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Abstract

The Internet of Things (IoT) is rapidly developing with the promotion of new
technologies such as LoRa, which offers extensive coverage, low power con-
sumption, and strong anti-interference capabilities. This study focuses on the
application of LoRa technology in multi-floor home environments, particu-
larly addressing the challenges of signal multipath propagation. We conducted
comprehensive measurements of LoRa signal strength and path loss across
different floors and rooms. Through our path loss model analysis, notable dif-
ferences were observed in Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
environments, with initial path loss values of 58.32 decibels and 51.52 decibels,
respectively, and standard deviations of 18.42 decibels for LOS and 2.84 deci-
bels for NLOS. Temporal fading analysis, using Rayleigh and Rician distribu-
tions, revealed significant variations in signal strength between daytime and
nighttime, with some rooms being more stable during the daytime and others
more stable at nighttime due to differences in the architectural structure and
functionality of various rooms within the home environment. Packet recep-
tion rate (PRR) ranged from 89.07% to 99.89%, highlighting the reliability of
data transmission under different conditions. This research fills a critical gap
in the literature by providing empirical data on indoor multi-floor home en-
vironments and significantly contributes by verifying and modeling path loss
and temporal fading, thereby improving the design and deployment strategies
for LoRa-based smart home systems.
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1. Introduction

The rapid advancement of the IoT [1] has significantly impacted various sectors,
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such as smart building and smart home applications [2]-[4]. These indoor multi-

floor environments present unique challenges due to signal multipath propaga-

tion [5] caused by various obstacles. In the realm of smart homes, various wireless
communication technologies are employed, including Wi-Fi [6], Zigbee [7] and

Bluetooth [8]. Wi-Fi, while widely used for high-bandwidth applications such as

video streaming and internet browsing, suffers from high power consumption and

limited range, making it less ideal for battery-powered IoT devices. Zigbee, alt-
hough being low-power and suitable for short-range communication, faces issues
with scalability and interference from other devices operating in the same fre-
quency bands. Bluetooth, commonly used for personal area networks, has limita-
tions in range and the number of devices it can effectively manage. These limita-
tions highlight the need for a more robust solution like LoRa [9], which can pro-
vide reliable communication over longer distances with lower power consump-
tion due to its extensive coverage and robustness against interference. It is a mod-
ulation technique for low-power wide-area networks (LPWANSs) [10] and stands
out in the context of smart homes for its ability to offer reliable, long-range com-
munication with minimal power requirements. It supports various applications,
including environmental monitoring, energy management, security systems, and
automation of household appliances. The extensive coverage of LoRa ensures con-
nectivity even in large multi-floor buildings, overcoming the range limitations of
other wireless technologies. However, the current research area lacks a compre-
hensive study of path loss [11], large-scale fading (LSF) [12], multipath effects,
and temporal fading [13] of the LoRa signal in a multi-floor home environment.

Understanding these factors is crucial for optimizing the deployment and perfor-

mance of LoRa-based smart home systems. This study aims to address the existing

gaps in the literature by conducting an in-depth investigation into the behavior of

LoRa signals in multi-floor home environments. The primary objectives include

measuring and modeling path loss, analyzing the multipath propagation effect,

understanding the temporal fading of LoRa signals, and measuring and analyzing

PRR. The contributions of this study are as follows:

e This study conducted comprehensive measurements of LoRa signal strength
in a multi-floor home environment.

o This study modeled a path loss model for indoor multi-floor home environ-
ments and calculated and analyzed the parameters and applicability of three
models.

e This study analyzed temporal fading under the multipath propagation effect
using Rayleigh and Rician distributions.

The remainder of this paper is organized as follows: Section 0 introduces related
work, and Section 0 illustrates the path loss model. The measurement method is
presented in Section 1. The experiments and their results are presented in Section

3. Finally, section 5 concludes the paper.

2. Related Work

In wireless transmission networks, the wireless signal is inevitably subject to path
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loss due to various obstacles like walls, trees, and air that hinder its propagation.
[14]-[21] explored the use and validation of path loss models in different applica-
tion scenarios, including Low Power Wide Area Networks (LPWAN), millimeter-
wave wireless networks, indoor ultra-wideband propagation, dense small cell net-
works, device-to-device communication, and hospital environments. The studies
employed various path loss models, such as the Free Space Path Loss (FSPL) model,
regression coefficient models, the Longley-Rice Irregular Terrain Model (ITM),
and the Log-Distance model. These models’ accuracy and applicability were veri-
fied through experimental measurements and simulations. Results indicated sig-
nificant differences in model performance across different environments, and in-
corporating terrain data or environment-specific parameters can enhance path
loss prediction accuracy [19] [21]. However, the models were complex, with many
parameters and high computational demands, making real-time applications
challenging [19]; they were highly environment-dependent, showing varying per-
formance in different settings, lacking universality [20]; they had large prediction
errors, with some models showing significant errors in actual signal prediction
[14] [21]; there was a lack of comprehensive evaluation, with most studies missing
multi-environment and multi-scenario validation [15] [18]; and there were appli-
cation limitations, with some models only applicable to specific frequency bands
and scenarios, restricting their wider adoption and use [16] [19] [20].

