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ABSTRACT 

 

This paper presented a comprehensive approach to the construction of a robust regularisation 

technique for solving the nonlinear Fredholm integral equation of the first kind, a class of 

problems frequently encountered in such areas of signal processing, inverse imaging, and 

control theory. The purpose of the study was to develop an efficient and reasonable procedure 

to regularise this type of equation, which improves the accuracy of solutions in conditions 

where standard methods are ineffective due to noise or nonlinear distortion. The study proposed 

a modification of Tikhonov’s method that uses nonlinear functionals that reflect the specific 

structure of the original problem. Furthermore, an algorithmic strategy for selecting the 

normative parameter was implemented, factoring in the a priori knowledge of the expected 

smoothness of the solution. This enabled the development of an efficient technique that adapts 

to diverse types of problems and provides stable performance even under challenging 

conditions. Numerous experiments were conducted on both synthetic and real datasets to verify 

the effectiveness of the method. The findings showed that the proposed approach considerably 

improves the decision accuracy and convergence rate compared to standard regulatory methods, 

even in the presence of strong noise in the data. The comparative analysis confirmed that the 

new method has advantages in terms of computational efficiency and ability to adapt to diverse 

types of kernels and functional settings. Furthermore, experimental results demonstrated a 

marked reduction of errors in the recovered functions as well as a stable convergence rate, even 

for high dimensional problems. The proposed scheme can automatically adapt to the different 

nature of noise and nonlinear distortion, which makes it a versatile tool for use in many 

applications that require high accuracy and efficiency in solving nonlinear integral equations. 

 

Keywords: Tikhonov approach, inverse visualisation, control theory, noise distortion, signal 

processing 
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1. INTRODUCTION 

 

 The solution of Fredholm integral equations of the first kind plays a key role in modern 

computational problems related to signal processing, image reconstruction, data analysis, and 

control of complex dynamical systems. However, these equations are often incorrectly posed, 

making them challenging to solve numerically using standard methods (Aimi et al., 2024). Even 

minor errors in the initial data can lead to pronounced deviations in the calculated solutions, 

which substantially limits the application of classical numerical methods. In practical problems 

this can be expressed in the form of strong oscillations, sharp outliers, or even complete 

destruction of the reconstructed solution, which necessitates the use of special regularisation 

methods (Kumar and Kumar, 2024). The relevance of the development of effective methods for 

stabilising solutions of integral equations is conditioned by the need for accurate, stable, and 

computationally efficient algorithms. Many real computational problems are related to the 

processing of experimental measurements, in which noise is inevitable, and the available data 

may be fragmentary (Golshan, 2024). In such cases, conventional numerical methods become 

unusable, especially in fields where further data processing steps depend on computational 

accuracy, such as medical imaging, spectral analysis, or astrophysical research (Asanov and 

Orozmamatova, 2019; Ashirbaev and Yuldashev, 2024; Avrunin et al., 2015). 

Over 2020–2025, researchers have paid considerable attention to the problem of 

regularising solutions of integral equations. Saadabaev and Usenov (2023) considered 

regularisation of solutions of nonlinear Fredholm integral equations of the first kind in the space 

of continuous functions, which allowed extending the application of this method to a wide class 

of problems. Srazhidinov and Abdraeva (2023) studied the regularisation of convolution 

Volterra integral equations of the first kind and proposed an innovative approach to stabilisation 

of solutions in the corresponding problems. Yuldashev et al. (2022) developed a technique for 

solving nonlinear integro-differential Fredholm equations of the first kind with a degenerate 

kernel and nonlinear maxima, which allowed extending the range of application of known 

numerical methods. Wazwaz (2011) also made valuable a contribution to the development of 

regularisation methods, investigating the efficiency of the regularisation approach for Fredholm 

integral equations of the first kind and developed new algorithms for their solution. Altürk 

(2016) proposed a regularisation-homotopy method for two-dimensional Fredholm integral 

equations of the first kind, which improved the accuracy of calculations and increased the 

stability of numerical solutions. Other researchers who made notable contributions to the 

development of this subject include the study by Ahues et al. (2022), who proposed combined 

regularisation methods for incorrect problems combining elements of the conventional 

Tikhonov regularisation with an adaptive approach. Altürk and Coşgun (2019) developed a 

variational approach to the regularisation of nonlinear equations based on the minimisation of 

special energy-type functionals. Amiraliyev et al. (2020) studied the application of machine 

learning methods for selecting the best regularisation parameters in integral equations, which 

allowed for the accuracy of calculations in complex cases to be improved considerably.  

