.



When an object submerged in water, with the top part touching the

atmosphere as shown in Figure 1.8, the forces acting on the object are;

weight of the object (W), force of atmosphere, (Fatm) pressing down

and force of water (Fw) pushing up.

From the pressure equation,

𝐹𝑤𝑎𝑡𝑒𝑟 = 𝑃𝐴, 𝐹𝑎𝑡𝑚= 𝑃𝑜𝐴

Total forces in vertical direction,

𝐹𝑤 = 𝐹𝑎𝑡𝑚 +𝑊

𝑃𝐴 = 𝑃𝑜𝐴 +𝑚𝑔

Substituting 𝑚 = 𝜌ℎ𝐴 from equation 1-4,

𝑃𝐴 = 𝑃𝑜𝐴 + ρ𝐴ℎ𝑔

Thus, pressure exerted on the object is given by,

𝑃 = 𝑃𝑜 + ρ𝑔ℎ *where in this case, P0 = Patm

Variation of pressure in liquid with depth often applied in municipal

water distribution systems, where water tanks or reservoir usually

located at high elevation (Figure 1.9) to provide sufficient pressure flow

for consumers located at lower levels. It also helps in dams

construction, in which wall is constructed much thicker at the bottom

to sustain high pressure at the bottom.

h

Fatm

W=mg

Fw

Eq. 1-5

Figure 1.8: Forces acting 
on submerged object.

Figure 1.9: Applications of variation of pressure in liquid.



Example 1.4:

The absolute pressure in water at a depth of 8 m is measured to be

175 kPa. Determine,

a) the local atmospheric pressure, and

b) the absolute pressure at a depth of 8m in a liquid with density of

780 kg/m3.

Given: Pabs = 175 kPa; h = 8 m in water

Solution:

a) Local atmospheric pressure,

𝑝𝑎𝑡𝑚 = 𝑝𝑔 − 𝜌𝑔ℎ

𝑝𝑎𝑡𝑚 = 175000 − 1000 9.81 8

= 96.52 𝑘𝑃𝑎 (𝐴𝑛𝑠)

b) Absolute pressure at h = 8 for ρf = 780 kg/m3,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝜌𝑓𝑔ℎ

𝑝𝑎𝑏𝑠 = 96520 + 780 9.81 8

= 157.734 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Example 1.5:

The gauge pressure in a liquid at a depth of 3 m is measured 28 kPa.

Determine the gauge pressure in the same liquid at a depth of 12 m.

Given: Pg = 28 kPa at h1 = 3m; at h2 = 12 m, Pg = ?

Solution:

The pressures at two different depths of a liquid can be expressed

as, 𝑝1 = 𝜌𝑔ℎ1 and 𝑝2 = 𝜌𝑔ℎ2, taking their ratio;

𝑝2
𝑝1

=
𝜌𝑔ℎ2
𝜌𝑔ℎ1

Solving for p2,

𝑝2 =
ℎ2
ℎ1

𝑝1 =
12

3
28 = 112 𝑘𝑃𝑎 (𝐴𝑛𝑠)

h = 8m

Patm

P

h
1 h

21

2



Example 1.6:

Determine the pressure exerted on a diver at 20 m below the free

surface of the sea. Assume a barometric pressure of 101 kPa and

density of seawater is 1030 kg/m3.

Given: h = 20 m; Patm = 101 kPa; ρsw = 1030 kg/m3

Solution:

The pressure exerted on the diver at 20 m below surface of the sea,

𝑝 = 𝑝𝑎𝑡𝑚 + 𝜌𝑠𝑤𝑔ℎ

= 101000 + 1030 9.81 20

= 303.086 𝑘𝑃𝑎 (𝐴𝑛𝑠)

TUTORIAL 1.2

Q1-3

Oxygen in a tank has an absolute pressure of 130 kPa. Determine the

pressure head in mm of mercury. The atmospheric pressure is 102

kPa. Take the density of mercury, ρ = 13550 kg/m3. [Ans: 286 mm]

Q1-4

The height of a head for a gas taken from gauge pressure reads 68 mm

water and the height of mercury caused by atmospheric pressure is

750 mm mercury. Find the absolute pressure in kN/m2.

[Ans: 100.7 kN/m2]

Q1-5

Determine the pressure exerted on the surface of a submarine

cruising 68.6 m below the free surface of the sea. Assume that the

barometric pressure is 101.3 kPa and the density of the sea water is

1030 kg/m3. [Ans: 794.5 kPa]

Q1-6

Consider a 1.73 m tall man standing vertically in water and completely

submerged in a pool. Determine the difference between the

pressures acting at the head and the toes of this man in kPa.

[Ans: 16.97 kPa]

Sea

Patm

h

P



TUTORIAL 1 WORKED SOLUTIONS

Q1-1

A pressure gauge connected to a tank reads 500 kPa at a location

where the atmospheric pressure is 94 kPa. Determine the absolute

pressure in the tank. [Ans: 594 kPa]

Given: Pabs = 500 kPa; Patm = 94 kPa

Solution:

Absolute pressure in the tank,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝑝𝑔𝑎𝑢𝑔𝑒
𝑝𝑎𝑏𝑠 = 94 + 500 = 594 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Q1-3

Oxygen in a tank has an absolute pressure of 130 kPa. Determine the

pressure head (in mm) of mercury. The atmospheric pressure is 102

kPa. Take the density of mercury, ρ = 13550 kg/m3. [Ans: 286 mm]

Given: Pabs = 130 kPa; Patm = 94 kPa

Solution:

Gauge pressure of the oxygen,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝑝𝑔𝑎𝑢𝑔𝑒

140 = 102 + 𝑝𝑔𝑎𝑢𝑔𝑒

𝑝𝑔𝑎𝑢𝑔𝑒 = 38 𝑘𝑃𝑎

Pressure head of mercury,

𝑝𝑔𝑎𝑢𝑔𝑒 = 𝜌𝐻𝑔𝑔ℎ𝐻𝑔

38000 = 13550 9.81 ℎ𝐻𝑔

ℎ𝐻𝑔 = 0.2859 𝑚 = 286 𝑚𝑚 (𝐴𝑛𝑠)



TUTORIAL 1 WORKED SOLUTIONS

Q1-5

Determine the pressure exerted on the surface of a submarine

cruising 68.6 m below the free surface of the sea. Assume that the

barometric pressure is 101.3 kPa and the density of the sea water is

1030 kg/m3. [Ans: 794.5 kPa]

Given: h = 68.6 m; Patm = 94 kPa

Solution:

The pressure exerted on the sub marine at 68.6 m below the free

surface of the sea,

𝑝 = 𝑝𝑎𝑡𝑚 + 𝜌𝑠𝑤𝑔ℎ

= 101300 + 1030 9.81 68.6

= 794.454 𝑘𝑃𝑎 (𝐴𝑛𝑠)



Chapter 2:

2.1 BASIC PHYSICAL PROPERTIES OF FLUID

Physical property refers to any characteristics of a system that is

measurable, in which the value describes the state of the physical

system. A fluid has several important physical properties used to

describe its behaviour. In this chapter, we will define its density,

specific gravity (also known as relative density), specific weight, specific

volume, fluid compressibility and viscosity .

Density. The density, ρ (rho) of a fluid is mass per unit volume of the

substance. Density is measured in kg/m3 and can be determined

from,

𝜌 =
𝑚

𝑉

Density of a substance in general, depends on temperature and

pressure. In most gases, density is proportional to pressure and

inversely proportional to the temperature. For incompressible liquids,

the variation of their density with pressure is negligible, however it

varies heavily on temperature.

Eq. 2-1



Specific gravity. In certain cases, density of a substance is given

relative to the density of a well known substance. This is called specific

gravity or relative density. Specific gravity, SG is the ratio of the

density of a substance to the density of standard substance at a

specified temperature. Water at atmospheric pressure of 101.3 kPa

and a temperature of 4°C is often taken as the standard. Thus,

𝑆𝐺 =
ρ

𝜌𝑤
=

𝛾

𝛾𝑤

The density of water commonly used in this expression is 1000 kg/m3.

This property is often used for liquids and is a dimensionless quantity.

Note that, substances with SG value more than 1 is heavier than water,

while the SG less than 1 are lighter, and would float on water.

Specific weight. The specific weight, γ (gamma) of a fluid is its

weight per unit volume. It can be determine by,

𝛾 =
𝑊

𝑉

Also, since the weight of fluid is given by 𝑊 = 𝑚𝑔, and the density is

𝜌 = 𝑚/𝑉, the specific weight is related to density by,

𝛾 =
𝑊

𝑉
=
𝜌𝑚𝑔

𝑚
∴ 𝛾 = 𝜌𝑔

Specific weight is measured in N/m3 and sometimes written as, w.

Specific volume. The inverse of density of a substance is called the

specific volume. Specific volume, v is defined as volume per unit

mass. It is measured in m3/kg unit and expressed as,

𝜐 =
𝑉

𝑚
=
1

𝜌

Like density, specific volume also varies with temperature and

pressure.

Eq. 2-2

Eq. 2-3

Eq. 2-4

Eq. 2-5



Example 2.1:

Determine the specific weight, γ of a fluid, which weighs 10 N and

having 5 litre of volume.

