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ABSTRACT This study presents a machine learning approach to predict the unsteady aerodynamic
performance of a NACA0005 airfoil. Data generated by computational fluid dynamics (CFD) is used to
train the model for Reynolds numbers Re ∈ [1000 − 5000] and angles of attack ranging from 9◦ to 11◦.
A robust Scaled Conjugate Gradient (SCG) algorithm is employed for efficient training of data. The ANN
has a two-layer architecture, 9 fixed neurons in the first hidden layer and a varying number of neurons in
the second layer to achieve optimal performance. The model yielded coefficients of determination (R2) of
0.994 (Coefficient of lift (Cl)) and 0.9615 (Coefficient of drag (Cd )) for training, and 0.9563 (Cl) and 0.9085
(Cd ) for testing. Overall mean errors are found to be less than 1%. It offers a powerful surrogate modeling
approach for aerodynamic studies at ultra-low Reynolds numbers. Moreover, it provides rapid and reliable
alternatives to traditional CFD simulations in aerodynamic analysis for unseen cases.

INDEX TERMS NACA0005, aerodynamic coefficients, Reynolds number, angle of attack, artificial neural
network (ANN).

I. INTRODUCTION
The powerful fitting ability of deep learning has made it
widely used in fields such asmedical science, chemistry, biol-
ogy, and so on. Additionally, the ability to model time-series
data and extract governing equations has become increasingly
important in the world of data analysis. As a result of
this capability, researchers can not only examine underly-
ing phenomena, but also generate data-driven predictions.
It allows them to uncover large-scale patterns and hidden
structures within the datasets [1], [2], [3], [4]. In general,
aerodynamic modeling methods fall into two categories
(i) physics-based models and (ii) data-driven models. Due to
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close relationship between physics-based models [5], [6], [7]
to aerodynamic configurations, these models are physically
interpretable. Physics-based models are often insufficiently
accurate, particularly when the linear hypothesis no longer
holds true for small angles of attack. However, data-driven
models are represented by machine learning (ML) models.
As computational power has increased, particularly with the
development of more efficient hardware (GPUs and memory
storage), the development of open-source machine learning
communities, and user-friendly software, has become more
powerful.

Artificial neural network (ANN) has gained high attention
in recent years as an effective tool for tackling fluid
mechanics problems [8], [9], [10]. Brunton et al. [8] divide
machine learning in fluid mechanics into two main areas:
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FIGURE 1. ANN architecture for unsteady lift and drag coefficients.

FIGURE 2. Methodology flowchart for evaluating lift and drag coefficients using ANN.

feature extraction and modeling flow dynamics. Machine
learning was first implemented in fluid mechanics in the
pioneeringwork of Greenman andRoth [11] which optimized
an airfoil using a neural network. In aerodynamics, airfoil lift
coefficient calculations play a crucial role. Machine learning
as a control strategy for turbulence and other complex
nonlinear systems was introduced by Duriez et al. [12].
Brenner et al. [13] discussed the strengths and limitations
of using ML techniques to solve such problems and how
they might advance fluid mechanics. Computational fluid
dynamics is commonly used to achieve this goal, which

can sometimes be computationally expensive [14], [15],
[16]. Recent advances in machine learning and data-driven
techniques have made it possible to develop methods
to predict aerodynamic coefficients for airfoils, including
integral quantities (Cl and Cd ), pressure fields (Cp), and
unsteady forces [17], [18], [19], [20]. Angles of attack
from 0◦

− 9◦ were tested for incompressible to transonic
flow conditions [17]. Results show that advanced deep
learning techniques, such as CNN and GCNN, can predict
complex flows more accurately than classical tools. A CNN-
based prediction method was proposed by Zhang et al. [21]
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TABLE 1. Coefficient of determination (R2) values for the training and testing of unsteady lift and drag coefficients in case of two-layer neural network.
The first layer has 9 neurons and the second varies from 1–100.

