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ABSTRACT Artificial neural networks are a powerful tool for spatial and temporal functions approximation.
This study introduces a novel approach for modeling non-Newtonian fluid flows by minimizing a
proposed power loss metric, which aligns with the variational formulation of boundary value problems in
hydrodynamics and extends the classical Lagrange variational principle. The method is distinguished by
its data-free nature, enabling problem-solving through 2D or 3D images of the flow domain. Validation
was performed using both multi-layer perceptrons and U-Net architectures, with results compared against
analytical and numerical benchmarks. The method demonstrated good results with a relative error of
1.41% in comparison with the analytical solution for non-Newtonian fluids. The power loss formulation
offers a clear advantage by simplifying the modeling process and enhancing interpretability. Notably, the
proposed method demonstrates improvements over existing techniques by providing algorithmic simplicity
and universality, with applications ranging from blood flow modeling in vessels and tissues to broader
hydrodynamic scenarios.

INDEX TERMS Physics-based machine learning, calculus of variations, hydrodynamics, non-Newtonian
fluids.

I. INTRODUCTION
The concept of minimizing effort has deep historical roots
and finds resonance in both personal narratives and empirical
observations [1].Within the domain of continuummechanics,
fundamental principles are encapsulated by conservation
laws, which manifest as variational principles. Notably,
certain boundary value problems involving partial differential
equations (PDEs) can be reformulated as variational prob-
lems [2], [3]. A significant challenge in employing direct
methods from the calculus of variations lies in approximating
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unknown functions, particularly those involving multiple
variables. The potential of artificial neural networks in
addressing this challenge warrants detailed exploration [4],
[5], [6]. This study leverages the generalized Lagrange
variational principle to overcome the constraints imposed
by non-Newtonian fluid properties and complex boundary
conditions.

II. RELATED WORKS
The typical approaches to solving boundary value problems
in hydrodynamics are based on various grid methods of com-
putational fluid dynamics (CFD), including finite difference,
control volume, and finite element methods [7], [8], [9], [10].
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Another approach involves studying fluid flow characteristics
as a fitting problem based on physical experiment data or
CFD solution. This approach can be combined with a wide
range of deep learning models, including long short-term
memory (LSTM) networks, convolutional neural networks
(CNN), and pre-trained generative transformers [11], [12].
However, due to the strong nonlinearity of the quantities
under study, a large number of measurements are required,
which is often challenging [13], [14], [15]. A relatively new
approach involves the application of artificial neural networks
to minimize residuals in differential equations. Kissas et al.
[16] developed physics-informed neural networks (PINNs) to
model blood flow in large and medium-sized vessels. Despite
recent advances, this approach has low interpretability
and generalizability [17]. Additionally, it requires a large
number of calculated points for the dataset, as well as the
previously mentioned problem with mesh generation for
complex flow geometries [18]. Zhang et al. [19] applied
convolutional neural networks to model homogeneous and
heterogeneous Darcy flows, comparing the accuracy and
efficiency of a PINN with the finite volume method (FVM).
Ouyang et al. [20] used a chain-style physics-informed neural
network (chain-style PINN) to model the cavitation effect.
Aliakbari et al. [21] presented an approach to modeling
hydrodynamic flows by calculating low-precision data using
computational fluid dynamics (CFD) programs and then
using PINN to obtain an accurate solution. Kumar et al. [22]
presented an algorithm using a data-redundant deep neural
network to simulate fully developed flows of non-Newtonian
fluids, with complex rheological properties approximated
using the Herschel-Bulkley model. The results demonstrated
an average error of 11.5%. Sun et al. [18] presented a
similar approach to modeling without using a training set,
employing a multilayer perceptron (MLP) to approximate
the pressure and velocity fields. The loss function, as in
[21], was represented by the sum of the PDE residual
of Eqs.(1, 2) with the addition of boundary and initial
conditions. A similar work was presented by Li et al. [23],
who solved the Reynolds equation in the region between two
eccentric cylinders. PINN deals with the calculation of PDE
components. Fully connected neural network (FCNN) based
architectures allow the use of automatic differentiation for
this purpose [24]. Also, for PINN, the following models
are used: Fourier Feature Networks [25], Deep Galerkin
Method (DGM) [26], deep operator networks (DeepONets)
[27]. However, for deep learning methods based on LSTM,
CNN, etc., the application of automatic differentiation is
hindered by their structure and computational complexity.
Automatic calculation of partial derivatives can be replaced
by the use of finite difference schemes [28]. Most approaches
based on PINN require retraining for each new case.
However, some approaches allow obtaining a solution for a
certain set of cases. Alexander Isaev et al. [29] consider
modeling the flow in idealized four-vessel junctions, taking
into account their geometry. For this purpose, parameters
describing the geometry of the flow region are used as

