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ABSTRACT

This paper presented a comprehensive approach to the construction of a robust regularisation
technique for solving the nonlinear Fredholm integral equation of the first kind, a class of
problems frequently encountered in such areas of signal processing, inverse imaging, and
control theory. The purpose of the study was to develop an efficient and reasonable procedure
to regularise this type of equation, which improves the accuracy of solutions in conditions
where standard methods are ineffective due to noise or nonlinear distortion. The study proposed
a modification of Tikhonov’s method that uses nonlinear functionals that reflect the specific
structure of the original problem. Furthermore, an algorithmic strategy for selecting the
normative parameter was implemented, factoring in the a priori knowledge of the expected
smoothness of the solution. This enabled the development of an efficient technique that adapts
to diverse types of problems and provides stable performance even under challenging
conditions. Numerous experiments were conducted on both synthetic and real datasets to verify
the effectiveness of the method. The findings showed that the proposed approach considerably
improves the decision accuracy and convergence rate compared to standard regulatory methods,
even in the presence of strong noise in the data. The comparative analysis confirmed that the
new method has advantages in terms of computational efficiency and ability to adapt to diverse
types of kernels and functional settings. Furthermore, experimental results demonstrated a
marked reduction of errors in the recovered functions as well as a stable convergence rate, even
for high dimensional problems. The proposed scheme can automatically adapt to the different
nature of noise and nonlinear distortion, which makes it a versatile tool for use in many
applications that require high accuracy and efficiency in solving nonlinear integral equations.

Keywords: Tikhonov approach, inverse visualisation, control theory, noise distortion, signal
processing
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1. INTRODUCTION

The solution of Fredholm integral equations of the first kind plays a key role in modern
computational problems related to signal processing, image reconstruction, data analysis, and
control of complex dynamical systems. However, these equations are often incorrectly posed,
making them challenging to solve numerically using standard methods (Aimi et al., 2024). Even
minor errors in the initial data can lead to pronounced deviations in the calculated solutions,
which substantially limits the application of classical numerical methods. In practical problems
this can be expressed in the form of strong oscillations, sharp outliers, or even complete
destruction of the reconstructed solution, which necessitates the use of special regularisation
methods (Kumar and Kumar, 2024). The relevance of the development of effective methods for
stabilising solutions of integral equations is conditioned by the need for accurate, stable, and
computationally efficient algorithms. Many real computational problems are related to the
processing of experimental measurements, in which noise is inevitable, and the available data
may be fragmentary (Golshan, 2024). In such cases, conventional numerical methods become
unusable, especially in fields where further data processing steps depend on computational
accuracy, such as medical imaging, spectral analysis, or astrophysical research (Asanov and
Orozmamatova, 2019; Ashirbaev and Yuldashev, 2024; Avrunin et al., 2015).

Over 2020-2025, researchers have paid considerable attention to the problem of
regularising solutions of integral equations. Saadabaev and Usenov (2023) considered
regularisation of solutions of nonlinear Fredholm integral equations of the first kind in the space
of continuous functions, which allowed extending the application of this method to a wide class
of problems. Srazhidinov and Abdraeva (2023) studied the regularisation of convolution
Volterra integral equations of the first kind and proposed an innovative approach to stabilisation
of solutions in the corresponding problems. Yuldashev et al. (2022) developed a technique for
solving nonlinear integro-differential Fredholm equations of the first kind with a degenerate
kernel and nonlinear maxima, which allowed extending the range of application of known
numerical methods. Wazwaz (2011) also made valuable a contribution to the development of
regularisation methods, investigating the efficiency of the regularisation approach for Fredholm
integral equations of the first kind and developed new algorithms for their solution. Altlirk
(2016) proposed a regularisation-homotopy method for two-dimensional Fredholm integral
equations of the first kind, which improved the accuracy of calculations and increased the
stability of numerical solutions. Other researchers who made notable contributions to the
development of this subject include the study by Ahues et al. (2022), who proposed combined
regularisation methods for incorrect problems combining elements of the conventional
Tikhonov regularisation with an adaptive approach. Altiirk and Cosgun (2019) developed a
variational approach to the regularisation of nonlinear equations based on the minimisation of
special energy-type functionals. Amiraliyev et al. (2020) studied the application of machine
learning methods for selecting the best regularisation parameters in integral equations, which
allowed for the accuracy of calculations in complex cases to be improved considerably.