Given: W = 10 N; V = 5 litre = 5 x 10-3 m3

Solution:

Specific weight,

𝛾 =
𝑊

𝑉
=

10

5 × 10−3
= 2000 𝑁/𝑚3(Ans)

Example 2.2:

Determine the mass of the air contained in the tank below. Take,

density of air; 0.628 kg/m3.

Given: ρair = 0.628 kg/m3 ; V = πr2 (h)

Solution:

The mass of air within the tank is,

𝜌 =
𝑚

𝑉
𝑚 = 𝜌𝑉 = 0.628 𝜋 × 1.52 × 4

= 17.76 𝑘𝑔 (𝐴𝑛𝑠)

Example 2.3:

A fluid that occupies a volume of 24 L weighs 225 N at a location where

the gravitational acceleration is 9.80 m/s2. Determine the mass of this

fluid and its density.

Given: V = 24 L = 24 x 10-3  m3 ; W = 225 N;

Solution:

The mass of fluid,

𝑊 = 𝑚𝑔

𝑚 =
𝑊

𝑔
=
225

9.8
= 22.96 𝑘𝑔 (𝐴𝑛𝑠)

4 m

Density of fluid,

𝜌 =
𝑚

𝑉
=

22.96

24 × 10−3

= 956.63 𝑘𝑔/𝑚3(Ans)



Example 2.4:

Determine the density, specific volume and specific weight of a fluid

with a mass of 450 g and volume of 900 cm3.

Given: m = 450 g = 0.45 kg; V = 900 cm3 = 900 x 10-6 m3

Solution:

Density of fluid,

𝜌 =
𝑚

𝑉
=

0.45

900 × 10−6

= 500 𝑘𝑔/𝑚3(Ans)

The specific volume,

𝜐 =
𝑉

𝑚
=
1

𝜌
=

1

500

= 0.002𝑚3/𝑘𝑔(𝐴𝑛𝑠)

Example 2.5:

Calculate the density, specific volume and specific weight of a fluid with

specific gravity, SG of 0.89.

Given: SG = 0.89 ;

Solution:

Density of fluid,

𝑆𝐺 =
𝜌

𝜌𝑤
𝜌 = 𝑆𝐺𝜌𝑤 = 0.89 1000
= 890 𝑘𝑔/𝑚3(𝐴𝑛𝑠)

The specific volume,

𝜐 =
1

𝜌
=

1

890

= 0.00112 𝑚3/𝑘𝑔(𝐴𝑛𝑠)

The specific weight,

𝛾 =
𝑊

𝑉
=
𝑚𝑔

𝑉

=
0.45(9.81)

900 × 10−6

= 4905 𝑁/𝑚3(Ans)

The specific weight,

𝛾 = 𝜌𝑔 = 890 (9.81)

= 8730.9 𝑁/𝑚3(Ans)



Example 2.6:

The fuel of a jet engine has a density of 680.3 kg/m3 . If the total

volume of the fuel tank A is 1420 litre, determine the weight of the fuel

when the tanks are completely full.

Given: ρf = 680.3 kg/m3 ; V = 1420 L = 1.42 m3

Solution:

Specific weight of jet engine fuel,

𝛾𝑓 = 𝜌𝑓𝑔 = 680.3 × 9.81

= 6673.743 𝑁/𝑚3

Thus, total weight of the fuel when the tank is full,

𝑊 = 𝛾𝑓(𝑉) = 6673.743(1.42)

= 9476.7 𝑁 = 9.48 𝑘𝑁(Ans)

Example 2.7:

The tanker carries 1.5 x 106 barrels of crude oil in its hold. Determine

the total weight of the oil if its specific gravity is 0.940. Each barrel

contains 159 litres.

Given: SG= 0.940; No of barrel = 1.5 x 106;

V per barrel = 159 L = 159 x 10-3 m3

Solution:

Specific weight of jet engine fuel,

𝑆𝐺 =
𝛾𝑜
𝛾𝑤

𝛾𝑜 = 𝑆𝐺 𝛾𝑤 = 0.94 9810

= 9221.4 𝑁/𝑚3

Thus, total weight of crude oil on the tanker,

𝑊 = 𝛾𝑓(𝑉) = 6673.743(1.42)

= 9476.7 𝑁 = 9.48 𝑘𝑁(Ans)



TUTORIAL 2.1

Q2-1

Mercury has a specific weight of 133 kN/m3 when the temperature is

20°C. Determine its density and specific gravity at this temperature.

[Ans: 13557.6 kg/m3, 13.6]

Q2-2

Determine the mass and the weight of the air contained in a room with

dimensions are 6m x 6m x 8m. Assume the density of the air is 1.16

kg/m3. [Ans: 334 kg, 3.27 kN]

Q2-3

The cargo ship carries 85800 barrels of crude oil in its hold. Determine

the weight of the oil if its specific gravity is 0.940. Each barrel contains

159 litres. [Ans: 1.26 GN]

Q2-4

A 1m diameter cylindrical container is filled with water at a depth of 2.5

m. If the container has a mass of 30 kg, determine he combined

weight of the container and the water. [Ans: 19.6 kN]

Q2-5

A cylindrical tank of methanol has a mass of 40 kg and a volume of 51

L. Determine the methanol's weight, density and specific gravity. Take

the gravitational acceleration to be 9.81 m/s2.

[Ans: 392.4 N, 784.3 kg/m3, 0.784 ]

Q2-6

The tank contains a liquid having a density of 1.3 Mg/m3. Determine

the weight of the liquid when it is at the level shown. [Ans: 100.43 kN]

2 m

3 m
0.25 m

1.5 m



Compressibility. Compressibility, 1/κ (kappa) is a measure of

relative volume change in response to pressure or temperature

change. Compressibility is most commonly referred as the reciprocal

of the bulk modulus of elasticity (also called coefficient of

compressibility or bulk modulus of compressibility). Bulk modulus

of elasticity, κ is define as ratio of compressive stress to volumetric

strain and written as,

𝜅 =
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛
= −𝑉

𝑑𝑝

𝑑𝑉
= 𝜌

𝑑𝑃

𝑑𝜌

∴ 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝜅

Bulk modulus and compressibility both is measured in the dimension

of pressure, Pa or N/m2. Fluid usually expands when heated

(depressurized) and contracts when cooled (pressurized). The amount

of volume change is different for different fluid. The compressibility in

liquid and gas is illustrated in Figure 2.1 below;

Eq. 2-6

Eq. 2-7

LIQUID GAS

• Liquid molecules are very 
close together, thus it do NOT
compress easily.

• Has high bulk modulus (κ).
• Compressibility (1/κ)  is low.

• Gases have space between 
molecules, thus it CAN be 
compressed easily.

• Has low bulk modulus (κ).
• Compressibility (1/κ) is high.

2.2 COMPRESSIBILITY

Figure 2.1: Compressibility of liquid and gas.



Example 2.8:

Determine the bulk modulus of elasticity of a liquid, if the pressure of

the liquid is increased from 70 kPa to 130 kPa. The volume of the

liquid decreases by 0.15 %.

Given: P1 = 70 kPa ; P2 = 130 kPa; decrease of V = 0.15 %

Solution:

Increase in pressure, 

𝑑𝑝 = 𝑃2 − 𝑃1 = 130 − 70 = 60 𝑘𝑃𝑎

Decrease in volume,

−
𝑑𝑉

𝑉
=
0.15

100
= 0.0015

Bulk modulus of elasticity,

κ = −𝑉
𝑑𝑝

𝑑𝑉
= −

𝑉

𝑑𝑉
𝑑𝑝 =

60

0.0015

= 40000 𝑘𝑃𝑎 = 40 𝑀𝑃𝑎 (𝐴𝑛𝑠)

TUTORIAL 2.2

Q2-7

Determine the bulk modulus of elasticity of a liquid which is

compressed in a cylinder from a volume of 0.0125 m3 at 80kPa to a

volume of 0.0124 m3 at 150 kPa pressure. [Ans: 8.75 MPa]

Q2-8

An amount of glycerin has a volume of 1 m3 when the pressure is 120

kPa. If the pressure is increased to 400 kPa, determine the change in

volume of the glycerin. The bulk modulus for glycerin is κ = 4.52 GPa.

[Ans: - 61.9 x 10-6 m3]



Viscosity. Viscosity, μ (mu) is a property of fluid that measure the

internal resistance of fluid to motion or flow. The nature of fluid is that

they continuously deform (or flow) when subjected to shear force.

When a small force, F is applied to a thin plate, the adjacent thin layer

of fluid will be dragged along, resulting deformation. This deformation

can be depicted in the Figure 2.2 below,

The top layer causes shear stress on the adjacent lower layer, while the

lower layer causes shear stress on the adjacent top layer, causing

resistance. This shear stress is proportional to the rate of change of

velocity with respect to y (vertical distance from the bottom). Thus,

shear stress, τ is expressed as,

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
→ 𝜇 =

𝜏

𝑑𝑢/𝑑𝑦
= 𝜏

𝑑𝑦

𝑑𝑥

Where, μ is the viscosity in Ns/m2 or Poise for CGS (centimetre-gram-

second) system and τ is measured in pressure unit, Pa or N/m2.

Viscosity is an important property of fluid because it causes internal

friction within the fluid, which results in energy loss that must be taken

into account when designing vehicles or conduits such as pipes and

channels. Higher viscosity of fluid means higher resistance of fluid to

motion. Also, note that, it is easier to move through air (low viscosity)

compared to water (high viscosity) as shown in Figure 2.3.