inputs to the FCNN. To solve non-stationary problems,
the issue of time extrapolation can be considered. The
original PINN does not cope well with this task. However,
recent studies show the possibility of modifying PINN for
extrapolation. Fesser et al. [30] noted the positive effect
of transfer learning for extrapolation. Wang et al. [31]
proposed Extrapolation-driven Deep Neural Networks (E-
DNN), which significantly reduces the extrapolation error.
Cuomo et al. [32] presented a solution to the Dirichlet
problem for the Laplace equation, adding a constant heat
flux as boundary conditions. The approach to minimizing the
loss function, which has physical meaning, can be applied
to the mechanics of solid [33] and deformable [3] bodies,
as well as to fluid mechanics [34], [35]. The Lagrange
variational principle [2] allows modeling fluid flows but has
the following limitations: 1) the fluid is Newtonian; 2) the
unknown functions and their first derivatives are fixed on the
boundary; 3) both static and kinematic boundary conditions
are required to find the value of the external power; 4) inertial
and mass forces are negligible.

III. MATHEMATICAL MODELING
It is assumed that the fluid is incompressible and the
flow is laminar and either stationary or quasi-stationary.
Incompressibility is a natural property of fluids, while the
assumptions of laminarity and stationarity are typical in
hydrodynamics [36] and in the calculus of variations [1],
respectively.

A. BOUNDARY VALUE PROBLEM FORMALIZATION
The Stokes equation and the incompressibility condition are
under study [37], [38], respectively:

∇·Tσ = 0, (1)

∇·V = 0, (2)

where ∇·Tσ and ∇·V are the divergences of the stress tensor
Tσ with the components σij, (i, j = 1. . .3) and the velocity
vector V with the components vi, respectively.
The stress tensor components σij can be expressed from the

generalized Newtonian hypothesis [39], [40]:

Dσ = 2µDξ , (3)

whereDσ = Tσ−pTδ is the deviator of the stress tensor with
the components [[sij]], p is the pressure, Tδ is the unit tensor
with the components [[δij]], µ is the viscosity, Dξ = [[ξij]]
is the strain rate tensor deviator part, the deviator is equal to
the strain rate tensor Dξ = Tξ for the incompressible fluids
(Eq. 2).

Finally, the strain rate tensor can be calculated using
Cauchy’s formula [36], [38], [41]:

Tξ = (∇ ⊗ V+ V⊗∇)/2, (4)

where ∇ ⊗ V is the gradient of a vector function with
components ∂vj/∂xi.
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FIGURE 1. The unknown stream function with the components
[ψ1(x2, x3), ψ2(x1, x3), ψ3(x1, x2)] and the velocity function V (Eq. 8) in
the flow domain (x−

i ≤ xi ≤ x+

i ) of size [li ].

So, the boundary value problem includes 4 scalar equations
Eq. 1, 2 with 4 unknown functions: vi, p. The boundary
conditions (kinematic, static, mixed) are required to solve the
problem.

B. VARIATIONAL PROBLEM AND THE LOSS
FORMALIZATION
It is necessary to find a kinematic function that characterizes
the velocity distribution within the flow domain (see Fig. 1)
andminimizes a power functional. To extend the applicability
of the Lagrange variational principle [2], [35], [42] and
streamline the process of data labeling, the following
variational principle is proposed:

JL[9] =
∫
�

5vd�+ λR→ min,R

=

∫
�w

(∇ ×9) · (∇ ×9)d�w, (5)

where where 9 = [ψi(xj)] is the unknown stream function
(i, j = 1, 2, 3), � is the flow domain (x−i ≤ xi ≤ x+i ) with
surface S that is characterized by a unit outer normal vector n,
5 =

∫
TdH is the viscoelastic potential, T =

√
1/2sijsij1 is

the shear stress intensity, H =
√
2ξijξij is the shear strain rate

intensity, λ is a multiplier [1], R = R(ψi(xj)) is the constrain
that ensures the zero values for the velocity inside and on the
surface of the solid region �w of the flow domain �.