As of 2025, several approaches to stabilise solutions of incorrect problems have been
developed, among which Tikhonov regularisation is the best known. This method is based on
adding a penalty term to the optimisation functional, which minimises the influence of noise
perturbations and makes the solution more stable (Salah, 2016, 2024). However, the
conventional Tikhonov regularisation is mainly applied to linear problems, and its use for
nonlinear integral equations requires modification (Kal’chuk et al., 2020; Kondratenko and
Kondratenko, 2014; Vaneeva et al., 2015). Moreover, the choice of the regularisation parameter
in the Tikhonov method is a non-trivial task and markedly affects the quality of the obtained
solution.
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Fundamental approaches to the theory of non-correlated problems particularly the
formulation of basic regularisation principles and the development of methods for stabilising
computations have been explored in several studie (Saadabaev and Usenov, 2023; Srazhidinov
and Abdraeva, 2023; Wazwaz, 2011; Ahues et al., 2022). However, the application of these
methods to nonlinear integral equations of the first kind is associated with challenges,
specificially, the need to select special functionals and additional a priori knowledge about the
structure of the solution (Cherniha and Serov, 2006; Cherniha and Pliukhin 2013; Cherniha et
al., 2016). This makes conventional methods less convenient for real calculations, since in
practical applications a priori information is often either unavailable or inaccurate (Maripov,
1994; Maripov and Ismanov, 1994). The significance of adaptive selection of regularisation
parameters crucial for improving method convergence and reducing computational cost has
been emphasised in several studies (Yuldashev et al., 2022; Altiirk, 2016; Altiirk and Cosgun,
2019). Unlike standard approaches that involve static parameter selection, adaptive methods
can dynamically adjust to the characteristics of a particular dataset, which makes them more
versatile and efficient. However, despite their evident advantages, adaptive methods require
further theoretical substantiation and testing on different classes of problems (Alybaev and
Murzabaeva 2018; Kerimkhulle and Aitkozha, 2017).

Despite advances in the field of regularisation, there are still unresolved issues. One of
the problems is the adaptation of conventional regularisation methods, such as the Tikhonov
method, to nonlinear Fredholm equations (Cherniha et al., 2008; Piskunov et al., 2000).
Bayesian methods, which provide probabilistic interpretation of solutions but are
computationally complex, also require development. Equally significant is the study of a priori
controlled regularisation, which allows factoring in the additional knowledge about the
structure of the solution, thus increasing its accuracy (Cimen and Cakir, 2021; Vovchok, 2024).
Alternative regularisation methods such as variational approaches, Bayesian models and a priori
controlled regularisation also found wide application in the treatment of incorrect problems.
Variational methods are based on minimising a functional that considers the smoothness of the
solution, but their application requires accurate selection of weighting coefficients, which can
be challenging without sufficient information about the structure of the problem (Al-Hawary et
al., 2024; Amourah et al., 2024; 2025). Bayesian methods offer a probabilistic approach to
regularisation by generating an a priori distribution of solutions, but their implementation is
associated with high computational complexity. A priori driven regularisation allows
considering additional knowledge about the nature of the solution but requires preliminary
analysis and selection of suitable a priori information (Yuan and Zhang, 2019; Frolov, 2022).
Despite the variety of existing regularisation methods, none of them is universal, and their
application requires adaptation to concrete classes of problems. Specifically, for nonlinear
Fredholm integral equations of the first kind, it is necessary to develop modified regularisation
methods capable of combining high stability, accuracy, and computational efficiency. In this
regard, this study proposes an investigation of a modified regularisation method aimed at
improving the stability of the solution when working with ill-posed problems.

The purpose of the present study was to develop a modified regularisation method aimed
at improving the stability of the solution when solving incorrectly posed problems. This study
considered a modified regularisation method aimed at stabilising solutions of nonlinear
Fredholm integral equations of the first kind.

2.  MATERIALS AND METHODS
The research framework of this study combines analytical derivation, computer

modelling, and empirical validation to create an adaptive regularization technique designed to
solve nonlinear Fredholm integral equations of the first kind. The procedure begins with a
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formal definition of the integral operator using discrete representations on a homogeneous
computational grid, which facilitates the control of noise sensitivity and solution stability. To
represent the diversity of real-world problems, various types of kernels are integrated
convolution, exponentially decaying, and oscillatory special functions. A revised functional
regularization is presented, extending traditional Tikhonov formulations to include nonlinear
penalty terms corresponding to the structural complexity of the objective function.