Eq. 2-8

2.3 VISCOSITY

Figure 2.2: Deformation of fluid when subjected to shear force. (source: Hibbeler)

Figure 2.3: Resistance of movement in air and water. (source: Cengel and Cimbala)



Example 2.9:

A plate rests on top of the thin film of water. If a small force F is

applied to the plate, the velocity profile across the thickness of the

water is given by u = (40y – 800 y2) m/s, at a distance y metre above the

fixed plate. Take, dynamic viscosity of water as 0.897 x 10-3 Ns/m2.

Determine the shear stress acting on the fixed surface and on the

bottom of the plate.

Given: u = (40y – 800 y2) m/s;

μ = 0.897 x 10-3 Ns/m2

Solution:

Velocity gradient,
𝑑𝑢

𝑑𝑦
=

𝑑

𝑑𝑦
40𝑦 − 800𝑦2 = 40 − 1600𝑦

Thus, shear stress on the fixed surface, y = 0,

𝜏 = ቤ𝜇
𝑑𝑢

𝑑𝑦
𝑦=0

= 0.897 × 10−3 40 − 0

= 0.0359 𝑁/𝑚2(𝐴𝑛𝑠)

Shear stress on the bottom of the moving plate, y = 0.01m,

𝜏 = ቤ𝜇
𝑑𝑢

𝑑𝑦
𝑦=0.01

= 0.897 × 10−3 40 − 1600(0.01)

= 0.0215 𝑁/𝑚2(𝐴𝑛𝑠)

10 mm

U

F

u

y

Fixed surface

Moving plate



Example 2.10:

A plate is placed on a thin film of fluid at a distant of 0.25 mm from a

fixed plate. The plate moves at 0.6 m/s and requires a shear force of 2

N/m2 to maintain this speed. Determine the fluid viscosity between

the plates in Poise.

Given: dy = 0.25 mm = 0.25 x 10-3 m;      u = 0.6 m/s;     τ = 2 N/m2

Solution:

Change of velocity,

𝑑𝑢 = 𝑢 − 0 = 0.60 𝑚/𝑠

Thus, the viscosity of fluid between the plates,

𝜇 = 𝜏
𝑑𝑦

𝑑𝑢
= (2)

0.00025 × 10−3

0.6

= 0.833 × 10−3 𝑁𝑠/𝑚2 ×
10 𝑃𝑜𝑖𝑠𝑒

1 𝑁𝑠/𝑚2

= 0.00833 𝑷𝒐𝒊𝒔𝒆 (𝐴𝑛𝑠)

TUTORIAL 2.3

Q2-9

If the velocity distribution over a plate is given by u = 2/3y – y2 in which

u is the velocity in m/s at a distance y metre above the plate, determine

the shear stress at y = 0 and y = 0.15 m. Take dynamic viscosity of fluid

as 0.863 Ns/m2. [Ans: 0.5753 N/m2, 0.3164 N/m2]

Q2-10

The space between two square plates is filled with oil. The thickness of

oil film is 12.5 mm. The upper plate moves at 2.5 m/s and requires a

shear force of 272.5 N/m2 to maintain this velocity. Determine the

dynamic viscosity of the oil in Poise. [Ans: 13.63 Poise]

F
u = 0.6 m/sdy = 0.25 mm

Fixed plate



TUTORIAL 2 WORKED SOLUTIONS

Q2-2

Determine the mass and the weight of the air contained in a room with

dimensions are 6m x 6m x 8m. Assume the density of the air is 1.16

kg/m3. [Ans: 334 kg, 3.27 kN]

Given: Volume = 6 m x 6 m x 8 m = 288 m3; ρair = 1.16 kg/m3

Solution:

Mass of the air in the room,

𝜌𝑎𝑖𝑟 =
𝑚

𝑉
𝑚 = 𝜌𝑉 = 1.16 288 = 334.08 𝑘𝑔 (𝐴𝑛𝑠)

Hence, the weight of air in the room,

𝑊 = 𝑚𝑔 = 334.08 9.81

= 3277.325 𝑁 = 3.27 𝑘𝑁 (𝐴𝑛𝑠)

Q2-4

A 1m diameter cylindrical container is filled with water at a depth of 2.5

m. If the container has a mass of 30 kg, determine he combined

weight of the container and the water. [Ans: 19.6 kN]

Given: Volume of water = 2.5(π/4) = 1.9635 m3; mcont = 30 kg

Solution:

Mass of water in container,

𝜌𝑤 =
𝑚𝑤

𝑉
𝑚𝑤 = 𝜌𝑤𝑉 = 1000 1.9635 = 1963.5 𝑘𝑔 (𝐴𝑛𝑠)

Total mass,

𝑚 = 𝑚𝑤 +𝑚𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

= 1963.5 + 30 = 1993.5 𝑘𝑔

Thus, total weight,

𝑊 = 𝑚𝑔 = 1993.5 9.81 = 19556.19 𝑁 = 19.56 𝑘𝑁 (𝐴𝑛𝑠)



TUTORIAL 2 WORKED SOLUTIONS

Q2-8

An amount of glycerin has a volume of 1 m3 when the pressure is 120

kPa. If the pressure is increased to 400 kPa, determine the change in

volume of the glycerin. The bulk modulus for glycerin is κ = 4.52 GPa.

[Ans: - 61.9 x 10-6 m3]

Given: V = 1 m3 ; κ = 4.52 GPa = 4.52 x 10-9 kPa;
P1 = 120 kPa = 120 kN/m2; P2 = 400 kPa = 400 kN/m2;   

Solution:

The increase in pressure,

𝑑𝑝 = 𝑃2 − 𝑃1 = 400 − 120 = 280 𝑘N/𝑚2

Thus, the change in volume,

κ = −𝑉
𝑑𝑝

𝑑𝑉
→
𝑑𝑉

𝑉
= −𝑉

𝑑𝑝

𝜅
= −(1)

280 × 103𝑘N/𝑚2

4.52 × 10−9𝑘N/𝑚2

𝑑𝑉

𝑉
= −61.9 × 10−6 𝑚3(𝐴𝑛𝑠)

Q2-10

The space between two square plates is filled with oil. The thickness of

oil film is 12.5 mm. The upper plate moves at 2.5 m/s and requires a

shear force of 272.5 N/m2 to maintain this velocity. Determine the

dynamic viscosity of the oil in Poise. [Ans: 13.63 Poise]

Given: dy =12.5 mm = 0.0125 m;      u = 2.5 m/s;     τ = 272.5 N/m2

Solution:

Change of velocity,

𝑑𝑢 = 𝑢 − 0 = 2.5 𝑚/𝑠

The viscosity of fluid between the plates,

𝜇 = 𝜏
𝑑𝑦

𝑑𝑢
= 272.5

0.0125

2.5
= 1.3625 𝑁𝑠/𝑚2 ×

10 𝑃𝑜𝑖𝑠𝑒

1 𝑁s/𝑚2

= 13.625 𝑷𝒐𝒊𝒔𝒆 (𝐴𝑛𝑠)



Chapter 3:

3.1 FLUID STATICS

Fluid statics is the study of incompressible fluids at rest or flow with

constant velocity. In fluid statics, there is no relative motion between

adjacent fluid layers, thus, no shear stress in the fluid trying to deform

it. The only stress in fluid statics is the normal stress due to pressure.

The variation of pressure is mainly depends on the weight of fluid.

Fluid statics often provides physical explanations for many daily life

phenomena such as the change of pressure with altitude, the floating

and submerging of matters in liquid and why the surface of water is

always level. The engineering application of fluid statics include; the

measurement of pressure using hydrostatics, floating or submerged

bodies, water dams and gates, liquid storage tanks, etc.

The physical characteristics of static or stationary fluids and the laws

that govern their behaviour, discussed in this chapter are:

• Pascal’s Law

• Measurement of static pressure using Piezometer, Barometer,

Manometer and Bourdon Gauge

• Buoyancy



Pressure in static fluid is independent of the shape or cross section of

the container. The pressure changes with altitude (vertical distance),

but remains constant in horizontal directions. When liquid is poured

into a set of connected tubes of different shapes, it rises up until the

levels ate the same in all tubes, as demonstrated in Figure 3.1 below.

Note that the pressure at point A, B, C, D and E are the same since they

are at the same depth.

A consequence of the pressure in a fluid remaining constant in

horizontal direction is that the pressure applied to a confined fluid

increases the pressure throughout by the same amount. This is known

as Pascal’s Law after Blaise Pascal (1623 – 1662), a French

Mathematician.

Pascal’s Law stated that the intensity of the

pressure acting at a point the a fluid is the

same in all direction. Hence, in an enclosed

fluid at rest, a change in the pressure applied

to a fluid is transmitted undiminished to every

point of the fluid and to the walls of the

container (Figure 3.2).

3.2 PASCAL’S LAW

Free surface

Furnace duct Pipe or tube Heat exchanger Fluid power cylinder

Figure 3.1: Pressure remains constant in horizontal directions.

Figure 3.2: Pressure applied to a fluid transmitted perpendicular to the wall of 
container.