As of 2025, several approaches to stabilise solutions of incorrect problems have been 

developed, among which Tikhonov regularisation is the best known. This method is based on 

adding a penalty term to the optimisation functional, which minimises the influence of noise 

perturbations and makes the solution more stable (Salah, 2016, 2024). However, the 

conventional Tikhonov regularisation is mainly applied to linear problems, and its use for 

nonlinear integral equations requires modification (Kal’chuk et al., 2020; Kondratenko and 

Kondratenko, 2014; Vaneeva et al., 2015). Moreover, the choice of the regularisation parameter 

in the Tikhonov method is a non-trivial task and markedly affects the quality of the obtained 

solution. 
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Fundamental approaches to the theory of non-correlated problems particularly the 

formulation of basic regularisation principles and the development of methods for stabilising 

computations have been explored in several studie (Saadabaev and Usenov, 2023; Srazhidinov 

and Abdraeva, 2023; Wazwaz, 2011; Ahues et al., 2022). However, the application of these 

methods to nonlinear integral equations of the first kind is associated with challenges, 

specificially, the need to select special functionals and additional a priori knowledge about the 

structure of the solution (Cherniha and Serov, 2006; Cherniha and Pliukhin 2013; Cherniha et 

al., 2016). This makes conventional methods less convenient for real calculations, since in 

practical applications a priori information is often either unavailable or inaccurate (Maripov, 

1994; Maripov and Ismanov, 1994). The significance of adaptive selection of regularisation 

parameters crucial for improving method convergence and reducing computational cost has 

been emphasised in several studies (Yuldashev et al., 2022; Altürk, 2016; Altürk and Coşgun, 

2019). Unlike standard approaches that involve static parameter selection, adaptive methods 

can dynamically adjust to the characteristics of a particular dataset, which makes them more 

versatile and efficient. However, despite their evident advantages, adaptive methods require 

further theoretical substantiation and testing on different classes of problems (Alybaev and 

Murzabaeva 2018; Kerimkhulle and Aitkozha, 2017). 

Despite advances in the field of regularisation, there are still unresolved issues. One of 

the problems is the adaptation of conventional regularisation methods, such as the Tikhonov 

method, to nonlinear Fredholm equations (Cherniha et al., 2008; Piskunov et al., 2000). 

Bayesian methods, which provide probabilistic interpretation of solutions but are 

computationally complex, also require development. Equally significant is the study of a priori 

controlled regularisation, which allows factoring in the additional knowledge about the 

structure of the solution, thus increasing its accuracy (Cimen and Cakir, 2021; Vovchok, 2024). 

Alternative regularisation methods such as variational approaches, Bayesian models and a priori 

controlled regularisation also found wide application in the treatment of incorrect problems. 

Variational methods are based on minimising a functional that considers the smoothness of the 

solution, but their application requires accurate selection of weighting coefficients, which can 

be challenging without sufficient information about the structure of the problem (Al-Hawary et 

al., 2024; Amourah et al., 2024; 2025). Bayesian methods offer a probabilistic approach to 

regularisation by generating an a priori distribution of solutions, but their implementation is 

associated with high computational complexity. A priori driven regularisation allows 

considering additional knowledge about the nature of the solution but requires preliminary 

analysis and selection of suitable a priori information (Yuan and Zhang, 2019; Frolov, 2022). 

Despite the variety of existing regularisation methods, none of them is universal, and their 

application requires adaptation to concrete classes of problems. Specifically, for nonlinear 

Fredholm integral equations of the first kind, it is necessary to develop modified regularisation 

methods capable of combining high stability, accuracy, and computational efficiency. In this 

regard, this study proposes an investigation of a modified regularisation method aimed at 

improving the stability of the solution when working with ill-posed problems. 

The purpose of the present study was to develop a modified regularisation method aimed 

at improving the stability of the solution when solving incorrectly posed problems. This study 

considered a modified regularisation method aimed at stabilising solutions of nonlinear 

Fredholm integral equations of the first kind.  

 

2. MATERIALS AND METHODS 

 

The research framework of this study combines analytical derivation, computer 

modelling, and empirical validation to create an adaptive regularization technique designed to 

solve nonlinear Fredholm integral equations of the first kind. The procedure begins with a 
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formal definition of the integral operator using discrete representations on a homogeneous 

computational grid, which facilitates the control of noise sensitivity and solution stability. To 

represent the diversity of real-world problems, various types of kernels are integrated 

convolution, exponentially decaying, and oscillatory special functions. A revised functional 

regularization is presented, extending traditional Tikhonov formulations to include nonlinear 

penalty terms corresponding to the structural complexity of the objective function. 