FIGURE 3. Coefficient of determination (R2) values for predicting (a) lift coefficient (Cl ) and (b) drag coefficient (Cd ) using a two-layer
neural network. The first layer has 9 neurons; the second varies from 1–100. The 5-neuron setup achieved balanced, accurate predictions
across both outputs.

for airfoil lift coefficients for different shapes at different
free-stream Mach numbers, Reynolds numbers, and angles
of attack. Reduced order model has been developed to study
unsteady aerodynamics for six-digit NACA series of plunging
and pitching motion for airfoils. A deep learning model was
developed that accurately predicts aerodynamic forces on
airfoils, demonstrating the effectiveness of neural networks
to capture complex aerodynamic behaviors.

Machine learning techniques can also be used to fore-
cast flow behavior directly, bypassing or mimicking CFD
solvers [22]. Unlike some faster CFD methods that still rely
on solving part of the physics, a neural network can be
trained to learn all the physics within a certain range of
conditions. Consequently, these are designed to work within
a predefined parameter space for inputs and outputs. It opens

the door to fast optimization processes in multidisciplinary
studies. Hybrid CFD-NN method has been used by Ajuria
Illarramendi et al. [23] to solve Poisson equation. Based
on the flow operating point, the accuracy of the network is
found to be affected by the flow operating point on CFD data
with known rheologies to simulate previously available flow
data.

The present study falls into this category (Hybrid CFD-NN)
where the base data set is taken from CFD simulations.
Building on the findings of Kouser et al. [24], this study
extends their work by leveraging the Scaled Conjugate
Gradient (SCG) algorithm to optimize ANN performance.
Machine learning approaches for low-thickness airfoils
remain to be developed. A distinctive feature of this research
is its systematic evaluation of ANN architectures, identifying
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FIGURE 4. Comparative results for CFD values and ANN predictions during the training phase for (a) mean lift coefficient Cl and (b) mean
drag coefficient Cd at different angles of attack.

FIGURE 5. Comparing results of CFD and ANN models (a) mean lift coefficient Cl and (b) mean drag coefficient Cd for different angles of
attack α.

an optimal configuration with five neurons in the second
hidden layer for a low thickness airfoil NACA0005. This
configuration achieves exceptional predictive accuracy, with
an R2 value exceeding 0.90 and a minimal overall prediction
error of 1% for both outputs. the effectiveness of the ANN
is examined using error metrics, and a comparison with
high-fidelity computational fluid dynamics simulations. The
goal is to test the accuracy, general performance, and ability
of the ANN to handle unsteady aerodynamic behavior at
ultra-low Reynolds numbers.

II. METHODOLOGY
A. DATA CLASSIFICATION
In this study, we build the ANN based on the work of
Kouser et al. [24]. All simulations were conducted using
ANSYS Fluent v22, focusing on NACA 0005 airfoil. The
flow regime was characterized by the Reynolds number:

for Re < 2000, a laminar model was used, and for
Re > 2000, the k-ω SST turbulence model was applied to
capture transitional and turbulent effects accurately. Based
on literature, the CFD-generated dataset is used as ground
truth for training and validating machine learning models.
The data is trained utilizing the Scaled Conjugate Gradient
(SCG) algorithm [25], [26]. The data set includes 28 angles
of attack in the range α ∈ [9◦

− 11◦], Reynolds numbers
Re ∈ [1000 − 5000], and a normalized time (t/T) from 0 to
1 for one cycle. The three input variables are angles of attack
(α), Reynolds number (Re), and normalized time. The model
predicts the two outputs, unsteady lift and drag coefficients,
Cl and Cd . The data is divided into 80% for training, 10%
for validation, and 10% for testing. Training data includes
Re ∈ [1000− 1500] ∪ [2000− 2500] ∪ [3500− 5000]. Two
values, Re = 1750 and Re = 3000, are used for validation
and testing. This is done to check how well the model works
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FIGURE 6. CFD and ANN predictions at Re = 3000 (unseen during training) are shown for (a) mean lift coefficient Cl and (b) mean drag
coefficient Cd at selected angles of attack (α).