Pressure P1 is equal to P2 because

of the pistons are at the same

level. Ratio of output force to

input force is determined by,

𝑃1 = 𝑃2

𝐹1
𝐴1

=
𝐹2
𝐴2

→
𝐹2
𝐹1

=
𝐴2
𝐴1

Pascal also founded that the force applied by a fluid is proportional to

the surface area. Therefore, when two hydraulic cylinders of different

surface areas could be connected and the larger could be used to

exert greater force proportional to the force applied to the smaller.

This is called the Pascal’s Machine. This enables the lifting of heavy

masses by only one arm, as shown in the Figure 3.3 below.

The Pascal’s law application are widely used in hydraulic lifts,

hydraulics or air brakes, hydraulic jacks and forklifts. Also, Pascal’s law

application can also be seen in the following (Figure 3.4);

Eq. 3-1

Car lift Hydraulic/Air Hydraulic jacks

Forklift Hydraulic Oil Press Wood Stocks Press

Figure 3.3: Hydraulic jack. 
(source: Cengel & Cimbala)

Figure 3.4: Applications of Pascal’s law.



Example 3.1:

A pneumatic jack is used in a service station as shown in figure. If the

car and lift weigh 25 kN, determine the force that must be developed

by the air compressor at B to raise the lift at a constant velocity. Air is

in the line from B to A. The air line at B has an inner diameter of 15

mm, and the post at A has a diameter of 280 mm.

Given: FA = 25 kN = 25000 N; dA = 280 mm = 0.28 m, rA = 0.14 m;

dB = 15 mm = 0.015 m, rB = 0.0075 m 

Solution:

This small force of 71.7 N is sufficient to lift the 25 kN load.

In the application of the hydraulic jack, the lifting and lowering jacks

can also be considered as follows;

Due to equilibrium, the force

created by air pressure at A is

equal and opposite to weight of

car and lift. Therefore,

𝑃𝐴 = 𝑃𝐵 →
𝐹𝐴
𝐴𝐴

=
𝐹𝐵
𝐴𝐵

25000

𝜋(0.142)
=

𝐹𝐵
𝜋(0.00752)

𝐹𝐵= 71.747 𝑁 (𝐴𝑛𝑠)

hP1

P2

F1

A1

A2
h

P1

P2

F1

A1

A2

𝑃2 = 𝑃1 + 𝜌𝑔ℎ =
𝐹1
𝐴1

+ 𝜌𝑔ℎ 𝑃2 = 𝑃1 − 𝜌𝑔ℎ =
𝐹1
𝐴1

− 𝜌𝑔ℎ



Example 3.2:

A hydraulic jack being used in a car repair shop, as in figure. The

pistons have an area of A1 = 0.8 cm2 and A2 = 0.04m2. Hydraulic oil

with a specific gravity of 0.87 is pumped in as the small piston on the

left side is pushed up and down, slowly rising the larger piston on the

right side. A car that weighs 13 000 N is to be jacked up. Calculate,

a) The force F1 required to hold the weight of car at the beginning.

b) The force F1 after the car has been lifted 2 m.

Given: A1 = 0.8 cm2 = 0.8 x 10-4 m2; A2 = 0.04m2;

SG = 0.870; F2 = 13000 N 

Solution:

a) When both piston at the same level,

𝑃1 = 𝑃2 →
𝐹1
𝐴1

=
𝐹2
𝐴2

𝐹1 =
13000

0.04
0.8 × 10−4

= 26 𝑁 (𝐴𝑛𝑠)

b) When car being lifted 2 m (h = 2 m),

Density of hydraulic oil,

𝑆𝐺 =
𝜌

𝜌𝐻2𝑂
→ 𝜌 = 𝑆𝐺 𝜌𝐻2𝑂

𝜌 = 0.870 1000 = 870 𝑘𝑔/𝑚3

Hence, 

𝑃1 = 𝑃2 + 𝜌𝑔ℎ

𝐹1
𝐴1

=
𝐹2
𝐴2

+ 𝜌𝑔ℎ

𝐹1 =
13000

0.04
+ (870)(9.81)(2) 0.8 × 10−4

= 27.366 𝑁 (𝐴𝑛𝑠)



Example 3.3:

A force, F = 800 N is applied to the smaller cylinder of a hydraulic jack.

The area of the small piston is 20 cm2 while the area of the larger

piston is 250 cm2. Determine the mass that can be lifted on the larger

piston if; (Take, ρ = 870 kg/m3)

a) The pistons are at the same level.

b) The large piston is 0.7 m below the smaller piston.

c) The small piston is 0.55 m below the larger piston.

Given: F1 = 800 N; F2 = Mg; ρ = 870 kg/m3 ; 

A1 = 20 cm2 = 0.002 m2;  A2 = 250 cm2 = 0.025 m2

Solution:

a) When pistons at the same level (h = 0),

𝑃1 = 𝑃2 →
𝐹1
𝐴1

=
𝐹2
𝐴2

𝐹2 =
800

0.002
0.025

𝑀 =
10000

9.81
= 1019.37 𝑘𝑔 (𝐴𝑛𝑠)

b) When larger piston is 0.7 m below small piston (h = 0.7 m)

𝑃2 = 𝑃1 + 𝜌𝑔ℎ →
𝐹2
𝐴2

=
𝐹1
𝐴1

+ 𝜌𝑔ℎ

𝐹2 =
800

0.002
+ 870 9.81 0.7 (0.025)

𝑀 =
11493.57

9.81
= 1071.62 𝑘𝑔 (𝐴𝑛𝑠)

c) When smaller piston is 0.55 m below large piston (h = 0.55 m)

𝑃2 = 𝑃1 + 𝜌𝑔ℎ →
𝐹2
𝐴2

=
𝐹1
𝐴1

+ 𝜌𝑔ℎ

𝐹2 =
800

0.002
− 870 9.81 0.55 (0.025)

𝑀 =
9982.65

9.81
= 1007.41 𝑘𝑔 (𝐴𝑛𝑠)

M

800N

M

800N

h

M

800N

h



TUTORIAL 3.1

Q3-1

Q3-2

The 500 kg load on the hydraulic lift shown

in the figure is to be raised by pouring oil (ρ

= 780 kg/m3) into a thin tube. Determine

how high h should be in order to begin to

raise the weight. [Ans: 0.57 m]

Q3-3

Plunger Ram

Hydraulic press

F = 400  N

p

The diameters of ram and plunger

of a hydraulic press are 200 mm

and 30 mm respectively. Find the

weight lifted by the hydraulic press

when the force applied at the

plunger is 400 N. [Ans: 17.77 kN]

The small piston of a hydraulic lift

in the figure has a cross-sectional

area of 3 cm2, and its large piston

has cross-sectional area of 200

cm2. What downward force of

magnitude, F1 must be applied to

the small piston for the lift to raise

a load whose weight Fg = 15 kN?

Neglect the effects due to the

difference in vertical positions of

the two pistons. Assume that

piston’s is weightless. [Ans: 225 N]



There are several ways to measure the atmospheric and gauge

pressure at points within a fluid. Among all the common ones are;

barometer, piezometer, manometer and bourdon gauge.

Barometer. Barometer is a simple device to measure atmospheric

pressure, invented by Evangelista Toricelli (1608-1647). Barometer use

mercury as preferred manometric fluid since it has high density and

very small vapor pressure.

Barometer consists of inverted mercury-

filled tube in a mercury dish that is open

to the atmosphere (Figure 3.5). The

pressure at point B is equal to the

atmospheric pressure. At point C, the

pressure is taken as zero (0) since there

is only mercury vapour above point C, in

which the pressure is very low relative to

Patm. Atmospheric pressure is written as,

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ
Where, ρ is the density of mercury, often

taken as ρHg = 13,600 kg/m3.

3.3 MEASUREMENT OF STATIC FLUID PRESSURE

The length and the cross sectional area of

tubes have no effect on the height of the

fluid column of a barometer (Figure 3.6),

provided the tube diameter is large enough

to avoid surface tension effect. Standard

atmospheric pressure is defined as the

pressure produced by a column of mercury

at 760 mm in height at 0°C under g = 9.807

m/s2. For barometer reading, standard

atmospheric pressure is 760 mmHg and the

unit mmHg is also called torr. Hence, 1 atm

= 760 torr and 1 torr = 133.3 Pa.

Eq. 3-2

Figure 3.5: Mercury barometer. 
(source: Cengel & Cimbala)

Figure 3.6: Different length 
and cross section area of 
barometer tube. (source: 

Cengel & Cimbala)



Example 3.4:

Determine the atmospheric pressure at a location where the

barometric reading is 740 mmHg and the gravitational acceleration is g

= 9.805 m/s2. Assume the temperature of mercury to be 10°C, at which

its density is 13,570 kg/m3.

Given: ρ = 13570 kg/m3; g = 9.805 m/s2; h = 740 mm = 0.74 m 

Solution:

Atmospheric pressure,

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ

= 13570 9.805 0.74

= 98459.849 𝑃𝑎 = 98.5 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Example 3.5:

What is the atmospheric pressure in N/m2 if the level of mercury in a

barometer tube is 760 mm above the level of the mercury in the

reservoir? Give the specific gravity of mercury is 13.6 and specific

weight of water 9810 N/m3.