Parameter optimization is performed using cross-validation methods that balance 

approximation accuracy and noise robustness. Evaluation metrics include mean square error, 

deviation norms, and spectral smoothness indices. Computer experiments use both synthetic 

data for accurate comparison with real data and actual measurement data to assess applicability 

under conditions of natural uncertainty. Convergence analysis, sensitivity testing, and stability 

assessment under various noise settings and sampling schemes collectively confirm the 

methodological reliability and applicability of the proposed solution to a wide range of inverse 

problems. To describe the integral operator, an approximation based on discretisation of input 

data in a uniform grid was used, which allowed forming a system of equations considering the 

noise distortions. This approach ensured the stability of the numerical solution and allowed 

controlling the degree of influence of noise components on the function recovery process. The 

discretisation was performed with varying degrees of detail, which helped to evaluate the 

influence of grid density on the accuracy of the solution and the stability of the regularisation 

method. 

First, the parameters of the original Fredholm equation were determined, including the 

kernel type and the expected properties of the solution (1): 

 

∫ 𝐾(𝑥, 𝑠, 𝑓(𝑠))𝑑𝑠 = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏]
𝑎

𝑏
                                                               (1) 

 

where K(x, s, f(s)) is the kernel of the integral operator (possibly nonlinear in f); f(s) is the 

unknown function to be determined; g(x) is the known function (right-hand side); [a, b] is the 

integration interval. In operator form (2): 

 

𝐴(𝑓) = 𝑔                                                                                                              (2) 

 

where A is an integral operator defined by (3): 

 

(𝐴𝑓)(𝑥) =  ∫ 𝐾(𝑥, 𝑠, 𝐹(𝑠))𝑑𝑠
𝑏

𝑎
                                                                                      (3) 

 

Various classes of kernels were employed in the construction and analysis of the 

Fredholm integral equation of the first kind, including convolution kernels, exponentially 

decaying kernels, and kernels based on special functions modelling real processes. Convolution 

kernels of the form were utilised to model translation-invariant systems, particularly in signal 

processing applications (4): 

 

𝐾(𝑥, 𝑠) = 𝑘(𝑥 − 𝑠)                                                                                                  (4) 

 

Exponentially decaying kernels were applied to systems exhibiting memory effects or 

damping behaviour (5): 

 

𝐾(𝑥, 𝑠) = 𝑒−𝜆|𝑥−𝑠|                                                                                                  (5) 

 

where λ>0, were applied to systems exhibiting memory effects or damping behaviour. 
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Additionally, special function kernels were used to approximate physical phenomena 

with oscillatory or structural complexity (6): 

 

𝐾(𝑥, 𝑠) =  Φ(𝑥, 𝑠)                                                                                                  (6) 

 

where Ф denotes functions like Bessel, Legendre, or sinusoidal forms. 

For each kernel type, a detailed analysis was conducted to evaluate the properties of the 

integral operator, including its smoothness, condition number, and sensitivity to perturbations 

in the input data. This classification enabled the identification of problem domains where the 

proposed regularisation method demonstrates optimal performance. This helped to formulate 

classes of problems where the proposed regularisation method can be applied most effectively 

(De Micheli et al., 1998). 

Based on a prior information about the nature of the noise, a type of modified penalty 

functional was selected that considered the nonlinear component of the equation. In contrast to 

the classical Tikhonov method, a penalty functional containing nonlinear terms was used, which 

allowed adapting the regularisation to the specific features of the problem. Depending on the 

type of input data, various forms of penalty function were employed: quadratic, variational, and 

combined models. This ensured the flexibility of the method and allowed factoring in both the 

general properties of the solution and the specific features of a particular class of problems. To 

find the best value of the regularisation parameter, a cross-validation algorithm was employed, 

which divided the input data into training and test subsets. This method avoided overfitting and 

ensured the selection of a parameter value that achieved an optimised balance between accuracy 

and stability. During the experiments, various data splitting strategies were employed, including 

random splitting and k-fold cross-validation, which allowed evaluating the stability of the 

proposed algorithm under conditions of changing training sample composition. 

During the training cycle, the solution was calculated for different values of the 

regularisation parameter, after which the value that achieved the best balance between accuracy 

and stability was determined. The mean square error (MSE) was employed as the quality 

criterion for the solution, as well as indirect metrics that factor in the structure of the nonlinear 

operator (e.g., the gradient norm of the reconstructed function) (7): 

 
1

𝑛
∑ (𝑓𝑐𝑎𝑙𝑐,𝑖 − 𝑓𝑒𝑥𝑎𝑐𝑡,𝑖)

2𝑛
𝑖=1                                                                            (7) 

 

Where: fcalc,i is the calculated (reconstructed) value of the function at point 𝑖; fexact,i is the 

exact (known or ground truth) value of the function at point 𝑖; n is the number of data points. 