Parameter optimization is performed using cross-validation methods that balance
approximation accuracy and noise robustness. Evaluation metrics include mean square error,
deviation norms, and spectral smoothness indices. Computer experiments use both synthetic
data for accurate comparison with real data and actual measurement data to assess applicability
under conditions of natural uncertainty. Convergence analysis, sensitivity testing, and stability
assessment under various noise settings and sampling schemes collectively confirm the
methodological reliability and applicability of the proposed solution to a wide range of inverse
problems. To describe the integral operator, an approximation based on discretisation of input
data in a uniform grid was used, which allowed forming a system of equations considering the
noise distortions. This approach ensured the stability of the numerical solution and allowed
controlling the degree of influence of noise components on the function recovery process. The
discretisation was performed with varying degrees of detail, which helped to evaluate the
influence of grid density on the accuracy of the solution and the stability of the regularisation
method.

First, the parameters of the original Fredholm equation were determined, including the
kernel type and the expected properties of the solution (1):

fba K(x,s,f(s))ds = g(x),x € [a,b] (1)

where K(x, s, f(s)) is the kernel of the integral operator (possibly nonlinear in f); f(s) is the
unknown function to be determined; g(x) is the known function (right-hand side); /a, b/ is the
integration interval. In operator form (2):

A(f)=g 2

where 4 is an integral operator defined by (3):

AN = [P K(xs,F(s))ds 3)

Various classes of kernels were employed in the construction and analysis of the
Fredholm integral equation of the first kind, including convolution kernels, exponentially
decaying kernels, and kernels based on special functions modelling real processes. Convolution
kernels of the form were utilised to model translation-invariant systems, particularly in signal
processing applications (4):

K(x,s) =k(x —s) 4)

Exponentially decaying kernels were applied to systems exhibiting memory effects or
damping behaviour (5):

K(x,s) = e Mx=sl (%)

where 2>0, were applied to systems exhibiting memory effects or damping behaviour.
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Additionally, special function kernels were used to approximate physical phenomena
with oscillatory or structural complexity (6):

K(x,s) = ®(x,5) (6)

where ® denotes functions like Bessel, Legendre, or sinusoidal forms.

For each kernel type, a detailed analysis was conducted to evaluate the properties of the
integral operator, including its smoothness, condition number, and sensitivity to perturbations
in the input data. This classification enabled the identification of problem domains where the
proposed regularisation method demonstrates optimal performance. This helped to formulate
classes of problems where the proposed regularisation method can be applied most effectively
(De Micheli et al., 1998).

Based on a prior information about the nature of the noise, a type of modified penalty
functional was selected that considered the nonlinear component of the equation. In contrast to
the classical Tikhonov method, a penalty functional containing nonlinear terms was used, which
allowed adapting the regularisation to the specific features of the problem. Depending on the
type of input data, various forms of penalty function were employed: quadratic, variational, and
combined models. This ensured the flexibility of the method and allowed factoring in both the
general properties of the solution and the specific features of a particular class of problems. To
find the best value of the regularisation parameter, a cross-validation algorithm was employed,
which divided the input data into training and test subsets. This method avoided overfitting and
ensured the selection of a parameter value that achieved an optimised balance between accuracy
and stability. During the experiments, various data splitting strategies were employed, including
random splitting and k-fold cross-validation, which allowed evaluating the stability of the
proposed algorithm under conditions of changing training sample composition.

During the training cycle, the solution was calculated for different values of the
regularisation parameter, after which the value that achieved the best balance between accuracy
and stability was determined. The mean square error (MSE) was employed as the quality
criterion for the solution, as well as indirect metrics that factor in the structure of the nonlinear
operator (e.g., the gradient norm of the reconstructed function) (7):

1
n 7i1=1 (fcalc,i - fexact,i)z (7

Where: feaic,iis the calculated (reconstructed) value of the function at point i; fevaesi is the
exact (known or ground truth) value of the function at point i; » is the number of data points.
Apart from these criteria, the stability of the method was analysed when the input data changed,
as well as the sensitivity of the solution to minor changes in the model parameters.

Numerical experiments were conducted on a set of both synthetic and real data, where
the noise intensity and the dimension of the problem varied. For synthetic data, artificially
defined functions were employed, which enabled precise control of the error level and
comparison of the restored result with the true solution. Real data included measured values
obtained under natural noise conditions, which allowed testing the method in conditions close
to practical ones.