Given: h = 760 mm = 0.76 m; SGHg = 13.6; γw = 9810 N/m3

Solution:

Specific weight of mercury,

𝑆𝐺𝐻𝑔 =
𝛾𝐻𝑔

𝛾𝐻2𝑂

𝛾𝐻𝑔 = 𝑆𝐺𝐻𝑔𝛾𝐻2𝑂 = 13.6 9810 = 133416 𝑁/𝑚3

Atmospheric pressure,

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ

= 13570 9.805 0.74

= 98459.849 𝑃𝑎 = 98.5 𝑘𝑃𝑎 (𝐴𝑛𝑠)



Example 3.6:

The basic barometer can be used to measure the height of a building.

If the barometer reading at the top and at the bottom of a building are

730 mmHg mm and 755 mmHg, respectively, determine the height of

the building. Assume an average air density of 1.18 kg/m3.

Given: ρ = 1.18 kg/m3; Ptop = 730 mmHg; Pbottom = 755 mmHg

Solution:

Pressure on top and bottom of building,

𝑃𝑡𝑜𝑝 = 𝜌𝑔ℎ𝑡𝑜𝑝
= 13600 9.81 0.730

= 97393.68 𝑃𝑎

= 97.39 𝑘𝑃𝑎

𝑃𝑡𝑜𝑝 = 𝜌𝑔ℎ𝑡𝑜𝑝
= 13600 9.81 0.755

= 100739.08 𝑃𝑎

= 100.74 𝑘𝑃𝑎

Therefore, taking an air column between the top and bottom of the 

building,

𝑃𝑎𝑖𝑟 = 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑃𝑡𝑜𝑝
(𝜌𝑔ℎ)𝑎𝑖𝑟= 100739.08 − 97393.68

1.18 9.81 ℎ = 3345.4

∴ ℎ = 289 𝑚



Piezometer. Piezometer is the simplest form of instrument used to

measure gauge pressure in static liquid. Piezometer consists of long

transparent tube, open at one end to the atmosphere and other end

of piezometer is connected to the point where pressure is to be

measured (refer Figure below).

It usually used to measure pressure of liquids in vessels. Any pressure

at the top of the vessel will push the liquid at a distance, h up the tube.

The rise of liquid in the tube gives the pressure head at that point,

𝑃 = 𝜌𝑔ℎ → 𝑃 = 𝛾ℎ

Limitations of piezometer;

1. Can not be employed when large pressures in the lighter liquids

to be measured – this would require very long tubes.

2. Not effective at measuring high negative (suction) gauge

pressures – since air may leak into the vessel.

3. Unable to measure gas pressures – since gases form no free

surface.

Example 3.7:

A pressure tube is used to measure the pressure of oil (ρ = 715 kg/m3)

in a pipeline. If the oil rises to a height of 0.93 m above the centre of

the pipe, calculate the gauge pressure in N/m2 at that point.

Given: ρ = 715 kg/m3; h = 0.93 m 

Solution:

Gauge pressure of the oil,

𝑃𝑔 = 𝜌𝑔ℎ = 715 9.81 0.93 = 6253.1595 𝑁/𝑚2 (𝐴𝑛𝑠)

h

Eq. 3-3



Manometer. Manometer is a device used for measuring pressure at

a point in a fluid by balancing the column of fluid with the same or

another type of fluid. It is often used to measure small and moderate

pressure in liquid. A manometer consists of a glass or plastic U-tube

containing one or more manometric fluid (refer figure below). To keep

the size of manometer to a manageable level, heavy fluids such as

mercury are used if large pressure are to be measured.

Types of manometer;

• Simple U-tube manometer (Figure 3.7)

• Differential U-tube manometer

• Inverted differential U-tube manometer

• Combined / multifluid manometer

Types of manometric fluids commonly used;

• Mercury

• Water

• Alcohol

• Oil

The differential fluid column of height h2, is in static equilibrium, and it

is open to the atmosphere. Then the pressure at point A is

determined from,

𝑝𝐴 + 𝜌1𝑔ℎ1 − 𝜌2𝑔ℎ2 = 𝑝𝑎𝑡𝑚 𝑜𝑟

𝑝𝐴 + 𝛾1ℎ1 − 𝛾2ℎ2 = 𝑝𝑎𝑡𝑚

h2

h1

Manometric 
fluid, γ2

Fluid A, γ1

PA

Patm

Simple U-tube manometer;

Have a U-shaped tube filled with

manometric fluid. Due to pressure,

level of manometric fluid rises on

one side while it falls on other side.

Difference in levels is measured to

estimate the pressure.

Eq. 3-4

Figure 3.7: Simple U-tube 
manometer



Differential U-tube manometer;

Differential manometer

is used to measure

difference of pressure

between two points on a

closed conduit where

fluid is flowing through it.

It consists of a U-tube containing heavy liquid (high density) with two

ends connected to two points to be measured. Point A and B in Figure

are at different level and also contains liquids of different specific

gravities. Let pressure at A and B are pA and pB,

𝑝𝐴 + 𝜌1𝑔ℎ1 − 𝜌2𝑔ℎ2 − 𝜌3𝑔ℎ3 = 𝑝𝐵 𝑜𝑟

𝑝𝐴 + 𝛾1ℎ1 − 𝛾2ℎ2 − 𝛾3ℎ3 = 𝑝𝐵
𝑝𝐴 − 𝑝𝐵 = 𝛾2ℎ2 + 𝛾3ℎ3 − 𝛾1ℎ1

Inverted Differential U-tube manometer;

Inverted differential

manometer is used to

measure difference of

low pressures, where

accuracy is the prime

consideration.

It consists of inverted U-tube containing light liquid (low density), and

the two ends of the tube are connected to the points where the

difference of pressure is to be measured. Let the pressure at A is more

than the pressure at B as in Figure,

𝑝𝐴 − 𝜌1𝑔ℎ1 + 𝜌2𝑔ℎ2 + 𝜌3𝑔ℎ3 = 𝑝𝐵 𝑜𝑟

𝑝𝐴 − 𝛾1ℎ1 + 𝛾2ℎ2 + 𝛾3ℎ3 = 𝑝𝐵
𝑝𝐴 − 𝑝𝐵 = 𝛾1ℎ1 − 𝛾2ℎ2 − 𝛾3ℎ3

Fluid B, γ3h2

h1

PA

Fluid A, γ1

PB

h3

Manometric 
fluid, γ2

Fluid B, γ3h2

h1

PA

Fluid A, γ1

PB

h3

Manometric 
fluid, γ2

Eq.3-5

Eq.3-6



Multifluid / Combined Manometer;

In this type of manometer as in Figure, the system can be written as,

𝑝1 + 𝜌𝑤𝑔ℎ1 + 𝜌𝑜𝑖𝑙𝑔ℎ2 − 𝜌𝐻𝑔𝑔ℎ3 = 𝑝2 = 𝑝𝑎𝑡𝑚
𝑝1 + γ𝑤ℎ1 + 𝛾𝑜𝑖𝑙ℎ2 − 𝛾𝐻𝑔ℎ3 = 𝑝2 = 𝑝𝑎𝑡𝑚
𝑝𝑎𝑖𝑟 = 𝑝𝑎𝑡𝑚 − γ𝑤ℎ1 −𝛾𝑜𝑖𝑙ℎ2 + 𝛾𝐻𝑔 ℎ3

Manometer Rule;

It is more effective to work manometer problems with general

approach for each case. No formulas for particular manometer should

be memorized. A general procedure to work all manometer problems:

1) Start at a point in the fluid where the pressure is to be determined.

2) Proceed to add to the pressure (algebraically) from one vertical fluid

interface to the next.

• Pressure term is positive (plus) if it is below (lower) the level of

the next point – since it will cause an increase in pressure.

• Pressure term is negative (minus) if it is above (higher) the level of

the next point – since it will cause a decrease in pressure.

3) Continue until reaching liquid surface at the other end of the

manometer.

Multifluid manometer (Figure 3.8) also
known as combined manometer
combines two manometric fluids to
measure pressure. Fluid in the middle
is used to prevent the toxicity of
mercury affecting the water in the
tank. To analyse this system, note
that,
1) Pressure change across fluid is

∆𝑃 = 𝜌𝑔ℎ
2) Pressure increases downward in a

given fluid and decreases upward
(i.e. P bottom > P top)

3) Two points at the same elevation in
a continuous fluid at rest are at the

same pressure.

Eq.3-7

Figure 3.8: Multifluid manometer 
(source: Cengel & Cimbala)



Working Manometer Example;

To work out the manometer in
Figure 3.9,
1) Start with point A.
2) Pressure at point A & B and

C & D are the same, since
they are at the same level.

3) Add pressure at C (lower
than point A – positive).

4) Subtract pressure at point
E (higher than point C –
negative).

5) Hence, pressure at point A,

𝑝𝐴 + 𝛾ℎ𝐵𝐶 − 𝛾′ℎ𝐷𝐸 = 0
𝑝𝐴 = 𝛾′ℎ𝐷𝐸 − 𝛾ℎ𝐵𝐶

Example 3.8:

A manometer is used to measure the pressure of a gas in a tank. The

fluid used has a specific gravity of 0.85, and the manometer column

height is 55 cm , as shown in figure. If the local atmospheric pressure

is 96 kPa, determine the absolute pressure within the tank.