It can be shown using Euler equation [1] that the proposed
principle Eq. 5 is true if the non-Newtonian properties of
fluids are satisfied by the Herschel-Bulkley model [43], [44]:

µ(H ) = q0 + q1H z−1, (6)

where q0, q1, z are the parameters obtained from rheological
tests,

and the unknown9 function and its first partial derivatives
are fixed on the surface S (xi = x−i , xi = x+i ) of the
flow domain �. The last point is equivalent to the boundary
conditions [1].

Taking into account that the generalized Newtonian
hypothesis can be converted into the following form: [40]:

T = µH , (7)

1The Einstein summation notation is used in this work.

and the velocityV is a vorticity of the unknown9 function:

V = ∇ ×9, (8)

the functional 5 depends on one unknown function 9.
In this work the 3D velocity distribution Eq. 8 depends
on 3 2D scalar functions that are the components of the 9
function. It should be noted, that the velocity distribution is
solenoidal [42]. So, the incompressibility condition [38], [41]
is true, that makes any 9 function kinematically admissible
in the flow domain. The 9 function and its derivatives are
fixed on the surface S of the flow domain�, and constrained
in the solid regions of the flow domain �w, if any. The
unknown function 9 can be represented in the discrete
form and the proposed variational principle Eq. 5 can be
minimized bymeans of artificial neural networks. This allows
non-Newtonian fluid flows modeling.

C. NUMERICAL DIFFERENTIATION AND INTEGRATION
Both the ‘autograd’ built-in functions and finite differences
are applied for the approximation of derivatives [42].
Templates of 5 or 3 points for polynomials of fourth or second
degree, respectively, are used. The Simpson’s rule is applied
for numerical integration [42].

IV. DATA COLLECTION
The proposed method is data set free; instead, it utilizes a
single image to inform the flow domain configuration and
determine the boundary conditions of the problem. Both
synthetic and medical images are employed in this study
and are compiled into a toy data set [45]. Some images are
sourced from the Vascular Model Repository (VMR) [46],
which includes image data, pathlines, segmentations, models,
inflow rates, and simulation results for various large blood
vessels. All segmentations, models, and simulation results
in VMR were generated using SimVascular [47] and have
been clinically validated. Given that the image volumes in
VMR exhibit anisotropic pixel spacing, we resampled certain
volumes to ensure uniform spacing in all directions.

V. SIMULATION MODELING
Based on the mathematical models described above, a series
of simulation models were conducted: models based on the
boundary value problem analytical or numerical solution
(models 0, M0); models based on the generalized Lagrange
functional Eq. 5 minimization (models 1, M1). The code and
the toy data set are available on the repository [45].

A. BOUNDARY VALUE PROBLEM SOLUTION (M0)
Obviously, analytical solutions can be found for the simplest
or asymptotic cases. Particular case of a 2D flows of a
non-Newtonian fluid Eq. 6 between two parallel plates
has known analytical solutions [48] that were implemented
for Newtonian, dilatant, pseudo plastic and Bingham flu-
ids [45]. In this work we also designed a simulation
model [45] for an MLP based PINN model that solves
the boundary value problem presented in section III-A of
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FIGURE 2. Visualization of the 3D fluid flow simulation model (M1) based on minimization of the generalized Lagrange
functional (Eq. 5). Image-based approach is implemented with U-Net. The model receives three initial images (e.g. random
noise) of the unknown functions ψ1(x2, x3), ψ2(x1, x3), ψ3(x1, x2), then generates the unknown functions and calculates
loss (Eq. 5). 3D image of the flow domain is used as mask when calculating loss. During the training, the network
approaches the unknown functions to the solution of the problem.