To verify the effectiveness of the method under different noise levels, testing was
conducted according to a scheme that provided for changing the noise level in the original data
from minimum to maximum. The study also included an analysis of the convergence of the
method depending on the choice of the regularisation parameter. The optimised balance
between accuracy and stability was achieved at a values corresponding to the criterion indicated
by Equation (8) - the standard error estimate:
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||Afca1c_g|| Sav”fcalc” (8)

where A is the integral equation operator; g is the initial observation; f, is regularised
approximate solution (depends on parameter «); [[Af. — gll is a discrepancy or residual
(difference between prediction and observation); d is a noise level or allowable error threshold,
< ensures model discrepancy is no greater than noise — avoids overfitting. Additionally, an
analysis of the convergence of the method under various initial conditions was performed. This
included an assessment of the dependence of the solution accuracy on the number of iterations
and the choice of the initial approximation.

To assess the influence of regularisation on the accuracy, the relative deviation norm of
the solution was calculated, as indicated in Equation (9):

&=||f calc—fexactl|
e=11f cate—fexactl 9
[ fexactl| ’ v

where feaic i the solution obtained, fexact 1S the exact value of a function.
3. RESULTS AND DISCUSSION

The proposed regularisation method was tested on synthetic and real datasets to evaluate
its stability under varying noise levels and sampling intensities. Synthetic data with known
analytical solutions enabled precise error assessment. Three test scenarios were used: (1)
smooth functions, (2) functions with first-kind discontinuities, and (3) randomly perturbed
functions simulating real noise. Kernel analysis showed that convolution kernels offered high
noise stability but smoothed out details, exponential kernels performed better with
discontinuities, and special functions yielded high accuracy with dense sampling but required
parameter tuning. Among penalty functionals, quadratic provided strong stability but reduced
accuracy with sharp changes; variational methods were more adaptable but sensitive to
parameter selection; and combined approaches offered an effective trade-off between stability
and accuracy, making them suitable for complex practical tasks.

The analysis of the obtained data showed that in the case of smooth functions, the method
provided high update accuracy even in the presence of moderate noise. In cases where the
function had discontinuities, the application of classical methods led to major oscillations in the
discontinuity zone, while the proposed method allowed obtaining a smoothed but structurally
accurate solution. The method was tested on real data sets that included measurements of
physical systems. In these cases, the original data contained a considerable level of random
fluctuations, which precluded the use of direct solution methods without pre-filtering. The
proposed method demonstrated robustness to such variations and provided recovery of
structural characteristics of the studied objects.

Apart from the accuracy performance, the computational complexity of the method was
analysed (Equation 8). The proposed approach had an advantage in speed due to the adaptive
choice of the regularisation parameter, which allowed reducing the number of iterations when
finding a solution. For datasets with dimensionality greater than 1,000 points, the method
showed a speedup of 1.8-2.3 times compared to the variational approach. The robustness of the
method to correlation distortions in the original data was evaluated. Testing showed that even
with highly correlated noise, regularisation with adaptive parameter selection allowed obtaining
stable solutions. The error dependence is presented in Figure 1. This is critical for tasks related
to the processing of real measurements, where noise components are rarely independent.
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Figure 1. Dependence of the error on the regularisation parameter

Comparison of the obtained results with classical regularisation methods confirmed the
advantages of the proposed approach, especially in the conditions of noisy initial data. The
Tikhonov method, conventionally used for smoothing unstable solutions, demonstrated
acceptable accuracy at low noise level, but a substantial deterioration of the solution quality
was observed when its intensity increased. The principal problem of this method was excessive
smoothing of the initial function, which led to the loss of structural features of the solution. The
variational approach is more suited to alterations in data structure but necessitates considerably
greater processing resources. The suggested method, incorporating adaptive regularisation,
attained comparable accuracy with a 30-40% reduction in computing cost and demonstrated
stability across diverse noise levels without the need for manual adjustment of the a value.
Spectral analysis verified that regularisation successfully attenuated high-frequency noise while
maintaining critical signal characteristics. Optimal o values reduced departures from the
analytical spectrum, while low o permitted excessive noise and high a resulted in signal
degradation.

Numerical testing proved the method's superiority in precisely recreating signals with
intricate details, even amongst significant noise. It surpassed traditional methods in practical
applications, such as signal and picture reconstruction. The approach demonstrated resilience
to data sparsity. Utilising merely 20-50% of input points, it sustained consistent findings by
effective averaging, whereas traditional approaches demonstrated instability, highlighting the
significance of adaptive regularisation for partial datasets. An essential aspect of the analysis
was to investigate the behaviour of the method under changing limit conditions. For this, three
scenarios were considered: full information about the boundary conditions, partial information,
and lack of exact boundary values. It was found that the proposed method demonstrated the
best accuracy in the case of partial information, which is explained by the adaptive choice of
the regularisation parameter. In the complete absence of marginal data, the stability of the
solution depended on the noise level, and the choice of initial conditions, but in most cases the
method produced a stable approximation to the exact solution.