FIGURE 7. Testing phase error percentages for predicted mean lift
coefficient (C̄l ) and mean drag coefficient (C̄d ) with respect to CFD
results at angles of attack (α) of 9◦, 10◦, and 11◦.

on data it has not seen before. A total of 2777 data points are
used in the study.

B. ANN MODELS
The characteristics of data, the complexity of task, and
the available computational resources are key factors to
consider while selecting a neural network architecture. ANNs
consist of various architectures tailored for specific tasks
and applications [27], [28], [29]. The simplest form is
the perceptron (single-layer architecture) used primarily for
binary classification [29]. Although it is simple, it lays
the foundation for more complex models, as well as being
effective for linearly separable data. ANNs can be categorized
based on their complexity. Single-layer feedforward networks
only have an input and output layer, with no hidden layers.

These are useful for basic tasks like linear regression but can-
not model complex data. Recurrent Neural Networks (RNNs)
add memory by using context units, allowing to handle data
over time. In comparison to RNNs, LSTM networks are
more advanced and handle long-term dependencies more
effectively [30]. Radial Basis Function Networks (RBFNs)
use radial basis functions as activation functions. These are
easier to train than multilayer perceptrons and are good for
tasks like function approximation. The structure includes
an input layer, a hidden layer with RBF neurons, and an
output layer. Adding hidden layers to simpler models leads
to multilayered perceptrons (MLPs) [31], [32]. This helps the
network learnmore complex relationships in data. A common
type of MLP is the Feedforward Neural Network (FNN),
where information moves in one direction from input to
output. A backpropagation algorithm is used to train FNNs,
which improves accuracy by adjusting weights.

A Convolutional Neural Network (CNN) [33] is a type
of neural network designed specifically for handling grid-
like images; it automatically extracts features from grids,
making it a highly effective tool for tasks such as object detec-
tion and image classification. Furthermore, Deconvolutional
Networks are useful in applications such as image segmen-
tation and super-resolution by reconstructing input features
from lower-dimensional representations. Another potential
architecture in unsupervised learning, self-organizing maps
(SOMs) high-dimensional data into low-dimensional spaces
while maintaining the topological properties [34]. The num-
ber of factors such as data characteristics, task complexity,
and available computational resources is required to be
carefully considered while selecting a neural network archi-
tecture. The strengths and limitations of each architecture
need to be carefully aligned with specific requirements.
In this study, the Scaled Conjugate Gradient (SCG) algorithm
is used for training neural networks due to its efficiency and
fast convergence [35]. SCG is considered ideal for limited
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FIGURE 8. Comparison of predicted lift coefficient (Cl ) over one unsteady flow cycle for different angles of attack (α) using CFD and ANN
models: (a) α = 9◦, (b) α = 10◦, and (c) α = 11◦.

computing resources due to the simplicity and ability to reach
solutions in fewer steps. It is also memory-efficient, as it only
uses first-order derivatives and avoids storing the full Hessian
matrix. The algorithm automatically adjusts the step size and
removes the requirement to manually set learning rates. Its
ability to handle nonlinear problems makes SCG a reliable
choice for neural network optimization.

C. ARCHITECTURE OF THE SCG MODEL
Scaled Conjugate Gradient (SCG) algorithm is employed for
training and predicting with ANNs due to its computational
efficiency, low memory consumption, and reliable conver-
gence. This makes it well-suited for function approximation
tasks such as aerodynamic coefficient prediction. Its capa-
bility to effectively capture the nonlinear characteristics of
aerodynamic behavior significantly contributed to the pre-
dictive performance i camparison to other models. A custom
Matlab code has been developed for implementation. SCG
is recognized as an effective optimization algorithm in the