Apart from these criteria, the stability of the method was analysed when the input data changed, 

as well as the sensitivity of the solution to minor changes in the model parameters. 

Numerical experiments were conducted on a set of both synthetic and real data, where 

the noise intensity and the dimension of the problem varied. For synthetic data, artificially 

defined functions were employed, which enabled precise control of the error level and 

comparison of the restored result with the true solution. Real data included measured values 

obtained under natural noise conditions, which allowed testing the method in conditions close 

to practical ones. 

To verify the effectiveness of the method under different noise levels, testing was 

conducted according to a scheme that provided for changing the noise level in the original data 

from minimum to maximum. The study also included an analysis of the convergence of the 

method depending on the choice of the regularisation parameter. The optimised balance 

between accuracy and stability was achieved at α values corresponding to the criterion indicated 

by Equation (8) - the standard error estimate: 
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||𝐴𝑓calc − 𝑔|| ≤ 𝑎||𝑓calc||                                                                                               (8) 

 

where A is the integral equation operator; g is the initial observation; fa is regularised 

approximate solution (depends on parameter 𝛼); ∥Afa – g∥ is a discrepancy or residual 

(difference between prediction and observation); δ is a noise level or allowable error threshold; 

≤ ensures model discrepancy is no greater than noise – avoids overfitting. Additionally, an 

analysis of the convergence of the method under various initial conditions was performed. This 

included an assessment of the dependence of the solution accuracy on the number of iterations 

and the choice of the initial approximation. 

To assess the influence of regularisation on the accuracy, the relative deviation norm of 

the solution was calculated, as indicated in Equation (9): 

 
𝜀=||𝑓calc−𝑓exact||

||𝑓exact||
,                                                                                                               (9) 

 

where fcalc is the solution obtained, fexact is the exact value of a function. 

 

3. RESULTS AND DISCUSSION 

 

The proposed regularisation method was tested on synthetic and real datasets to evaluate 

its stability under varying noise levels and sampling intensities. Synthetic data with known 

analytical solutions enabled precise error assessment. Three test scenarios were used: (1) 

smooth functions, (2) functions with first-kind discontinuities, and (3) randomly perturbed 

functions simulating real noise. Kernel analysis showed that convolution kernels offered high 

noise stability but smoothed out details, exponential kernels performed better with 

discontinuities, and special functions yielded high accuracy with dense sampling but required 

parameter tuning. Among penalty functionals, quadratic provided strong stability but reduced 

accuracy with sharp changes; variational methods were more adaptable but sensitive to 

parameter selection; and combined approaches offered an effective trade-off between stability 

and accuracy, making them suitable for complex practical tasks. 

The analysis of the obtained data showed that in the case of smooth functions, the method 

provided high update accuracy even in the presence of moderate noise. In cases where the 

function had discontinuities, the application of classical methods led to major oscillations in the 

discontinuity zone, while the proposed method allowed obtaining a smoothed but structurally 

accurate solution. The method was tested on real data sets that included measurements of 

physical systems. In these cases, the original data contained a considerable level of random 

fluctuations, which precluded the use of direct solution methods without pre-filtering. The 

proposed method demonstrated robustness to such variations and provided recovery of 

structural characteristics of the studied objects.  

Apart from the accuracy performance, the computational complexity of the method was 

analysed (Equation 8). The proposed approach had an advantage in speed due to the adaptive 

choice of the regularisation parameter, which allowed reducing the number of iterations when 

finding a solution. For datasets with dimensionality greater than 1,000 points, the method 

showed a speedup of 1.8-2.3 times compared to the variational approach. The robustness of the 

method to correlation distortions in the original data was evaluated. Testing showed that even 

with highly correlated noise, regularisation with adaptive parameter selection allowed obtaining 

stable solutions. The error dependence is presented in Figure 1. This is critical for tasks related 

to the processing of real measurements, where noise components are rarely independent.  
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Figure 1. Dependence of the error on the regularisation parameter 

 

Comparison of the obtained results with classical regularisation methods confirmed the 

advantages of the proposed approach, especially in the conditions of noisy initial data. The 

Tikhonov method, conventionally used for smoothing unstable solutions, demonstrated 

acceptable accuracy at low noise level, but a substantial deterioration of the solution quality 

was observed when its intensity increased. The principal problem of this method was excessive 

smoothing of the initial function, which led to the loss of structural features of the solution. The 

variational approach is more suited to alterations in data structure but necessitates considerably 

greater processing resources. The suggested method, incorporating adaptive regularisation, 

attained comparable accuracy with a 30-40% reduction in computing cost and demonstrated 

stability across diverse noise levels without the need for manual adjustment of the α value. 