FIGURE 3. Comparison of the analytical and numerical solution using domain-based and MLP for the non-Newtonian
fluid.

the paper. The model is based on known algorithms that
minimize residual of the equations of themathematical model
(see section III-A) and take the boundary conditions into
account [19], [20], [22], [49].

B. GENERALIZED LAGRANGE FUNCTIONAL
MINIMIZATION (M1)
The proposed method of fluid flow modeling is based on
a power loss minimization and it was implemented with
image-based approach and domain-based approach for the
cases of 2D and 3D flows of non-Newtonian fluids Eq. 6.

1) IMAGE-BASED APPROACH WITH U-NET
The model was implemented with U-Net [50], [51]. The
model operates with the pixel values that correspond to
the values of the unknown 9 function. The U-Net receives
3 images of 3 components of the unknown function 9.
Random noise can be applied or projections of the flow
domain mask. To fulfill the boundary conditions of the 9
function on the walls, the required values are written directly
into the predicted tensor. To fulfill the boundary conditions
of the velocity on the walls, an additional component is
introduced into the loss function. The MSE loss function
is used to calculate this component. Each component is
multiplied by a weighting factor. These coefficients are the
hyperparameters of the model. In hidden layers, the ReLU
activation and batchnorm are used. The output uses the

sigmoid activation function, which fixes the psi function in
a given range. The Adam method is used for optimization.

Algorithm 1 Image-Based Approach to 2D Fluid Flow
Modeling (M1)
Input: image of the flow domain, img, image size s [1,s,s];

number of epochs, E ; hyperparameters, hyps; flow
domain sizes along coordinates xi (i = 1 . . . 3), [li];
viscosity model parameters: q0, q1, z; flow rate, Q3;
number of boundary layers, NL.

Output: 9 = [0, ψ2, 0] function in the form of image of ψ2
1: Initialize 9 function and parameters of the U-Net, 20;

binarize image of the flow domain, img.
2: X← ψ2
3: for e← 1,E do
4: ψ2← U − Net(X,2)
5: ψ2 ← apply the boundary conditions, ψ2[:NL,:] =

0, ψ2[-NL:,:] = Q3/L2
6: V,Tξ ,H,5← applynumericaldifferentiationof ψ2
7: J ← applynumericalintegrationof 5,ψ2
8: JV0 ← applyMSELosstoV on walls
9: Joverall ← WJ · J +WV0 · JV0
10: 2,λ← update the parameters to minimize the loss
11: end for

The algorithm 1 for the case of 2D flows is presented
below. The algorithm can be relatively easy generalized for
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Algorithm 2 Domain-Based Approach to 2D Fluid Flow
Modeling (M1)
Input: image of the flow domain, img, image size s [1,s,s];

number of epochs, E ; hyperparameters, hyps; flow
domain sizes along coordinates xi (i = 1 . . . 3), [li];
viscosity model parameters: q0, q1, z; flow rate, Q3.

Output: 9 = [0, ψ2, 0] function in the form of image of ψ2
1: Initialize parameters of the MLP, 20; binarize image of

the flow domain, img.
2: Generate input X from domain sizes.
3: for e← 1,E do
4: ψ2← MLP(X,2)
5: V,Tξ ,H,5← applyautomaticdifferentiationof ψ2
6: J ← apply automatic integration of 5,ψ2
7: JV0 ← applyMSELosstoV on walls
8: Jψ ← applyMSELosstoψ2 on walls
9: Joverall ← WJ · J +WV0 · JV0 + Jψ ·Wψ

10: 2,λ← update the parameters to minimize the loss
11: end for

FIGURE 4. Visualization of the velocity distribution in flow domains
between two parallel plates (a), parallel plates with cylinder (b), and
inside the porous media.

the case of 3D flows since the mathematical model described
in the previous section is general.