field of ANNs, primarily aimed tominimize the error function
associated with neural network training. It accomplishes
by adjusting various weights and biases to reduce the
discrepancy between predicted and actual (CFD) values.
The process begins with an initial guess for the parameters,
followed by the computation of the gradient of the error
function. SCG uses a scaled identity matrix to iteratively
improve parameter estimates. To achieve a balance between
rapid convergence and stability in optimization, the adaptive
scaling of this matrix is essential. The network architecture
consists of an input layer, two hidden layers, and an output
layer. In this study, the optimal configuration is identified by
keeping 9 fixed neurons in first hidden layer and varying the
number of neurons in the second hidden layer from 1-100,
resulting in outputs closely aligned with computational data.

D. TRAINING ANN
Artificial neural networks for prediction or classification
involve a step-by-step process to ensure accurate and reliable
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FIGURE 9. Predicted drag coefficient (Cd ) over one unsteady flow cycle for different angles of attack (α) using CFD and ANN models:
(a) α = 9◦, (b) α = 10◦, and (c) α = 11◦.

FIGURE 10. Transition of wake at α = 11◦ for increasing Reynolds number (a) Re = 1000, (b) Re = 1500, and (c) Re = 3000.

results. An input feature and a target output are used to define
the problem. Then, the data is collected, cleaned to remove
errors, and normalized so all inputs are on the same scale.
The dataset is divided into three parts: a training set to teach
the model, a validation set to adjust model settings, and a test
set to check performance on new data.

The ANN structure is designed based on the complexity
of problem. Hidden layers add non-linearity and allow
the model to learn more complex patterns. Activation
functions are used in these hidden layers to improve learning.

During training, the validation set helps to monitor the
model and tune hyperparameters like learning rate or the
number of neurons. After training, the test set is used
to measure performance using metrics such as accuracy
or Mean Absolute Error (MAE). A well-trained model
should give accurate results even on data it hasn’t seen
before.

In this study, the ANN model uses three input variables:
angle of attack, Reynolds number, and time. The outputs are
unsteady Cl and Cd . The network has two hidden layers. The
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FIGURE 11. Corelation between unsteady coefficient Cl for different angles of attack α for CFD versus ANN models. (a) α = 9◦, (b) α = 10◦,
and (c) α = 11◦.

first hidden layer has 9 neurons, while the number of neurons
in the second layer varies. Figures 1 and 2 show the ANN
setup, and results are provided in Table 1.

E. HARDWARE AND SOFTWARE DETAILS
The CFD and ANN-based approaches for evaluating aero-
dynamic properties were conducted using distinct method-
ologies, hardware, and software setups. For simulations,
NACA0005 is modelled and run in Fluent v.22 and Tecplot
is used to analyze the data obtained. For the ANN work,
a high-performance computing setup was used, featuring
a 12th Gen Intel Core i9 CPU, 32 GB RAM, and an
NVIDIA GeForce RTX 3080 GPU. MATLAB R2022b was
utilized to implement the Scaled Conjugate Gradient (SCG)
algorithm. The CFD data collected was split into training
(80%), validation (10%), and predicting (10%) subsets. ANN
simulations were prompt. The ANN completes a simulation
per cycle 5 times faster than CFD. The CFD results were used
as a benchmark to assess the performance of the ANNmodel.

Evaluation metrics such as the coefficient of determination
(R2), mean squared error (MSE), mean absolute error (MAE),
root mean squared error (RMSE), standard deviation (σ ),
variance (σ 2), and error (E) were employed to measure the
accuracy of model.

Absolute Error, Ei=
∣∣xCFD,i−xANN,i

∣∣ (1)

Error Percentage, Ei%=

(∣∣xCFD,i−xANN,i
∣∣

xCFD,i

)
×100%

(2)

Mean absolute error, MAE=
1
n

n∑
i=1

∣∣xCFD,i−xANN,i
∣∣
(3)

Mean square error, MSE=
1
n

n∑
i=1

(
xCFD,i−xANN,i

)2
(4)
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FIGURE 12. Corelation between unsteady coefficient Cd for different angles of attack α for CFD versus ANN models. (a) α = 9◦,
(b) α = 10◦, and (c) α = 11◦.