Large-scale fading is an important factor to consider during long-distance wire-
less transmission. [22]-[26] discussed the application of LSF in various scenarios,
including non-Bayesian activity detection, large-scale MIMO systems, disaster re-
lief scenarios, uplink capacity analysis, and sparse activity detection in multi-cell
large-scale MIMO. These studies proposed using LSF information to improve de-
tection performance, enhance system capacity, build communication models for
disaster scenarios, and increase spectrum efficiency. However, these studies com-
monly had the drawback of making many ideal condition assumptions, overlook-
ing the complexity and variability of real-world environments, which limits the
accuracy and robustness of the models and methods in practical applications.

During long-distance wireless transmission, there are usually various obstacles, so
the shadow fading effect cannot be ignored. [27]-[31] primarily investigated shadow
fading models and their effects in different environments and applications. [27]
explored the correlation of shadow fading between links in multi-hop wireless
networks, proposing a statistical model and validating its impact on network con-
nectivity. [28] proposed a method for detecting co-moving wireless devices using
shadow fading by correlating signal strength variations. [29] compared two shadow
fading models in ultra-wideband and other wireless systems, highlighting the ad-
vantages of the Gamma distribution model in performance analysis. [30] intro-
duced a statistical method based on log moments to estimate the composite fast
fading and shadowing distribution in wireless communication. [31] presented a
new fading-shadowing model and analyzed its performance in emergency wireless

communications with unmanned aerial vehicles equipped with reconfigurable
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intelligent surfaces. However, these models were complex and challenging to im-
plement directly in practical applications; some models made many assumptions
specific to certain environments, lacking generality, and some methods required
extensive experimental data for validation, increasing application difficulty and
cost.

In order to better study the signal attenuation during LoRa long-range wireless
transmission, LoRa transmission modeling is needed. [32]-[38] employed various
models to describe path loss in different environments, including the FSPL, Log-
Normal Shadowing Model (LNSM), Okumura-Hata model, and machine learning
techniques such as Random Forest and Recurrent Neural Network (RNN). These
studies aimed to optimize LoRa network coverage and performance by accurately
modeling path loss to enhance the reliability and efficiency of IoT applications.
These models performed differently across environments: traditional models like
FSPL [32] [33] [38] were accurate in obstacle-free environments but had large er-
rors in complex settings; LNSM [34] and Okumura-Hata [35] models considered
environmental impacts through empirical data but may still produce errors in new
application scenarios. Machine learning methods, like Random Forest [35] and
RNN [32], significantly improved path loss prediction accuracy but faced chal-
lenges in adaptability to new environments. Overall, the accuracy and applicabil-
ity of LoRa path loss models required further optimization to suit the variable real-

world application environments.

3. Modeling Methodology
3.1. Large-Scale Fading

LSF, also known as path loss, is a key component in the characterization of radio
wave propagation in wireless communication systems. It describes the attenua-
tion of the received signal strength (RSS) over long distances and various obsta-
cles, such as buildings and terrain, between the transmitter (Tx) and receiver
(Rx). This type of fading primarily results from the combined effects of path loss
and shadowing. In LSF analysis, it is crucial to model the path loss accurately,
analyze the shadowing effect, and determine the relevant distances in different

environments.

3.1.1. Path Loss Model
Path loss refers to the reduction in power density of an electromagnetic wave as it
propagates through space. It is influenced by the distance between the Tx and Rx
and the environment through which the wave travels. It is typically modeled using
the following equation [39].

PL(d):PL(dO)+1OnIogdi+Xa (1)

0

where:
e d isthe separation distance between Tx and Rx.

e X, isazero-mean Gaussian distributed variable with standard deviation o .
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° PL(dO) is the path loss at the reference distance (1 meter in this study). The
least squares regression [40] was used to calculate PL(dO). First, for each

measurement sample 7 the error €, is defined as follows:

e = PL —(PL(d,)+10nlog(d,)) )

where PL; is the measured path loss at distance d,. The sum of the squared

errors Scan be computed as follows:

N

s=Y¢ =ZN:[PLi—(PL(do)+10nlog(di))T 3)

i=L i
where Nis the total number of measurement samples. To calculate PL(d0 ) R
the partial derivative of the objective function of PL(d,), and let the deriva-
tive be zero:
_s
OPL(dO) <

N
=1

[ PL, —(PL(d,)+10nlog(d, )) |=0 )

From Equation (4), the PL(dO) can be solved as follows:
1 N N
PL(dO):W(ZPLi —lOnZIOQdij (5)
i i=L

e n is the path loss exponent, which varies by environment. For example, in
free space, n is typically 2, while in urban or indoor environments, n can
range from 2 to 4 or higher. The same least-squares regression is used to cal-

culate n, which is derived as follows:

o 3" PLlogd, - PL(d,) 3" logd,

6
102il(log di)2 ©

3.1.2. Shadowing Effect

Shadowing [41], or log-normal fading [42], refers to the variations in signal
strength caused by obstacles like buildings, trees, and other large objects obstruct-
ing the LOS between Tx and Rx. The term X in the path loss model accounts
for these random variations. It is modeled as a zero-mean Gaussian random vari-

able with standard deviation o , which is derived as follows:
1 -
o= =2 (X -X) 7)

where X, is the deviation between the /-th measured sample and the predicted

values. X is the mean of all deviations.