In case of 2D flows the unknown function has one non-zero
component 9 = [0, ψ2, 0]. The scalar function ψ2 =

ψ2(x1, x3) that can be represented in the discrete form of an
image or a matrix of size [s,s]. Then the velocity Eq. 8 has
two non-zero components:

V =
[
−
∂ψ2
∂x3
, 0, ∂ψ2

∂x1

]
. (9)

It is supposed that the flow inlet and outlet are located on
the surfaces S3 (x3 = x−3 , x3 = x+3 ) and the value of the
flow rate Q3 is known (see Fig. 1). Taking Eq. 9 into account

the flow rate depends on boundary values of the unknown
function:

Q3 =

∫ ∫
S3
v3 dS3 = (ψ+2 − ψ

−

2 )l2, (10)

where ψ−2 , ψ+2 are values of the unknown function on the
boundaries x1 = x−1 and x1 = x+1 , respectively, l2 is the size
of the flow domain along x2 axis.
Since the ψ2 function should have fixed values on the

boundaries of the flow domain, the following boundary
conditions should be met:

ψ2(x1 = x−1 ) = 0, ψ2(x1 = x+1 ) = Q3. (11)

The boundary conditions Eq. 11 make the flow rate fixed.
It can be demonstrated that they are also equivalent to static
boundary conditions on the surfaces S3 since the flow rate is
proportional to the pressure drop along x3 axis.

The unknown ψ2 function can be initialized in the form
of linear distribution with fixed boundary values Eq. 11.
Additionally, the function should have NL fixed boundary
layers to satisfy requirement on zero derivatives of the
unknown function on the boundaries.

The image of the flow domain can be both, gray scale or
color, the only requirement is that the flow domain should
be in white color. The image is binarized at the stage of
preprocessing. The mask of the flow domain is necessary to
calculate the constrain part of the loss Eq. 5. The flow domain
size [li], the flow rate Q3, the fluid properties Eq. 7 are also
used as inputs of the model. The model has the following
hyperparameters: image resolution s, number of epochs E ,
number of features of the network [51], learning rate and
learning schedule, activation function of the output neurons
(linear, sigmoid, hyperbolic tangent).

The basic U-Net architecture is known [51]. The output
values of the network are normalized with ψ+2 value and the
activation function is applied.

The network receives amini-batchwith initializedψ2 func-
tion in the form of tensor [1, 1, s, s]. The forward pass
includes the following steps: the network outputs the
corrected ψ2 discrete distribution in the form of tensor
[1, 1, s, s].
Among all admissible 9 functions, the true one or the

nearest to the true one gives the loss Eq. 5 minimum value.
The algorithm can be generalized for the case of 3D flows as
it is shown in Fig. 2.

2) DOMAIN-BASED APPROACH WITH AN MLP
The model was also implemented with an MLP. The model
operates with the coordinates of the flow domain and
calculates the values of the unknown9 function in the nodes
of the flow domain.

The algorithm 2 for the case of 2D flows is similar
to the algorithm. The MLP receives the normalized values
of the coordinates of each node. The loss can be calculated
with automatic differentiation function. All the boundary
conditions are implemented with the additional boundary
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FIGURE 5. Visualization of the distribution of blood flow velocity in:
common hepatic and splenic arteries on axial CT scan of the
abdomen [52] (a), diagonal section of the abdominal aorta [46] (b).

conditions losses on the walls. The hidden layers have ‘Tanh’
activations. In cases of 3d flows each component of the
unknown function has separate network.

VI. RESULTS AND DISCUSSION
The experiments were conducted on a personal computer
equipped with an Intel Core i5-12400F CPU, an NVIDIA
GeForce RTX 3060 GPU with 12GB of VRAM, 32GB of
DDR5 RAM, and running Windows 11 operating system.

The main series of the simulation experiments deals with
2D flows of Newtonian and non-Newtonian fluids. Fluid
flow between two parallel plates (see Fig. 4a) is a test
task that allows to verify the accuracy of the proposed
models. The other tasks demonstrate abilities of the models
in processing of the synthetic and medical images. It is
supposed that the fluid flows between two parallel plates.
The flow domain size is [0.016, 0.016, 0.016] m and the
gap is 0.004 m. Two types of fluids, Newtonian with the
flow rate of 4e− 6 m3/s and non-Newtonian with the flow
rate of 2.57e − 06 m3/s, were under study. Both of the
fluids are similar to blood. Whole blood is a two-phase
liquid, composed of cellular elements suspended in plasma.
Whole blood is a non-Newtonian fluid and characterized
as shear-thinning, viscoelasticity, yield stress and thixotropy
behavior [40], [53]. Many experimental studies have shown
that blood is a predominantly shear thinning fluid [54],
[55], [56], [57]. Taking the Herschel-Bulkley law Eq. 6 into
account, the Newtonian and non-Newtonian fluids have the
following rheological models, respectively: µ = 0.004 Pa · s,
µ = 0.132H0.801 Pa · s. The flow is laminar and steady, the
Reynolds number is smaller than the critical one Re < Re∗.
Two models: MLP and U-Net were applied. MLP included

10 hidden layers with 20 neurons in the each layer. The input

TABLE 1. Results.

images resolutions were 128 and 256 pixels. Results were
compared with analytical solutions 1.