Root mean square error, RMSE=

√√√√1
n

n∑
i=1

(
xCFD,i−xANN,i

)2
(5)

Standard deviation, σ =

[
1
n

n∑
i=1

(
xCFD,i−x̄CFD

)2]1/2
(6)

Variance, σ 2
=

1
n

n∑
i=1

(
xCFD,i−x̄CFD

)2
(7)

Coefficient of determination,

R2 = 1 −

1
n

∑n
i=1

(
xCFD,i − xANN,i

)2
1
n

∑n
i=1

(
xCFD,i − x̄CFD

)2 (8)

where, xCFD,i are actual values from CFD at index i, x̄CFD
is mean of observed CFD values, xANN,i are predicted value

from ANN at index i, and n be total number of data
points.

III. RESULTS
A detailed evaluation of the performance of the developed
artificial neural network (ANN) model is presented in
this section for predicting aerodynamic coefficients for the
NACA0005 airfoil.

Let

A =
[
a1 a2 a3

]T
∈ R3×1

be the input vector. The optimized neural network with two
hidden layers contains 9 and 5 neurons respectively, and two
outputs Cl and Cd works as:[
CL
CD

]
= σO [WO · σ2 (W2 · σ1 (W1 · A+ B1) + B2) + BO]

(9)

In explicit matrix form, this becomes:

131096 VOLUME 13, 2025



T. Kouser et al.: ML Approach to Aerodynamic Analysis of NACA0005 Airfoil

FIGURE 13. ANN-predicted and CFD-computed values for (a) C l and (b) Cd during the training phase.

[
CL
CD

]
= σO

([
w11
O · · · w15

O
w21
O · · · w25

O

]

· σ2


w

11
2 · · · w19

2
...

. . .
...

w51
2 · · · w59

2

 · σ1


w

11
1 w12

1 w13
1

...
...

...

w91
1 w92

1 w93
1



·

a1a2
a3

+

b
(1)
1
...

b(1)9


+

b
(2)
1
...

b(2)5


+

[
b(O)1
b(O)2

] . (10)

where,
• A ∈ R3: Input characteristic vector consists of a1, a2,
and a3 as aerodynamic parameters such as angle of
attack, Reynolds number, and Mach number.

• W1 ∈ R9×3: Weight matrix between the input layer and
the first hidden layer (9 neurons).

• B1 ∈ R9: Bias vector added to the first hidden layer.
• σ1: Activation function applied to the first hidden layer.
• W2 ∈ R5×9: Weight matrix between the first and second
hidden layers (5 neurons).

• B2 ∈ R5: Bias vector for the second hidden layer.
• σ2: Activation function for the second hidden layer.
• WO ∈ R2×5: Weight matrix between the second hidden
layer and the output layer (2 outputs: CL and CD).

• BO ∈ R2: Bias vector for the output layer.
• σO: Final activation function applied to the output.
Figure 3 (a and b) shows the distribution of coefficient

of determination (R2) values for neural network models
used to predict the Cl and Cd . Each model uses a two-
layer architecture, with 9 neurons fixed in the first hidden
layer. The number of neurons in the second hidden layer
varies from 1 to 100. Each vertical bar represents the
R2 value for a specific number of neurons in the second
layer. The results show that prediction accuracy changes

significantly with the number of neurons. Although several
configurations achieve high R2 values, these peaks are not
consistent across both output variables. Several neurons that
yield strong performance for Cl often underperform for Cd ,
and vice versa. To address this, the 10 best neurons are
selected based on balanced performance for both Cl and
Cd , instead of focusing on one alone parameter (Table 1).
This approach ensures the models are reliable for predicting
both coefficients. Among these, the ANN with five neurons
showed accurate and balanced predictions for both lift
and drag coefficients. It achieved high R2 values as 0.994 and
0.9563 for Cl on the training and testing sets, and 0.9615 and
0.9085 for Cd . It shows that the model is reliable for both
outputs.