Accuracy was evaluated for several criteria including MSE, maximum error, and norm of
deviation in solution space. The study found that the MSE remained lower compared to classical
methods over the entire range of noise levels. The maximum deviation analysis showed that
regularisation effectively smoothed out the local error spikes that are characteristic of direct
methods for solving integral equations. By comparing the performance of different methods for
solving this problem, the advantages of each of the proposed techniques were elucidated.
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Additional analysis involved investigating the effect of regularisation on the smoothness of the
solution (Table 1). The variation of the second derivative of the obtained functions for different
values of a was evaluated. It was found that as the regularisation parameter increased, the value
of the second derivative decreased, indicating a smoothing of the solution. This confirms that
regularisation effectively prevents the appearance of oscillations in the reconstructed function,

while providing an adequate approximation of the output signal.

Table 1. Comparative characteristics of methods

Method Advantages Disadvantages Complexity
Tikhonov Easy to implement, good noise Does not always work
regularisation immunity, suitable for a wide range  effectively for non-linear tasks, .
. . Medium
of tasks requires selection of
regularisation parameters
Variational Consider the structure of the High computational complexity,
methods solution, can adapt to data, work complexity of functional High
well for smoothing solutions selection
Bayesian methods ~ Allow for the consideration of prior ~ Require precise knowledge of
information, can operate under the probabilistic structure of the Verv hich
conditions of high uncertainty solution and are complex to yhig
implement.
A priori controlled  Allows physical characteristics of Requires prior knowledge,
regularisation the task to be considered, can complexity of functionality High
markedly improve accuracy selection
Adaptive Allows automatic selection of . ..
L R . Requires additional cross-
regularisation regularisation parameters, is N .
. . ; validation, more challenging to .
(proposed method)  resistant to changes in noise levels, Medium

and is faster than conventional
variational methods.

implement than the Tikhonov
method.

The suggested method demonstrated superior accuracy across diverse noise levels (0-30%
of signal amplitude), surpassing Tikhonov and variational techniques, particularly when noise
levels approached 10%. Although classical approaches exhibited rapid error escalation and
instability, the suggested algorithm successfully mitigated noise via adaptive regularisation,
leading to a markedly slower increase in MSE. The method exhibited 1.5-2 times reduced error
for autocorrelated noise compared to conventional strategies, ensuring solution stability where
others faltered. Furthermore, experiments with diverse input resolutions demonstrated that the
method maintained essential signal characteristics and exhibited stability during sparse
sampling, in contrast to traditional methods, which displayed significant oscillations.

The adaptive regularisation method markedly decreased the number of iterations and
computational duration, exhibiting a quadratic relationship with problem size and resulting in
a 35% cost reduction for datasets above 5,000 nodes. In instances of local abnormalities (e.g.,
leaps, discontinuities), the method preserved global accuracy while rectifying local deviations-
contrary to conventional methods, which resulted in considerable distortions. It also maintained
intricate details in high-frequency data, where traditional methods overly attenuated both noise
and useful elements. Testing was performed on real data sets related to medical image
restoration and surface profile reconstruction tasks. In these cases, the ability of the method to
separate noise components from real image details is a key factor. It was found that classical
methods led to edge smoothing and loss of contrast, while the proposed algorithm preserved
contour sharpness and provided better reconstruction quality. Accordingly, when analysing the
dependence of the solution stability, the graph presented in Figure 2 was obtained.
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Figure 2. Dependence of solution stability on noise level

The adaptive selection of the regularisation parameter achieved a compromise between
accuracy and smoothing, ensuring stability across various inverse situations and noise levels.
Experiments adjusting o from 107¢ to 10° shown that low values induced instability, whilst
excessively high values resulted in excessive smoothing and a loss of information. The spectral
analysis of operator A verified that the approach attenuates high-frequency noise while
preserving low-frequency signal components. In experiments including local outliers and
pronounced gradients, traditional approaches exhibited instability, but the new methodology
maintained global accuracy while rectifying local discrepancies essential for tasks such as
image and signal reconstruction.