Given; SG = 0.85, h = 55 cm = 0.55 m, patm = 96 kPa

Solution:

Density of the fluid,

𝜌 = 𝑆𝐺(𝜌𝑤) = 0.85 1000

= 850 𝑘𝑔/𝑚3

Absolute pressure within the tank,

𝑃 − 𝜌𝑔ℎ = 𝑝𝑎𝑡𝑚
𝑃 = 𝑝𝑎𝑡𝑚 + 𝜌𝑔ℎ

= 96 + 850 9.81 0.55

= 100.6 𝑘𝑃𝑎 (𝐴𝑛𝑠)

Figure 3.9: U-tube manometer 
analysis. (source: Hibbeler)



Example 3.9:

Both a gauge and a manometer are attached to a gas tank to measure

its pressure. If the reading on the pressure gauge is 65 kPa, determine

the distance between two fluid levels of the manometer of the fluid is;

a) Mercury (ρ = 13 600 kg/m3)

b) Water (ρ = 1000 kg/m3)

Given: Pgauge = 65 kPa = 65 000 Pa

Solution:

The gauge pressure is related to the vertical distance h between the 

two fluid levels by,

𝑃𝑔𝑎𝑢𝑔𝑒 = 𝜌𝑔ℎ

ℎ =
𝑃𝑔𝑎𝑢𝑔𝑒

𝜌𝑔

a) For mercury,

ℎ =
𝑝𝑔𝑎𝑢𝑔𝑒

𝜌𝐻𝑔𝑔

=
65000

13600(9.81)
= 0.49 𝑚 (𝐴𝑛𝑠)

b) For water,

ℎ =
𝑝𝑔𝑎𝑢𝑔𝑒

𝜌𝑤𝑔

=
65000

1000(9.81)
= 6.63 𝑚 (𝐴𝑛𝑠)



Example 3.10:

If the pressure in container A in the figure below is 200 kPa, calculate

the pressure in container B. Take,

γw = 9790 N/m3

γHg = 133 100 N/m3

Given: PA = 200 kPa = 200 000 Pa

Solution:

Specific weights of oil,

𝛾𝑜𝑖𝑙 = 𝑆𝐺𝛾𝑤
= 0.8 9790

= 7832 𝑁/𝑚3

Height difference of mercury,

ℎ𝐻𝑔 = 0.22 − 0.08 = 0.14 𝑚

Using manometric rule from B to A,

𝑝𝐵 + 𝛾𝑤ℎ𝑤 + 𝛾𝐻𝑔ℎ𝐻𝑔 − 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙 = 𝑝𝐴

𝑝𝐵 = 𝑝𝐴 − 𝛾𝑤ℎ𝑤 − 𝛾𝐻𝑔ℎ𝐻𝑔 + 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙
𝑝𝐵 = 200000 − 9790 0.18 − 133100 0.14 + 7832 0.16

𝑝𝐵 = 180856.92 𝑃𝑎 = 180.86 𝑘𝑃𝑎 (𝐴𝑛𝑠)

0.08 m

0.22 m

0.16 m

0.18 m

hHg



Example 3.11:

The inverted U-tube manometer is used to measure the difference in

pressure between water flowing in the pipes at A and B. If the top

segment is filled with an oil with ρoil = 800 kg/m3, and the water levels

in each segment are as indicated, determine this pressure difference

between A and B.

Given: ρoil = 800 kg/m3 

Solution:

Using manometric rule from A to B,

𝑝𝐴 − 𝜌𝑤𝑔ℎ𝑤𝐴 + 𝜌𝑜𝑖𝑙𝑔ℎ𝑜𝑖𝑙 + 𝜌𝑤𝑔ℎ𝑤𝐵 = 𝑝𝐵
𝑝𝐵 − 𝑝𝐴 = 𝜌𝑤𝑔(ℎ𝑤𝐵 − ℎ𝑤𝐴) + 𝜌𝑜𝑖𝑙𝑔ℎ𝑜𝑖𝑙
𝑝𝐵 − 𝑝𝐴 = 1000 9.81 0.3 − 0.225 + 800 9.81 0.075

𝑝𝐵 − 𝑝𝐴 = 1324.35 𝑃𝑎 = 1.32 𝑘𝑃𝑎 (𝐴𝑛𝑠)



Example 3.12:

The water in a tank is pressurized by air, and the pressure is measured

by a multifluid manometer as shown in the figure below. The tank is

located on a mountain at an altitude of 1400 m where the atmospheric

pressure is 85.6 kPa. Determine the air pressure in the tank if h1 = 0.1

m, h2 = 0.2 m, and h3 = 0.35 m. Take the densities of water, oil, and

mercury to be 1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.

Given: h1 = 0.1 m; h2 = 0.2 m; h3 = 0.35 m

ρw = 1000 kg/m3; ρoil = 850 kg/m3; ρHg = 13600 kg/m3

Solution:

Using manometric rule starting from point 1,

𝑝1 + 𝜌𝑤𝑔ℎ1 + 𝜌𝑜𝑖𝑙𝑔ℎ2 − 𝜌𝐻𝑔𝑔ℎ3 = 𝑝2 = 𝑝𝑎𝑡𝑚

𝑝1 = 𝑝𝑎𝑡𝑚 + 𝑔(𝜌𝐻𝑔ℎ3 − 𝜌𝑤ℎ1 − 𝜌𝑜𝑖𝑙ℎ2)

𝑝1 = 85 600 + 9.81 13600 0.35 − 1000 0.1 − 850 0.2

= 130 𝑘𝑃𝑎 (𝐴𝑛𝑠)



Bourdon Gauge. Bourdon gauge is a type of mechanical pressure

measurement device, typically used when the gauge pressure is too

high for manometer to measure.

Bourdon gauge (Figure 3.10) basically applied the principle of elastic

deformation of metal. It consists of a bent, coiled or twisted hollow

metal tube which end is closed and connected to a dial indicator

needle. The other end is connected to vessel where pressure is to be

measured (Figure 3.11). The needle is calibrated to read zero (gauge

pressure) when the tube is open to the atmosphere undeflected.

When the fluid inside the tube is pressurized, the tube stretched and

moves needle in proportion to the applied pressure.

Figure 3.10: Bourdon gauge. (source: Hibbeler)

Figure 3.11: Hollow metal tube and needle assembly of Bourdon gauge. 
(source: Cengel & Cimbala)



Example 3.13:

The bourdon gauge in the figure, is

calibrated with a deadweight piston.

If the bourdon gauge is designed to

rotate the pointer 10° for every 14

kPa of internal pressure, how many

degrees does the pointer rotate if

the piston and weight together total

44 newtons?

Given: pointer rotate 10° for every 14 kPa 

Solution:

Pressure applied to the bourdon gauge,

𝑝𝐵𝑜𝑢𝑟𝑑𝑜𝑛 =
𝐹

𝐴𝑝𝑖𝑠𝑡𝑜𝑛
=

44

𝜋0.012
= 140056 𝑃𝑎 = 140.06 𝑘𝑃𝑎

Pointer rotates 10° for every 14 kPa, hence,

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 =
140.06

14
= 10 × 10° ≈ 100° (𝐴𝑛𝑠)

The pointer should move approximately 100°.

Example 3.14:

A Bourdon pressure gauge is attached to a boiler located at sea level

shows a reading pressure of 10 bar. If the atmospheric pressure is

101.3 kPa, determine the absolute pressure of the boiler and the

pressure head of water, h.

Given: pbourdon = 10 bar = 10 x 100 kN/m2 ,patm = 101.3 kPa 

Solution:

The absolute pressure,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝑝𝑏𝑜𝑢𝑟𝑑𝑜𝑛
= 101.3 + 1000

= 1101.3 𝑘𝑁/𝑚2(𝐴𝑛𝑠)

The pressure head of water,
𝑝𝑏𝑜𝑢𝑟𝑑𝑜𝑛 = 𝜌𝑔ℎ

ℎ =
𝑝𝑏𝑜𝑢𝑟𝑑𝑜𝑛

𝜌𝑔
=

1000000

1000(9.81)
= 101.937 𝑚 (𝐴𝑛𝑠)



TUTORIAL 3.2

Q3-4

The atmospheric pressure in a location is measured by mercury

barometer (ρHg = 13,600 kg/m3). If the height of the mercury column is

715 mm, calculate the atmospheric pressure at that location.

[Ans: 95.4 kPa]

Q3-5

Determine the pressure head, h in mm of mercury in a barometer if

the atmospheric pressure is 102 kPa. Take, ρHg = 13,600 kg/m3.

[Ans: 764.5 mm]

Q3-6

Q3-7

If the height of water in the piezometer is 475 mm, determine the

absolute pressure at point A. Compare this pressure with that using

kerosene. Take ρw = 1000 kg/m3 and ρke = 814 kg/m3. [Ans: 105.96 kPa,

105.09 kPa]

A pressure tube is used to measure

the pressure of oil with mass

density of 640 kg/m3 in a pipeline.