To check the accuracy of the ANN predictions, the mean
results were compared directly with CFD simulations results
for each set of training, validation and testing. Figures 4 to 6
show these comparison between mean values of CFD and
ANN for selected angles of attacks α = 9◦, 10◦, and 11◦.
In Figure 4, the ANN results (training phase) are compared
with CFD. At α = 9◦, the ANN results are highly accurate
as in close agreement with the CFD data. At α = 10◦, the
model still predictsCl well, butCd shows some discrepancies
with lower percentage errors. At α = 11◦, both Cl and
Cd predictions are again closely align with the CFD results.
To test how well the ANN generalizes to new cases, data for
Reynolds numbers Re = 1750 and Re = 3000 were left
out of training. The model was then tested on these cases:
Re = 1750 was used for validation and Re = 3000 for
testing, as shown in figures 5 and 6. For Re = 1750, the ANN
performed very well at α = 9◦ and 10◦. It proves that the
method has the capability to predict lift and drag coefficients
accurately in linear wake regimes. At α = 11◦, the ANN
slightly underpredicts, due to complex flow behavior that was
not well represented in the training data with errors as much
high as 10%.
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FIGURE 14. Overall percentage error in mean lift (Cl ) and drag (Cd ) coefficients predicted by CFD and ANN models across the training,
validation, testing, and overall datasets. (a) Error in Cl ; (b) Error in Cd .

The results for Re = 3000, which was not used during
training is presented in figures 6-11. It is crucial to investigate
testing phase in detail for successful ANN network imple-
mentation. In figure 6(a) The predictions are very close to
the CFD data, especially at α = 9◦ and 10◦, indicating high
accuracy. At α = 11◦, the ANN slightly overpredicts the
mean lift coefficient by 2.13%, and the error in mean Cd is
negligible as 0.25% (figure 7). Figure 6(b) shows the drag
coefficient comparison, where the ANN predictions closely
follow the CFD results. A slight underprediction is observed
at α = 9◦, though the overall trend remains consistent.
For instance, at α = 10◦ and 11◦, the values match very
well to CFD results. Overall, the ANN model accurately
captures aerodynamic behavior, even for test cases outside the
training data. This confirms its effectiveness and reliability
as a fast alternative to CFD simulations within this operating
range. Figures 8 and 9 present a comparison between the
predictions of the ANN model and CFD simulation results
for the unsteady Cl and Cd , respectively, over a full motion
cycle (t/T ) at three angles of attack 9◦, 10◦, and 11◦.
In figure 8 (unsteady Cl), the ANN model performs well

across all angles. At α = 9◦, the ANN predictions align
closely with the CFD results, accurately captures both the
shape and magnitude of the lift curve. At α = 10◦,
the agreement remains strong, with only slight deviations
observed near the minimum point of the curve. For α = 11◦,
the ANN continues to follow the overall trend of the CFD
data, although minor discrepancies become more apparent,
particularly near the minimum values. These differences are
likely due to increased nonlinear flow behavior at higher
angles. Similar comparison for unsteady Cd is presented in
figure 9. At α = 9◦, the ANN accurately predicts the Cd
values, closely follow the CFD trend. At α = 10◦, the ANN
slightly underestimates the Cd near the minimum point, but
the general pattern and timing remain consistent with CFD.

For α = 11◦, while the ANN captures the overall behavior
of the curve, noticeable deviations occur in some parts,
possibly due to more complex flow features like separation
or transition (Figure 10).
Overall, the ANN model shows strong potential in

predicting both unsteady pattern of lift and drag coefficients.
Its predictions are highly accurate at lower and moderate
angles of attack, where the flow is mostly linear and attached.
Although the accuracy slightly decreases at higher angles
due to nonlinear effects, the model still captures the main
aerodynamic trends throughout the cycle.