An analysis of the convergence rate of the method was performed as a function of the
regularisation level and the number of iterations. The study revealed that with adaptive selection
of a, convergence to a stationary solution occurs faster than when using a fixed parameter value.
On average, the number of iterations required was reduced by 25-30%, which made it possible
to reduce the computational cost when processing large data arrays. The effectiveness of the
method was also investigated at different levels of incompleteness of the initial data. In practical
problems, a situation often arises where only partial measurements of the function are available,
which complicates the recovery process. To test this scenario, testing was performed on samples
containing only 30-70% of the complete set of initial data. Standard regularisation methods
showed a pronounced deterioration in accuracy as the amount of available data decreased, while
the proposed algorithm allowed the solution to stay stable even with a sample of less than 50%
of the original values (Figure 3).

Accuracy vs Data Completeness Convergence Rate Comparison

Proposed Method 40 Fixed a
24 —a=— Standard Method mm Adaptive o

] N w w
o w o w

=
w

Relative Error (%)
Number of Iterations

30 35 40 45 50 55 60 65 70 Low a Medium a High o
Data Completeness (%)

Figure 3. Effect of regularisation strategy on convergence rate across parameter levels
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An additional aspect of the study was to compare the effectiveness of the method for
smooth and non-smooth functions. The behaviour of the method was tested for cases where the
function contained high-frequency oscillations or first-order discontinuities. In the case of
smooth functions, all regularisation methods demonstrated acceptable accuracy, but in cases
with discontinuities, the proposed method showed a major advantage. Classical approaches
were unable to correctly approximate the structure of the discontinuity, which led to distortion
of the solution, while the adaptive approach allowed the correct shape of the function to be
preserved.

The study found that classical methods showed considerable dependence on the grid
dimension: with a small number of nodes, the solution was unstable, and with excessive
smoothing, prominent features of the function were lost. The proposed method provided
acceptable accuracy over the entire discretisation range, confirming its versatility. The
influence of the algorithm on the smoothing of small-scale noise variations in the data was
considered separately. The spectral characteristics of the obtained solutions were evaluated and
the relative contribution of high-frequency components to the final solution was calculated. The
analysis showed that the method provided effective suppression of unwanted components
without distorting the main structure of the function. Additional testing was conducted on real
data related to machine learning tasks where it is necessary to restore functions.

Analysis of numerical experiments showed that the proposed regularisation method
ensures the stability and accuracy of solutions even in cases of high noise in the original data.
This was confirmed by comparison with classical methods over a wide range of task parameters.
The study included testing for different noise levels, sampling densities, function types, and
variations in the constraints of the input data. The study found that under low noise conditions,
all methods demonstrate approximately the same accuracy, since their influence on the solution
is minimal. However, as the noise level increased, the classical methods gradually lost their
effectiveness, while the proposed algorithm stayed stable. This was confirmed by the relative
error estimate, which stayed markedly lower than that of the standard approaches, even at noise
levels exceeding 20% of the signal amplitude. Analysis using Equation (9) revealed that the use
of an adaptive approach reduces the error by an average of 30-50% compared to classical
methods at significant noise levels (Figure 4). This is critical for tasks where it is necessary to
recover the useful signal against extensive fluctuations in the input measurements.

Relative Error vs. Noise Level

Proposed Adaptive Method
—=— Tikhonov Regularisation
—+— Variational Method

25

N
=]

-
v

Relative Error (%)

=
o

0 5 10 15 20 25 30
Noise Level (% of signal amplitude)

Figure 4. Impact of noise level on the relative error of regularisation methods

Particular attention was paid to investigating the effectiveness of the method in cases
where the input data contains gaps. In practical tasks, measurement systems often experience
an incomplete set of observations, which creates considerable difficulties for standard

26|Page



ISSN 2462-2052 | eISSN 2600-8718 Journal of Science and Mathematics Letters
DOI: https://doi.org/10.37134/jsml.vol13.2.2.2025 Volume 13, Issue 2, 17-32, 2025

regularisation methods. It was found that the proposed method provides acceptable accuracy
even when up to 40% of the original measurements are missing. This is because the adaptive
selection of the regularisation parameter compensates for the lack of data while preserving the
structure of the solution. A spectral analysis of the obtained solutions was performed to estimate
the degree of noise component suppression. The study revealed that the proposed method
enables the effective elimination of high-frequency distortions without changing the basic
structure of the function. This was confirmed by calculations of the spectral energy of the
solutions, which showed that adaptive regularisation allows the main part of the signal
information to be preserved, eliminating only the components associated with noise distortions.