If the oil rises to a height of 1.2 m

above the centre of the pipe, what

is the gauge pressure in N/m2 at

that point?. [Ans: 7.53 kN/m2]



TUTORIAL 3.2

Q3-8

A simple U-tube manometer containing

mercury with an open end was

connected to a pipe containing a fluid

with specific gravity of 0.9. The centre of

the pipe is 120 mm below the level of

mercury in the right limb. Find the

pressure of fluid in the pipe if the

difference of mercury level in the two

limbs is 200 mm. [Ans: 25.98 kPa]

Q3-9

A simple U-tube manometer containing

mercury is connected to a pipe in which a

fluid with WG 0.8 is flowing. The other

end of the manometer is open to the

atmosphere. Find the vacuum pressure

in the pipe, if the difference of mercury

level in the two limbs is 40 cm and the

height of fluid in the left from the centre

of pipe is 15 cm below. [Ans: 54.5 kPa]

Q3-10

A differential manometer is connected at

the two points A and B as shown in the

figure. At B the absolute air pressure is

98.1 kN/m2. find the absolute pressure at

A. [Ans: 88.88 kN/m2]

200 mm

120 mm

40 cm

15 cm

0.6 m

0.2 m

0.1 m



TUTORIAL 3.2

Q3-11

A differential manometer is connected at

the two points A and B of two pipes as

shown in the figure. The pipe A contains

a liquid with SG of 1.5 while pipe B

contains a liquid with SG of 0.9. The

pressures at A and B are 98.1 kPa and

176.58 kPa respectively. Find the

difference in mercury level, h in the

differential manometer. [Ans: 0.1811 m]

Q3-12

An inverted differential manometer is

connected to two pipes A and B which

convey water. The fluid in manometer is

oil with SG 0.8. For the manometer

reading shown in the figure, find the

pressure difference between A and B.

[Ans: 1569.6 Pa]

Q3-13

Find the differential reading, h of an

inverted U-tube manometer containing

oil of specific gravity of 0.7 as the

manometric fluid when connected across

pipes A and B as shown in the figure.

Pipes A and B are located at the same

level and assume the pressure A and B to

be equal. [Ans: 200 mm]

3 m

2 m

30 cm

30 cm
20 cm

300 mm

h



TUTORIAL 3.2

Q3-14

Freshwater and seawater flowing in parallel horizontal pipelines are

connected to each other by a double U-tube manometer, as shown in

the figure. Determine the pressure difference between the two

pipelines. Take the density of seawater at that location to be ρ = 1035

kg/m3 and oil density is 700 kg/m3. [Ans: 10.2 kPa]

Q3-15

A gasoline line is connected to a pressure gauge through a double U-

manometer, as shown in the figure. If the reading of the pressure

gauge is 260 kPa. Determine the gauge pressure of the gasoline line.

Take, ρair = 1.225 kg/m3. [Ans: 245 kPa]



When a body is immersed in a fluid, an upward force is exerted by the

fluid on the body. This upward force is equal to the weight of fluid

displaced by the body and is called the force of buoyancy. This force

is of great importance in the design of hot-air balloons, ships and

submarines (Figure 3.12).

Archimedes’ Principle. Archimedes’ principle states that when a

body is placed in a static fluid, it is buoyed up by a force that is equal to

the weight of the fluid displaced by the body. This principle is

discovered by Archimedes, a Greek scientist (287 – 212 BC).

This can be demonstrated by weighing a heavy object in water by a

spring scale as shown in Figure 3.13. From this observation, it can be

concluded that a fluid exerts an upward force on a body immersed in

it. The buoyant force is equal to the weight of liquid displaced by the

object.

3.4 BUOYANCY

Figure 3.12: Applications of buoyancy in the design of ships, submarines 
and hot-air balloons.

Figure 3.13: Simple demonstration of Archimedes’ principle.



A force acting downward on AC is equivalent to the weight of the whole

body, W. The force acting upward on the body, ABC is equivalent to the

weight of fluid displaced by region ABCA is called the buoyant force,

𝐹𝑏 = 𝜌𝑓𝑔ℎ𝐴 = 𝜌𝑓𝑔𝑉

In the free-body diagram (FBD), the buoyant force acts upward at the

centre of buoyancy, and the body’s weight acts downward through its

centre of gravity.

Float or Sink?

The density of a body determines

whether it will float or sink when

placed in a liquid. For same volume

objects placed in the same fluid, if it

is less dense than the liquid, it will

float, but it will sink if it is denser

than the liquid (Figure 3.14). But,

the buoyant force will be the same.

Eq. 3-8

W

Fb

Centre of 
buoyancy

Buoyant Force. Buoyant force, Fb is

the upward force on any object

immersed in any fluid, caused by the

increase of pressure with depth and

acts through the centre of buoyancy,

Cb. To demonstrate this, consider a

floating body in Figure 3.13.

Archimedes’ principle also explain why

some objects float in fluids even though

they are very heavy. It depends on how

much fluid they displace. That is the

reason why a boat floats and a block of

same material having the same mass will

sink (Figure 3.15). The boat due to its

shape, displaces larger volume of water,

so the the buoyant force will be larger.

Figure 3.13: Forces acting on 
buoyant object. (source: Hibbeler)

Figure 3.14: A solid body will sink or 
float depending on density. (source: 

Cengel and Cimbala)

Figure 3.15: Fluid displacement of 
same material with same mass 

but different shape.



Example 3.15:

Consider an iceberg to be in the form

of a cylinder of arbitrary and floating in

the ocean as shown in the figure. If the

cylinder extends 2 m above the ocean’s

surface, determine the depth of the

cylinder below the surface. The density

of the ocean water is ρsw = 1024 kg/m3,

and the density of the ice is ρi = 935

kg/m3.

Given: ρsw = 1024 kg/m3 ; ρice = 935 kg/m3 

Solution:

The weight of the iceberg is,

𝑊 = 𝜌𝑖𝑐𝑒𝑔𝑉𝑖𝑐𝑒
= 935 9.81 [𝜋𝑟2 2 + 𝑑 ]

The buoyant force,

𝐹𝐵 = 𝜌𝑠𝑤𝑔𝑉𝑠𝑢𝑏
= 1024 9.81 (𝜋𝑟2𝑑)

From the FBD,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵 −𝑊 = 0

𝐹𝐵=𝑊

1024 9.81 𝜋𝑟2𝑑 = 935 9.81 𝜋𝑟2 2 + 𝑑

1024𝑑 = 935 2 + 𝑑

𝑑 = 21.01 𝑚 (𝐴𝑛𝑠)



Example 3.16:

A barge with 7 m wide, 17 m long and 2.5 m in height, is filled with

rock. If the barge and the rock weigh 2 MN, determine the depth of

barge immersible in the water as shown in the figure below.

Given: γw = 9.81 kN/m3 ; W = 2 MN = 2 x 106 N

Solution:

From Archimedes’ Principle, the volume of displaced fluid (water) is 

equal to the weight of barge,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵 −𝑊 = 0

𝑊 = 𝐹𝐵
2𝑀𝑁 = 𝜌𝑤𝑔𝑉

2 × 106 = (9810) 7 × 17 × 𝑑

𝑑 = 1.7132 𝑚 (𝐴𝑛𝑠)

Barge
7 m (breadth) x 17 m (length)

17 m

d 2.5 m

Rock

Rock

Barge

W

FB



Example 3.17:

A rectangular pontoon has a breadth of 6 m, a length of 12 m, and

draught of 1.5 m in fresh water (density = 1000 kg/m3). Calculate:

a) Weight of the pontoon

b) Depth of pontoon in sea water at density of 1025 kg/m3

c) Load (in kg) that can be supported by the pontoon in fresh water 

if the maximum permissible depth is 2 m.

Given: ρw = 1000 kg/m3; ρsw = 1025 kg/m3

Solution:

a) In fresh water, the draught of pontoon is h = 1.5 m, thus, weight 

of pontoon immersible in water,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵 −𝑊 = 0

𝑊 = 𝐹𝐵
𝑊 = 𝜌𝑤𝑔𝑉

𝑊 = 1000 9.81 6 × 12 × 1.5

= 1059.48 𝑘𝑁(𝐴𝑛𝑠)

Pontoon
6 m (breadth) x 12 m (length)

6 m

1.5 m

Pontoon

W

FB



Example 3.17: (continued)

Solution:

b) Draught of pontoon in sea water,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵𝑆𝑊 −𝑊 = 0

𝐹𝐵𝑆𝑊=𝑊

𝜌𝑠𝑤𝑔𝑉 = 1059.48

1025 9.81 6 × 12 × ℎ𝑠𝑤 = 1059480

ℎ𝑠𝑤= 1.463 𝑚 (𝐴𝑛𝑠)

c) Maximum load supported in fresh water for the pontoon when 

permissible h = 2m,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵 −𝑊𝑚𝑎𝑥 = 0
𝑊𝑚𝑎𝑥= 𝐹𝐵
𝑊𝑚𝑎𝑥= 𝜌𝑤𝑔𝑉
𝑚𝑚𝑎𝑥= 1000 6 × 12 × 2 = 144000 𝑘𝑔

Max load that can be supported by the pontoon,

𝑀𝑎𝑥 𝑙𝑜𝑎𝑑 = 𝑚𝑚𝑎𝑥 −
𝑊

𝑔

= 144000 −
1059480

9.81
= 36000 𝑘𝑔(𝐴𝑛𝑠)

Pontoon

W

FB



TUTORIAL 3.3

Q3-16

A ship floating in sea water displaces 115 m3.

Find,

a) The mass of the ship if the sea water has

a density of 1025 kg/m3

b) The volume of fresh water which the

ship would displaced.

[Ans: 117875 kg, 118 m3]

Q3-17

The cylinder floats in the water and oil to the

level shown. Determine the weight of the

cylinder. Take, density of the oil ρoil = 910

kg/m3. [Ans: 89.7 N]

Q3-18

The volume and the average density

of an irregularly shaped body are to

be determined by using a spring scale.