A strong linear correlation between the coefficients (Cl and
Cd ) predicted by an ANN and those computed using CFD at
three angles of attack: 9◦ (a), 10◦ (b), and 11◦ (c) are observed
(figures 11 and 12). The data corresponds to unsteady flow
conditions over a single oscillation cycle. Each subplot
includes a linear fit of the form y = a + mx, which captures
the relationship between ANN predictions and CFD results.
All three cases indicate that the ANN is capable of accurately
learning the unsteady aerodynamic behavior from CFD data.
The variations reflect the sensitivity of ANN performance to
changes in flow conditions and angle of attack. Similarly,
the correlation for training data is plotted in figure 13.
Plotting individual cases was avoided to maintain clarity, and
mean values were used instead. Figure 13(a and b), the high
correlation reflects effective learning of drag behavior across
the training conditions.

Figure 14 illustrates the overall performance by percentage
error between ANN and CFD predictions across different
cases. In general, the ANN predictions align closely with
the CFD results, particularly when the flow is attached
and remains two-dimensional. The only notable deviation
occurs during the validation phase at α = 11◦, likely
caused by alterations in the flow behavior behind the airfoil.
Overall, the ANN model proves to be a fast and accurate
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tool for predicting aerodynamic performance at lower angles
of attack. The percentage errors are generally low, such
as 0.038% for Cl and 0.023% for Cd during training,
demonstrating the model’s ability to learn CFD patterns
effectively. While slightly higher errors are observed during
validation and testing—10% and 0.88% for Cl . However, for
Cd , the error becomes lower as 1.79% and 4.72%. The overall
differences remain minimal, typically below 1%, confirming
the ANN’s consistency in approximating CFD outputs for
ultra-low Reynolds numbers.

IV. CONCLUSION AND LIMITATIONS
In this study, Scaled Conjugate Gradient (SCG) algorithm is
applied to an ANN to predict the time-averaged aerodynamic
coefficients of a NACA0005 airfoil. The performance of
the SCG algorithm is validated by statistical metrics that
highlight the accuracy and reliability of the ANN predictions.
The ANN demonstrated excellent predictive performance for
unsteady Cl and Cd coefficients within selected range of the
Reynolds numbers 1000 - 5000 and angles of attack 9◦ to 11◦

as well as for mean values. Parametric optimization of the
network architecture revealed that a two-layer feedforward
network with nine neurons in the first hidden layer and
five in the second layer is sufficient to achieve high
correlation with CFD benchmarks (R2 > 0.99 and 0.96 for
training and 0.95 along with 0.91 in testing phase) for
unsteady Cl and Cd respectively. The ANN successfully
generalized to untrained Reynolds numbers (Re = 1750 and
Re = 3000), with error margins below 2% in most cases
except 11◦. It confirms the ability of ANN to interpolate
within the defined input space. Furthermore, the ANN
captured both steady and unsteady aerodynamic trends.
Although minor deviations were observed at α = 11◦

likely due to increased flow separation and nonlinear wake
interactions. However, this work has some limitations and
needs to address:

Limitations and Future Work: The current model is
limited to 2D, incompressible, laminar flow conditions and
is trained on data from a single symmetric airfoil. As such,
its extrapolation capabilities beyond the trained domain
(e.g., compressible regimes, 3D effects, high-angle stall) are
inherently constrained. Future extensions will include the
integration of broader datasets encompassing several airfoil
geometries, Mach numbers, and turbulent flow regimes.
Incorporating hybrid surrogate-CFD frameworks could fur-
ther enhance model fidelity, particularly in nonlinear flow
regimes. In addition, embedding uncertainty quantification
methods will be essential for real-world deployment in design
optimization and active flow control applications.
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