Spectral analysis verified that regularisation successfully attenuated high-frequency noise while 

maintaining critical signal characteristics. Optimal α values reduced departures from the 

analytical spectrum, while low α permitted excessive noise and high α resulted in signal 

degradation. 

Numerical testing proved the method's superiority in precisely recreating signals with 

intricate details, even amongst significant noise. It surpassed traditional methods in practical 

applications, such as signal and picture reconstruction. The approach demonstrated resilience 

to data sparsity. Utilising merely 20-50% of input points, it sustained consistent findings by 

effective averaging, whereas traditional approaches demonstrated instability, highlighting the 

significance of adaptive regularisation for partial datasets. An essential aspect of the analysis 

was to investigate the behaviour of the method under changing limit conditions. For this, three 

scenarios were considered: full information about the boundary conditions, partial information, 

and lack of exact boundary values. It was found that the proposed method demonstrated the 

best accuracy in the case of partial information, which is explained by the adaptive choice of 

the regularisation parameter. In the complete absence of marginal data, the stability of the 

solution depended on the noise level, and the choice of initial conditions, but in most cases the 

method produced a stable approximation to the exact solution.  

Accuracy was evaluated for several criteria including MSE, maximum error, and norm of 

deviation in solution space. The study found that the MSE remained lower compared to classical 

methods over the entire range of noise levels. The maximum deviation analysis showed that 

regularisation effectively smoothed out the local error spikes that are characteristic of direct 

methods for solving integral equations. By comparing the performance of different methods for 

solving this problem, the advantages of each of the proposed techniques were elucidated. 
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Additional analysis involved investigating the effect of regularisation on the smoothness of the 

solution (Table 1). The variation of the second derivative of the obtained functions for different 

values of α was evaluated. It was found that as the regularisation parameter increased, the value 

of the second derivative decreased, indicating a smoothing of the solution. This confirms that 

regularisation effectively prevents the appearance of oscillations in the reconstructed function, 

while providing an adequate approximation of the output signal. 

 
Table 1. Comparative characteristics of methods 

Method Advantages Disadvantages Complexity 

Tikhonov 

regularisation 

Easy to implement, good noise 

immunity, suitable for a wide range 

of tasks 

Does not always work 

effectively for non-linear tasks, 

requires selection of 

regularisation parameters 

Medium 

Variational 

methods 

Consider the structure of the 

solution, can adapt to data, work 

well for smoothing solutions 

High computational complexity, 

complexity of functional 

selection 

High 

Bayesian methods Allow for the consideration of prior 

information, can operate under 

conditions of high uncertainty 

Require precise knowledge of 

the probabilistic structure of the 

solution and are complex to 

implement. 

Very high 

A priori controlled 

regularisation 

Allows physical characteristics of 

the task to be considered, can 

markedly improve accuracy 

Requires prior knowledge, 

complexity of functionality 

selection 

High 

Adaptive 

regularisation 

(proposed method) 

Allows automatic selection of 

regularisation parameters, is 

resistant to changes in noise levels, 

and is faster than conventional 

variational methods. 

Requires additional cross-

validation, more challenging to 

implement than the Tikhonov 

method. 

Medium 

 

The suggested method demonstrated superior accuracy across diverse noise levels (0-30% 

of signal amplitude), surpassing Tikhonov and variational techniques, particularly when noise 

levels approached 10%. Although classical approaches exhibited rapid error escalation and 

instability, the suggested algorithm successfully mitigated noise via adaptive regularisation, 

leading to a markedly slower increase in MSE. The method exhibited 1.5-2 times reduced error 

for autocorrelated noise compared to conventional strategies, ensuring solution stability where 

others faltered. Furthermore, experiments with diverse input resolutions demonstrated that the 

method maintained essential signal characteristics and exhibited stability during sparse 

sampling, in contrast to traditional methods, which displayed significant oscillations. 

The adaptive regularisation method markedly decreased the number of iterations and 

computational duration, exhibiting a quadratic relationship with problem size and resulting in 

a 35% cost reduction for datasets above 5,000 nodes. In instances of local abnormalities (e.g., 

leaps, discontinuities), the method preserved global accuracy while rectifying local deviations-

contrary to conventional methods, which resulted in considerable distortions. It also maintained 

intricate details in high-frequency data, where traditional methods overly attenuated both noise 

and useful elements. Testing was performed on real data sets related to medical image 

restoration and surface profile reconstruction tasks. In these cases, the ability of the method to 

separate noise components from real image details is a key factor. It was found that classical 

methods led to edge smoothing and loss of contrast, while the proposed algorithm preserved 

contour sharpness and provided better reconstruction quality. Accordingly, when analysing the 

dependence of the solution stability, the graph presented in Figure 2 was obtained. 
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Figure 2. Dependence of solution stability on noise level 

 

The adaptive selection of the regularisation parameter achieved a compromise between 

accuracy and smoothing, ensuring stability across various inverse situations and noise levels. 