A prominent part of the testing was to compare the method with algorithms used in
medical image restoration and experimental data analysis in physics. A series of experiments
was conducted to evaluate the algorithm’s ability to restore structural features of objects
containing local intensity changes. The study found that classical methods, such as Tikhonov
regularisation, led to smoothing of significant features, while the proposed approach preserved
local changes while providing the necessary level of global noise smoothing. The method was
tested on real data sets, including surface profile analysis, electromagnetic field reconstruction,
and digital signal processing. In all cases, the algorithm demonstrated stable behaviour and
maintained accuracy even in the case of significant variations in the original measurements.

Time efficiency analysis showed that the method not only improves accuracy but also
reduces computational costs. Optimised selection of the regularisation parameter reduced the
calculation time by an average of 25% compared to the variational method, confirming its
effectiveness in tasks requiring a considerable number of calculations. Comparison with
existing regularisation methods showed that the proposed approach provides the best balance
between accuracy, speed, and noise immunity. Classical methods demonstrated acceptable
results only in cases of low noise levels or smooth functions, while the proposed method showed
stable results in a wider range of conditions. The influence of regularisation parameters on the
accuracy of the solution is presented in Figure 5.
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Figure 5. Influence of the regularisation parameter on the accuracy of the solution at different noise levels

These findings confirmed that the proposed approach can be used in a wide class of
inverse problems including signal recovery, image reconstruction, experimental data analysis,
and problems related to ill-posed problems in applied mathematics. Figure 3 demonstrates that
when a 1s small, the error is high, especially for strong noise, but as a increases, it first drops
and then rises again. This hints that too weak regularisation yields overfitting, while too strong
regularisation loses significant details. The greater the noise, the worse the result, and with high
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noise, too much regularisation only makes things worse. The optimal a depends on the noise
level.

The study aimed to develop an adaptive regularisation method for solving nonlinear
Fredholm integral equations of the first kind. Numerical experiments demonstrated that this
approach outperforms classical methods, such as Tikhonov’s and variational methods, in terms
of accuracy and stability. A comparison with previous studies highlighted that Ahues et al.
(2022) used adaptive regularisation based on reproducing kernel Hilbert space (RKHS),
improving accuracy through dynamic parameter selection. The current study employed cross-
validation for parameter selection, improving both accuracy and computational efficiency. Doll
(2024) introduced a homotopic regularisation method but faced efficiency issues at high noise
levels, which were addressed in this study through an optimised parameter selection algorithm.
Durmaz and Amiraliyev (2021) focused on regularisation in the space of continuous functions,
but their method requires prior knowledge of solution smoothness. The proposed method,
however, is effective without such information, making it more versatile. The particle method
employed in the study by Groetsch (2007) for solving nonlinear equations demonstrated high
accuracy but had high computational complexity. In contrast, the method proposed in the
current study requires less computational resources while providing a comparable level of
accuracy.

Parameterised regularisation for exponential relaxation problems has been analysed,
though the proposed methods require predetermined parameterisation limiting their
applicability to problems with unknown solution structures (Crucinio et al., 2021; Manzhula et
al., 2024). The method in this study uses algorithms for automatic tuning of the regularisation
parameter, enhancing its versatility. Kryzhniy (2023) focused on nonlinear integro-differential
equations with a degenerate kernel, but this approach is only effective for specific kernels and
not universally applicable. The present study largely confirmed the findings of Lu and Ou
(2023), where adaptive regularisation was shown to be effective for ill-posed problems. Unlike
Efendiev’s (2023) method, the approach in this study applies to a broader range of problems
due to its automated regularisation parameter selection, making it less reliant on a priori
knowledge of the solution structure.

Molabahrami (2013) demonstrated the effectiveness of the homotopy regularisation
method in certain cases but noted its slow convergence. The current study showed that the
proposed adaptive regularisation achieves stable solutions more quickly, particularly in the
presence of significant noise distortions, thus improving upon Kryzhniy’s (2023) ideas by
offering a more computationally efficient alternative. Nabiei and Yousefi (2016) demonstrated
that regularisation in the space of continuous functions improves the stability of solutions, but
requires additional knowledge about the smoothness parameters of the solution. The findings
showed that the use of an adaptive mechanism can dispense with such information, which
greatly extends the scope of the method.