In case of MLP model the type of fluid doesn’t affect the
accuracy of the model. The accuracy and the simulation time
increase with increasing the resolution of the image. Fig. 3
demonstrates comparison of the simulation and analytical
results.

In case of U-Net model the results are similar in general.
The disadvantage of the U-Net model is simulation time. The
mean error is relatively higher, but the maximum velocity
values are calculated more accurate.

To demonstrate the goal of the proposed method, the
series of additional tasks were performed: fluid flow
between plates and cylinder and the flow through the
porous media (see Fig. 4c). The flow domain of size
[0.00032, 0.00032, 0.00064] m with the flow rate of
1e− 9 m3/s was under study.

Despite the fact, that the blood flow in vessels correspond
to the case of 3D flow, some of the CT image slices were
used in simulation tests to demonstrate the ability of medical
images processing. The flow domain of liver aorta of size
[0.035, 0.02, 0.035] m and the abdominal aorta domain of
size 0.15, 0.025, 0.15 with the flow rates of 2e− 6 m3/s and
4e− 5 m3/s were under study, respectively.

Fig. 6 demonstrates the simplest case of 3D fluid flow
in a pipe. The results for the pipe has similar to the
2D tasks accuracy. But the accuracy decreases dramati-
cally when the shape of the flow domain is complex.
This is probably the result of the implementation of
the unknown function components in the form of 2D
functions.

Concluding the results it should be noted that the main
hyperparameters of the proposed models are the multipliers
of boundary conditions loss components. Their values can
affect the convergence time and accuracy of the models. The
difficulty lies in the manual selection of these multiplier.With
the obtained values of the coefficients, it is possible to further
change the type of fluid and the flow domain resolutions.
However, the coefficients need to be adjusted if the flow
rate or the flow domain geometry changes. Thus, methods of
adaptive change of weight coefficients [58], [59] as well
as methods of constrained optimization [60] may help to
increase the efficiency and accuracy of the models. Further
work is also associated with the development of a more
flexible solution for 3D flow domains.
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FIGURE 6. 3D flow in a pipe: domain mask (a), the unknown functions ψi initialization (b), and the simulation results for
the unknown functions (c) and the velocity distribution V (d).

VII. LIMITATIONS
The variational approach faces general limitations in model-
ing stationary or quasi-stationary flows. While these limita-
tions can be partially addressed by employing inequalities to
obtain upper and lower bounds of variational solutions, such
inequalities are beyond the scope of this study. The effects of
turbulence or cavitation, which possess complex and stochas-
tic natures, also fall outside the purview of this research.
Implementing a variational approach for multiphysics tasks,
such as flows with thermal effects or boundary deformations,
can be challenging. However, hydrodynamics offers a set
of criteria, including the Reynolds and Strouhal numbers,
which help assess the significance of these effects during the
conceptual formulation of problems.

VIII. CONCLUSION
The proposed method allows solution of the complex
problems in hydrodynamics of non-Newtonian fluids with a
simple tool based on machine learning and image processing.
The method is data set free and the only image with the
labeled flow domain is applied to determine the flow domain
configuration and to satisfy the boundary conditions during
the training.

The principal advantages of this method include its algo-
rithmic simplicity, interpretability, and universality, enabling
a broad spectrum of applications, such as the modeling of
blood flow within vessels and tissues.

Conversely, the method exhibits several drawbacks: it
is currently limited to stationary or quasi-stationary flows;
it demands significant computational time and is highly
sensitive to image resolution, owing to the reliance on
differential methods.

APPENDIX
SUPPLEMENTARY MATERIAL
The proposed variational principle Eq. 5 includes the main
part that is generalized Lagrange functional and the residual
part that helps to satisfy the kinematic boundary conditions.