Experiments adjusting α from 10⁻⁶ to 10⁰ shown that low values induced instability, whilst 

excessively high values resulted in excessive smoothing and a loss of information. The spectral 

analysis of operator A verified that the approach attenuates high-frequency noise while 

preserving low-frequency signal components. In experiments including local outliers and 

pronounced gradients, traditional approaches exhibited instability, but the new methodology 

maintained global accuracy while rectifying local discrepancies essential for tasks such as 

image and signal reconstruction. 

An analysis of the convergence rate of the method was performed as a function of the 

regularisation level and the number of iterations. The study revealed that with adaptive selection 

of α, convergence to a stationary solution occurs faster than when using a fixed parameter value. 

On average, the number of iterations required was reduced by 25-30%, which made it possible 

to reduce the computational cost when processing large data arrays. The effectiveness of the 

method was also investigated at different levels of incompleteness of the initial data. In practical 

problems, a situation often arises where only partial measurements of the function are available, 

which complicates the recovery process. To test this scenario, testing was performed on samples 

containing only 30-70% of the complete set of initial data. Standard regularisation methods 

showed a pronounced deterioration in accuracy as the amount of available data decreased, while 

the proposed algorithm allowed the solution to stay stable even with a sample of less than 50% 

of the original values (Figure 3). 

 

 
Figure 3. Effect of regularisation strategy on convergence rate across parameter levels 
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An additional aspect of the study was to compare the effectiveness of the method for 

smooth and non-smooth functions. The behaviour of the method was tested for cases where the 

function contained high-frequency oscillations or first-order discontinuities. In the case of 

smooth functions, all regularisation methods demonstrated acceptable accuracy, but in cases 

with discontinuities, the proposed method showed a major advantage. Classical approaches 

were unable to correctly approximate the structure of the discontinuity, which led to distortion 

of the solution, while the adaptive approach allowed the correct shape of the function to be 

preserved. 

The study found that classical methods showed considerable dependence on the grid 

dimension: with a small number of nodes, the solution was unstable, and with excessive 

smoothing, prominent features of the function were lost. The proposed method provided 

acceptable accuracy over the entire discretisation range, confirming its versatility. The 

influence of the algorithm on the smoothing of small-scale noise variations in the data was 

considered separately. The spectral characteristics of the obtained solutions were evaluated and 

the relative contribution of high-frequency components to the final solution was calculated. The 

analysis showed that the method provided effective suppression of unwanted components 

without distorting the main structure of the function. Additional testing was conducted on real 

data related to machine learning tasks where it is necessary to restore functions. 

Analysis of numerical experiments showed that the proposed regularisation method 

ensures the stability and accuracy of solutions even in cases of high noise in the original data. 

This was confirmed by comparison with classical methods over a wide range of task parameters. 

The study included testing for different noise levels, sampling densities, function types, and 

variations in the constraints of the input data. The study found that under low noise conditions, 

all methods demonstrate approximately the same accuracy, since their influence on the solution 

is minimal. However, as the noise level increased, the classical methods gradually lost their 

effectiveness, while the proposed algorithm stayed stable. This was confirmed by the relative 

error estimate, which stayed markedly lower than that of the standard approaches, even at noise 

levels exceeding 20% of the signal amplitude. Analysis using Equation (9) revealed that the use 

of an adaptive approach reduces the error by an average of 30-50% compared to classical 

methods at significant noise levels (Figure 4). This is critical for tasks where it is necessary to 

recover the useful signal against extensive fluctuations in the input measurements. 

 

 
Figure 4. Impact of noise level on the relative error of regularisation methods 

 

Particular attention was paid to investigating the effectiveness of the method in cases 

where the input data contains gaps. In practical tasks, measurement systems often experience 

an incomplete set of observations, which creates considerable difficulties for standard 
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regularisation methods. It was found that the proposed method provides acceptable accuracy 

even when up to 40% of the original measurements are missing. This is because the adaptive 

selection of the regularisation parameter compensates for the lack of data while preserving the 

structure of the solution. A spectral analysis of the obtained solutions was performed to estimate 

the degree of noise component suppression. The study revealed that the proposed method 

enables the effective elimination of high-frequency distortions without changing the basic 

structure of the function. This was confirmed by calculations of the spectral energy of the 

solutions, which showed that adaptive regularisation allows the main part of the signal 

information to be preserved, eliminating only the components associated with noise distortions. 