The particle method from the study of Qiu et al. (2024) yielded high accuracy but entailed
high computational cost. The method, in contrast to Kress (1995), offered a more economical
use of computational resources for analogous accuracy, making it preferable for real-world
computational problems. A study by Radi and Elgasim Msis (2023) confirmed that
parameterised regularisation improves the accuracy of solutions but requires a correct choice
of parameters. These experiments showed that the proposed adaptive method automatically
finds the best parameters, eliminating the need for manual selection, which improves the
convenience and reliability of the method. A comparative analysis with previous studies
confirmed that the proposed technique can be effectively applied to a broad class of problems,
unlike the methods restricted to specific kernel types (Rahimi et al., 2010; Matoog et al., 2024;
Rasekh and Fakhri, 2023; Molabahrami, 2013; Nabiei and Yousefi, 2016). This suggests a
greater versatility of the developed approach. The present study complements existing
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regularisation methods by offering a computationally efficient and versatile approach for
solving nonlinear Fredholm integral equations of the first kind. Unlike conventional methods,
the proposed method uses adaptive regularisation parameter selection, making it applicable to
a wide range of problems without the need for a priori knowledge of the solution properties
(Wazwaz, 2011; Voronin et al., 2022). The study found that the proposed method is highly
robust to noise distortion, making it suitable for practical applications such as signal processing,
medical imaging, and experimental data analysis. It confirmed the effectiveness of adaptive
regularisation methods and introduced new perspectives for ill-posed problems. Unlike
conventional approaches, the algorithm automatically adjusts regularisation parameters,
reducing dependence on external data, which is crucial for problems with incomplete or absent
solution information.

Comparisons with previous studies demonstrated that the adaptive parameter selection
mechanism enhances both accuracy and computational stability particularly in high-precision
tasks such as medical and geophysical data processing (Ahues et al., 2022; Cimen and Cakir,
2021; Kryzhniy, 2023). Although Yuan and Zhang's (2019) method offers high accuracy, it
requires additional computational resources. In contrast, the proposed algorithm balances
accuracy and convergence speed without complex pre-computation. In practical applications,
the proposed method outperforms conventional methods. While the Tikhonov method showed
deterioration at noise levels exceeding 10-20% (Ahues et al., 2022; Nwaigwe and Mishra,
2024), the adaptive scheme maintained both stability and accuracy even at noise levels above
30%. The adaptive mechanism also mitigated the high computational complexity and
dependency on initial assumptions of variational methods (Kryzhniy, 2023). However, despite
the advantages, the method also had limitations (Wazwaz, 2011). For instance, in problems
with highly non-uniform data structure, where the noise component varies locally, the
effectiveness of the proposed adaptation mechanism may decrease (Yuldashev & Saburov,
2021). This requires further research and possible modification of the algorithm to account for
local features of the data. Another valuable area for further research would be to analyse the
effectiveness of the method under conditions of a priori unknown boundary conditions. In a
series of problems, e.g., in inverse tomography problems, a priori information about the object
structure may be limited, which imposes further requirements on regularisation methods (Yahya
et al., 2010; Ezquerro & Hernandez-Veron, 2024). The proposed method not only confirmed
the relevance of adaptive approaches to regularisation but also laid the foundation for further
development of computationally efficient methods for stabilising solutions of incorrect
problems.

4. CONCLUSION

One key advantage of the proposed algorithm is its ability to adapt automatically to
varying noise levels in the input data. It maintains high accuracy in low-noise conditions and
adjusts the regularisation parameter at higher noise levels, effectively reducing noise impact
without losing essential features of the original function. In contrast, classical methods like
Tikhonov’s showed reliable performance only at low noise levels and significantly lost
accuracy as noise increased, due to their fixed regularisation. The proposed method consistently
outperformed these traditional approaches, reducing mean squared error (MSE) by 30-50%
when noise exceeded 10% of the signal. Importantly, the method preserved structural details
such as sharp changes and local anomalies even in highly noisy data. It also proved robust under
incomplete data scenarios, maintaining accuracy when only 30-70% of input data was available.
This was due to its adaptive parameter tuning, which compensated for missing or inaccurate
measurements. In terms of efficiency, the algorithm reduced computation time by 25-30%
compared to conventional methods. While variational regularisation methods had similar
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accuracy, they were more computationally demanding. Tikhonov’s method was faster but far
less accurate. Despite its strengths, the method requires calibration when data characteristics or
noise types vary. Future work will focus on enhancing robustness to correlated noise and
developing fully automatic parameter selection without prior training.
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