Original Lagrange variational principle depends on veloci-
ties vi and pressure p function, has an additional term equal to

the power of external forces in the form of the surface integral,
and deals with Newtonian fluids. In this work we proposed
the generalized Lagrange variational principle that depends
on stream functions ψi and can be applied both to Newtonian
and non-Newtonian fluids.

Fluid flow in the flow domain � with surface S charac-
terized with unit outer normal vector n is under study. It is
supposed, that the velocity distribution V is a vortex of an 9
distribution: V = ∇ × 9. This distribution 9 = [ψi] is the
unknown function.

A. LAGRANGE VARIATIONAL PRINCIPLE
GENERALIZATION FOR THE 3D FLOWS OF NEWTONIAN
FLUIDS
It is supposed, that the unknown functionsψi and the velocity
components vi are fixed on the boundary S. This is equivalent
to the kinematic boundary conditions. It is also supposed that
the viscosity has constant value µ = const .

a: THEOREM:
the functional JL[9] =

∫
�
5vd� has minimal value at

the real 9 distribution in comparison with any other 9 ′

distribution that have fixed values and their first derivatives
fixed values on the surface S of the flow domain �.

b: PROOF.
The functional has the following form for Newtonian fluids:

JL[9] =
µ

2

∫
�

H2d� =
µ

2

∫
�

Dξ · Dξd�. (12)

The residual has the following form:

D′ξ · D
′
ξ − Dξ · Dξ = (D′ξ − Dξ ) · (D′ξ − Dξ )

+ 2(D′ξ − Dξ ) · Dξ . (13)

The following equalities are known in the tensor calcu-
lus [42]:

Dξ · Dξ = Dξ · (∇ ⊗ V),

∇ · (Dξ · V) = (∇ · Dξ ) · V+ Dξ · (∇ ⊗ V)
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∇ · [(∇ · Dξ )×9] = 9 · [∇ × (∇ · Dξ )]

− (∇ · Dξ ) · (∇ ×9). (14)

Taking the velocity distribution V = ∇ × 9 into account,
the following equations are true:

Dξ · Dξ = ∇ · (Dξ · V)

+∇ · [(∇ · Dξ )×9]

−9 · [∇ × (∇ · Dξ )], (15)

2Dξ · (D′ξ − Dξ ) = 2∇ · (Dξ · (V′ − V))

+ 2∇ · [(∇ · Dξ )× (9 ′ −9)]

− 2(9 ′ −9) · [∇ × (∇ · Dξ )]. (16)

Taking the Newton law Dσ = 2µDξ and Eq. 13, 14, 15,
16, residual of the functional 12 can be presented as follows:

J ′L − JL = µ
(∫

�

(D′ξ − Dξ )d�
)

+

∫
S
n · (Dξ · (V′ − V))dS

+

∫
S
n · [(∇ · Dξ )× (9 ′ −9)]dS

−

∫
�

(9 ′ −9) · [∇ × (∇ · Dξ )]d�. (17)

The residual 17 has one non-zero positive value. So,
residual is minimal for the true distribution 9.

B. KOROVCHINSKY VARIATIONAL PRINCIPLE
GENERALIZATION FOR THE 3D FLOWS OF NEWTONIAN
FLUIDS
1) FLOW BETWEEN TWO PARALLEL PLATES
It is supposed, that the Newtonian fluid flow is characterized
with one-component velocity field:

V =
[
0, 0, v3(x1, x2)

]
, (18)

and the the unknown functions v3, p depend on one
parameter:

v3 = v∗3 + α(1− x
2
1 )(x3 − x

3
3/3),

p = p∗ + β(1− x21 )(1− x
2
3 ), (19)

where v∗3 = −
1
2µ

∂p∗

∂x3
(1 − x21 ) is the true velocity function

(analytical solution of the task), ∂p
∗

∂x3
= const is the true

pressure drop along the flow direction x3, p∗ =
∂p∗

∂x3
(1+x3)+

p0 is true pressure function, p0 = p∗(x3 = −1) is given inlet
pressure that is a static boundary condition, α, β are variable
parameters of the model.
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