A prominent part of the testing was to compare the method with algorithms used in 

medical image restoration and experimental data analysis in physics. A series of experiments 

was conducted to evaluate the algorithm’s ability to restore structural features of objects 

containing local intensity changes. The study found that classical methods, such as Tikhonov 

regularisation, led to smoothing of significant features, while the proposed approach preserved 

local changes while providing the necessary level of global noise smoothing. The method was 

tested on real data sets, including surface profile analysis, electromagnetic field reconstruction, 

and digital signal processing. In all cases, the algorithm demonstrated stable behaviour and 

maintained accuracy even in the case of significant variations in the original measurements. 

Time efficiency analysis showed that the method not only improves accuracy but also 

reduces computational costs. Optimised selection of the regularisation parameter reduced the 

calculation time by an average of 25% compared to the variational method, confirming its 

effectiveness in tasks requiring a considerable number of calculations. Comparison with 

existing regularisation methods showed that the proposed approach provides the best balance 

between accuracy, speed, and noise immunity. Classical methods demonstrated acceptable 

results only in cases of low noise levels or smooth functions, while the proposed method showed 

stable results in a wider range of conditions. The influence of regularisation parameters on the 

accuracy of the solution is presented in Figure 5.  

 

 
Figure 5. Influence of the regularisation parameter on the accuracy of the solution at different noise levels 

 

These findings confirmed that the proposed approach can be used in a wide class of 

inverse problems including signal recovery, image reconstruction, experimental data analysis, 

and problems related to ill-posed problems in applied mathematics. Figure 3 demonstrates that 

when α is small, the error is high, especially for strong noise, but as α increases, it first drops 

and then rises again. This hints that too weak regularisation yields overfitting, while too strong 

regularisation loses significant details. The greater the noise, the worse the result, and with high 
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noise, too much regularisation only makes things worse. The optimal α depends on the noise 

level. 

The study aimed to develop an adaptive regularisation method for solving nonlinear 

Fredholm integral equations of the first kind. Numerical experiments demonstrated that this 

approach outperforms classical methods, such as Tikhonov’s and variational methods, in terms 

of accuracy and stability. A comparison with previous studies highlighted that Ahues et al. 

(2022) used adaptive regularisation based on reproducing kernel Hilbert space (RKHS), 

improving accuracy through dynamic parameter selection. The current study employed cross-

validation for parameter selection, improving both accuracy and computational efficiency. Doll 

(2024) introduced a homotopic regularisation method but faced efficiency issues at high noise 

levels, which were addressed in this study through an optimised parameter selection algorithm. 

Durmaz and Amiraliyev (2021) focused on regularisation in the space of continuous functions, 

but their method requires prior knowledge of solution smoothness. The proposed method, 

however, is effective without such information, making it more versatile. The particle method 

employed in the study by Groetsch (2007) for solving nonlinear equations demonstrated high 

accuracy but had high computational complexity. In contrast, the method proposed in the 

current study requires less computational resources while providing a comparable level of 

accuracy. 

Parameterised regularisation for exponential relaxation problems has been analysed, 

though the proposed methods require predetermined parameterisation limiting their 

applicability to problems with unknown solution structures (Crucinio et al., 2021; Manzhula et 

al., 2024). The method in this study uses algorithms for automatic tuning of the regularisation 

parameter, enhancing its versatility. Kryzhniy (2023) focused on nonlinear integro-differential 

equations with a degenerate kernel, but this approach is only effective for specific kernels and 

not universally applicable. The present study largely confirmed the findings of Lu and Ou 

(2023), where adaptive regularisation was shown to be effective for ill-posed problems. Unlike 

Efendiev’s (2023) method, the approach in this study applies to a broader range of problems 

due to its automated regularisation parameter selection, making it less reliant on a priori 

knowledge of the solution structure. 

Molabahrami (2013) demonstrated the effectiveness of the homotopy regularisation 

method in certain cases but noted its slow convergence. The current study showed that the 

proposed adaptive regularisation achieves stable solutions more quickly, particularly in the 

presence of significant noise distortions, thus improving upon Kryzhniy’s (2023) ideas by 

offering a more computationally efficient alternative. Nabiei and Yousefi (2016) demonstrated 

that regularisation in the space of continuous functions improves the stability of solutions, but 

requires additional knowledge about the smoothness parameters of the solution. The findings 

showed that the use of an adaptive mechanism can dispense with such information, which 

greatly extends the scope of the method. 