The body weighs 7200 N in air and

4790 N in water. Determine the

volume and the density of the body.

Assume the buoyancy force in air is

negligible and the body is completely

submerged in water.

[Ans: 0.25 m3, 2988 kg/m3]

FB

W



TUTORIAL 3 WORKED SOLUTIONS

Q3-2

The 500 kg load on the hydraulic lift shown in the figure is to be raised

by pouring oil (ρ = 780 kg/m3) into a thin tube. Determine how high h

should be in order to begin to raise the weight. [Ans: 0.57 m]

Given: m1 = 500 kg; ρ = 780 kg/m3;

d1 = 1.2 m, r1 = 0.6 m;

d2 = 1 cm = 0.01 m, r2 = 0.005 m;

Solution:

Applying Pascal’s Law,

𝑃1 = 𝑃2

𝐹1
𝐴1

= 𝑃2

𝑃2 =
500 (9.81)

𝜋(0.62)
𝜌𝑔ℎ = 4336.972 𝑁

780 9.81 ℎ = 4336.972

ℎ = 0.5668 𝑚 𝐴𝑛𝑠

Thus, a 500 kg load can be raised by this hydraulic lift by raising the 

oil level in the tube by 56.7 cm.

Q3-4

The atmospheric pressure in a location is measured by mercury

barometer (ρHg = 13,600 kg/m3). If the height of the mercury column is

715 mm, calculate the atmospheric pressure at that location.

[Ans: 95.4 kPa]

Given: h = 0.715 m, ρ = 13600 kg/m3

Solution:

Atmospheric pressure,

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ = 3600 9.81 0.715
= 95392.44 𝑃𝑎 = 95.4 𝑘𝑃𝑎 (𝐴𝑛𝑠)



TUTORIAL 3 WORKED SOLUTIONS

Q3-7

If the height of water in the piezometer is 475 mm, determine the

absolute pressure at point A. Compare this pressure with that using

kerosene. Take ρw = 1000 kg/m3 and ρke = 814 kg/m3. [Ans: 105.96 kPa,

105.09 kPa]

Given: hw = 475 mm = 0.475 m;

ρw = 1000 kg/m3; ρke = 814 kg/m3 ;

Solution:

Absolute pressure at point A using water,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝜌𝑤𝑔ℎ

= 101300 + 1000 9.81 0.475

= 105959.75 𝑃𝑎

= 105.96 𝑘𝑃𝑎(𝐴𝑛𝑠)

Absolute pressure at point A using kerosene,

𝑝𝑎𝑏𝑠 = 𝑝𝑎𝑡𝑚 + 𝜌𝑘𝑒𝑔ℎ

= 101300 + 814 9.81 0.475

= 105093.04 𝑃𝑎

= 105.09 𝑘𝑃𝑎(𝐴𝑛𝑠)

Therefore, P absolute using water is higher than using kerosene;

𝑝𝑤 > 𝑝𝑘𝑒



TUTORIAL 3 WORKED SOLUTIONS

Q3-10

A differential manometer is connected at the two points A and B as

shown in the figure. At B the absolute air pressure is 98.1 kN/m2. find

the absolute pressure at A. [Ans: 88.88 kN/m2]

Given: PB = 98.1 kN/m2 = 98100 N/m2 ;
SGoil = 0.9; ρoil = 0.9 x 1000 = 900 kg/m3 

SGHg = 13.6, ρHg = 13.6 x 1000 = 13600 kg/m3

Solution:

Specific weight of oil,

𝛾𝑜𝑖𝑙 = 𝜌𝑜𝑖𝑙𝑔

= 900 × 9.81

= 8829 𝑁/𝑚2

Specific weight of mercury,

𝛾𝑜𝑖𝑙 = 𝜌𝐻𝑔𝑔

= 13600 × 9.81

= 13341.6 𝑁/𝑚2

Thus, the pressure at A,

𝑝𝐴 + 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙 + 𝛾𝐻𝑔ℎ𝐻𝑔 − 𝛾𝑤ℎ𝑤 = 𝑝𝐵

𝑝𝐴 = 𝑝𝐵 + 𝛾𝑤ℎ𝑤 −𝛾𝐻𝑔 ℎ𝐻𝑔 − 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙
= 98100 + (9810)(0.6) − 13341.6 0.1 − 8829 0.2

= 88878.6𝑁/𝑚2 = 88.878 𝑘𝑁/𝑚2(𝐴𝑛𝑠)



TUTORIAL 3 WORKED SOLUTIONS

Q3-13

Find the differential reading, h of

an inverted U-tube manometer

containing oil of specific gravity of

0.7 as the manometric fluid when

connected across pipes A and B

as shown in the figure. Pipes A

and B are located at the same

level and assume the pressure A

and B to be equal. [Ans: 200 mm]

Given: SGA= 1.2, ρA = 1.2 x 1000 = 1200 kg/m3

SGB= 1.0, ρB = 1.0 x 1000 = 1000 kg/m3

SGm= 0.7, ρm= 0.7 x 1000 = 700 kg/m3

Solution:

Specific weight of fluid A,

𝛾𝐴 = 𝜌𝐴𝑔 = 1200 × 9.81 = 11772 𝑁/𝑚2

Specific weight of fluid B,

𝛾𝐵 = 𝜌𝐵𝑔 = 1000 × 9.81 = 9810 𝑁/𝑚2

Specific weight of manometric fluid,

𝛾𝑚 = 𝜌𝑚𝑔 = 700 × 9.81 = 6867 𝑁/𝑚2

Differential reading, h when pressure at A and B are equal,

𝑝𝐴 − 𝛾𝐴ℎ𝐴 − 𝛾𝑚ℎ𝑚 + 𝛾𝐵ℎ𝐵 = 𝑝𝐵
𝑝𝐴 − 𝑝𝐵 = 𝛾𝐴ℎ𝐴 + 𝛾𝑚ℎ𝑚 − 𝛾𝐵ℎ𝐵
0 = 11772 0.3 + 6867 ℎ − (9810)(ℎ + 0.3)
6867ℎ − 9810ℎ − 2943 = 3531.6

−2943ℎ = −588.6
ℎ = 0.2 𝑚 = 200 𝑚𝑚 (𝐴𝑛𝑠)

300 mm

h



TUTORIAL 3 WORKED SOLUTIONS

Q3-14

Freshwater and seawater flowing in parallel horizontal pipelines are

connected to each other by a double U-tube manometer, as shown in

the figure. Determine the pressure difference between the two

pipelines. Take the density of seawater at that location to be ρ = 1035

kg/m3 and oil density is 700 kg/m3. [Ans: 10.2 kPa]

Given: ρsw = 1035 kg/m3

ρoil = 700 kg/m3

ρHg= 13600 kg/m3

Solution:

Specific weight of seawater,

𝛾𝑠𝑤 = 𝜌𝑠𝑤𝑔 = 1035 × 9.81

= 10153.35 𝑁/𝑚2

Specific weight of oil,

𝛾𝑜𝑖𝑙 = 𝜌𝑜𝑖𝑙𝑔 = 1700 × 9.81

= 6867 𝑁/𝑚2

Specific weight of mercury,

𝛾𝐻𝑔 = 𝜌𝐻𝑔𝑔 = 13600 × 9.81

= 133416 𝑁/𝑚2

Pressure difference between the pipelines,

𝑝𝑤 + 𝛾𝑤ℎ𝑤 − 𝛾𝐻𝑔ℎℎ𝑔 − 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙 + 𝛾𝑠𝑤ℎ𝑠𝑤 = 𝑝𝑠𝑤
𝑝𝑤 − 𝑝𝑠𝑤 = 𝛾𝐻𝑔ℎℎ𝑔 + 𝛾𝑜𝑖𝑙ℎ𝑜𝑖𝑙 − 𝛾𝑤ℎ𝑤 − 𝛾𝑠𝑤ℎ𝑠𝑤

= 133416 0.1 + 6867 0.7
− 9810 0.5 − (10153.35)(0.3)

𝑝𝑤 − 𝑝𝑠𝑤 = 10197.495 𝑃𝐴 = 10.2 𝑘𝑃𝑎 (𝐴𝑛𝑠)



TUTORIAL 3 WORKED SOLUTIONS

Q3-16

A ship floating in sea water displaces

115 m3. Find,

a) The mass of the ship if the sea

water has a density of 1025 kg/m3

b) The volume of fresh water which

the ship would displaced.

[Ans: 117875 kg, 118 m3]

Given: Volume of water displaced = 115 m3; ρsw = 1025 kg/m3

Solution:

a) The mass of the ship in seawater,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵 −𝑊 = 0

𝑊 = 𝐹𝐵
𝑚𝑔 = 𝜌𝑠𝑤𝑔𝑉𝑠𝑤 = 1025 9.81 (115)

𝑚 = 117875 𝑘𝑔(𝐴𝑛𝑠)

b) The volume of fresh water in which the ship would displace,

+↑ Σ𝐹𝑦= 0;

𝐹𝐵𝑠𝑤 −𝑊 = 0

𝑊 = 𝐹𝐵
𝑚𝑔 = 𝜌𝑤𝑔𝑉𝑤

117875 = 1000 (𝑉𝑤)

𝑉𝑠𝑤= 117.875 𝑚3(𝐴𝑛𝑠)

FB
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