The particle method from the study of Qiu et al. (2024) yielded high accuracy but entailed 

high computational cost. The method, in contrast to Kress (1995), offered a more economical 

use of computational resources for analogous accuracy, making it preferable for real-world 

computational problems. A study by Radi and Elgasim Msis (2023) confirmed that 

parameterised regularisation improves the accuracy of solutions but requires a correct choice 

of parameters. These experiments showed that the proposed adaptive method automatically 

finds the best parameters, eliminating the need for manual selection, which improves the 

convenience and reliability of the method. A comparative analysis with previous studies 

confirmed that the proposed technique can be effectively applied to a broad class of problems, 

unlike the methods restricted to specific kernel types (Rahimi et al., 2010; Matoog et al., 2024; 

Rasekh and Fakhri, 2023; Molabahrami, 2013; Nabiei and Yousefi, 2016). This suggests a 

greater versatility of the developed approach. The present study complements existing 
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regularisation methods by offering a computationally efficient and versatile approach for 

solving nonlinear Fredholm integral equations of the first kind. Unlike conventional methods, 

the proposed method uses adaptive regularisation parameter selection, making it applicable to 

a wide range of problems without the need for a priori knowledge of the solution properties 

(Wazwaz, 2011; Voronin et al., 2022). The study found that the proposed method is highly 

robust to noise distortion, making it suitable for practical applications such as signal processing, 

medical imaging, and experimental data analysis. It confirmed the effectiveness of adaptive 

regularisation methods and introduced new perspectives for ill-posed problems. Unlike 

conventional approaches, the algorithm automatically adjusts regularisation parameters, 

reducing dependence on external data, which is crucial for problems with incomplete or absent 

solution information.  

Comparisons with previous studies demonstrated that the adaptive parameter selection 

mechanism enhances both accuracy and computational stability particularly in high-precision 

tasks such as medical and geophysical data processing (Ahues et al., 2022; Cimen and Cakir, 

2021; Kryzhniy, 2023). Although Yuan and Zhang's (2019) method offers high accuracy, it 

requires additional computational resources. In contrast, the proposed algorithm balances 

accuracy and convergence speed without complex pre-computation. In practical applications, 

the proposed method outperforms conventional methods. While the Tikhonov method showed 

deterioration at noise levels exceeding 10–20% (Ahues et al., 2022; Nwaigwe and Mishra, 

2024), the adaptive scheme maintained both stability and accuracy even at noise levels above 

30%. The adaptive mechanism also mitigated the high computational complexity and 

dependency on initial assumptions of variational methods (Kryzhniy, 2023). However, despite 

the advantages, the method also had limitations (Wazwaz, 2011). For instance, in problems 

with highly non-uniform data structure, where the noise component varies locally, the 

effectiveness of the proposed adaptation mechanism may decrease (Yuldashev & Saburov, 

2021). This requires further research and possible modification of the algorithm to account for 

local features of the data. Another valuable area for further research would be to analyse the 

effectiveness of the method under conditions of a priori unknown boundary conditions. In a 

series of problems, e.g., in inverse tomography problems, a priori information about the object 

structure may be limited, which imposes further requirements on regularisation methods (Yahya 

et al., 2010; Ezquerro & Hernández-Verón, 2024). The proposed method not only confirmed 

the relevance of adaptive approaches to regularisation but also laid the foundation for further 

development of computationally efficient methods for stabilising solutions of incorrect 

problems. 

 

4. CONCLUSION 

 

 One key advantage of the proposed algorithm is its ability to adapt automatically to 

varying noise levels in the input data. It maintains high accuracy in low-noise conditions and 

adjusts the regularisation parameter at higher noise levels, effectively reducing noise impact 

without losing essential features of the original function. In contrast, classical methods like 

Tikhonov’s showed reliable performance only at low noise levels and significantly lost 

accuracy as noise increased, due to their fixed regularisation. The proposed method consistently 

outperformed these traditional approaches, reducing mean squared error (MSE) by 30-50% 

when noise exceeded 10% of the signal. Importantly, the method preserved structural details 

such as sharp changes and local anomalies even in highly noisy data. It also proved robust under 

incomplete data scenarios, maintaining accuracy when only 30-70% of input data was available. 

This was due to its adaptive parameter tuning, which compensated for missing or inaccurate 

measurements. In terms of efficiency, the algorithm reduced computation time by 25-30% 

compared to conventional methods. While variational regularisation methods had similar 
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accuracy, they were more computationally demanding. Tikhonov’s method was faster but far 

less accurate. Despite its strengths, the method requires calibration when data characteristics or 

noise types vary. Future work will focus on enhancing robustness to correlated noise and 

developing fully automatic parameter selection without prior training. 
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