3.1.3. Decorrelation Distance

Decorrelation distance [43] is a key parameter in characterizing the spatial corre-
lation of shadow fading in wireless communication environments. It is defined as
the distance over which the autocorrelation of the signal’s shadow fading compo-
nent drops to a specified threshold: 0.1 in this study. This distance indicates how

quickly the signal variations due to shadowing become uncorrelated as the receiver
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moves away from the transmitter. The normalized autocorrelation function R, (i),

is given by:
N-i
> XX
; 1 p N pe
R (I) == 1N 2 (®)
Zq:l X q
where X, X, and X, are the deviation of the shadow fading measurement

samples at different locations.

3.2. Temporal Fading

In wireless communication, temporal fading is caused by multipath propagation
and the Doppler effect. However, since devices in smart homes are typically sta-
tionary, the Doppler effect is more relevant to mobile devices, making temporal
fading in smart homes primarily influenced by multipath propagation alone. Mul-
tipath effects refer to signals traveling from the transmitter to the receiver along
multiple paths, including direct, reflected, diffracted, and scattered paths. The sig-
nals arriving at the receiver at different times cause their superposition to result
in either constructive interference (signal enhancement) or destructive interference
(signal attenuation), leading to fluctuations in the RSS. Scattering refers to the phe-
nomenon where wireless signals encounter obstacles that are irregular or smaller
than the signal wavelength (such as leaves or rough surfaces of buildings), causing
the signals to scatter in various directions and resulting in a more dispersed energy
distribution at the receiver, which receives multipath signals from different direc-
tions. Temporal fading is the change in signal strength over time caused by these
phenomena. Temporal fading can be divided into slow fading and fast fading: slow
fading is caused by large-scale changes (such as the macroscopic movement of de-
vices or building obstructions), resulting in relatively gradual changes in signal
strength; fast fading is caused by small-scale changes (such as multipath propaga-
tion and phase interference), leading to rapid changes in signal strength. By ana-
lyzing the measured RSS with Rayleigh [44] and Rician [45] distributions, we can
gain a more comprehensive understanding of the impact of temporal fading on

LoRa signals.

3.2.1. Rayleigh Distribution
In a multipath propagation environment without a LOS, the RSS follows the Ray-
leigh distribution. The Rayleigh distribution is applicable to scenarios where all
signals are from scattered paths, with its probability density function (PDF) [46]
given by:
rZ
f(r)=—ye 2 ,(r20) ©)
o

where r istheRSS,and o isthe standard deviation of the signal strength. The
cumulative distribution function (CDF) [47] of the Rayleigh distribution is:

2

F(r)=1-e 2 ,(r>0) (10)
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3.2.2. Rician Distribution
The Rician distribution model is used to describe the RSS in environments with
LOS and multipath propagation. Its PDF is given by:

7r2+A2

f(r)=—"tre |o(;_§j,(rzo) (11)

where I istheRSS, Ais the amplitude of the direct path signal, o isthe stand-
ard deviation of the multipath components, and | is the modified Bessel func-
tion of the first kind. Among the parameters of Rician distribution, the Rician
factor K'has important physical significance and represents the ratio between the
power of the direct-view path signal and the power of the multipath-scattered sig-
nal, which reflects the relative strengths of the direct-view path and multipath ef-
fects in the channel [48]. This factor is defined as follows:

A2

20

(12)

When Kis high, the direct path signal dominates, resulting in smaller signal fluc-
tuations and fading, which is suitable for outdoor open environments or LOS trans-
mission scenarios. While K 'is low, the scattered path signals dominate, leading to
larger signal fluctuations and fading, commonly found in indoor environments or
scenarios with many obstacles. When K =0, the Rician distribution degenerates

into the Rayleigh distribution, where all signals are from scattered paths.

3.3. Coverage Estimation

We estimated the coverage range of the LoRa signal in an indoor multi-floor home
environment. The selected parameters are listed in Table 1. We assume an ambi-
ent attenuation coefficient of 45, an attenuation coefficient of 15 dB per floor, a
signal-to-noise ratio (SNR) of —6 dB, a transmitter and receiver antenna gain of 0
dBi for both, and 0 dB connector loss. By estimating using the Free Space Path
Loss Model [49] and the ITU-R P.1238 model [50], the coverage range of the LoRa
signals is derived: 137.37 meters. This distance allows a single gateway to com-

pletely cover the entire three-layer measurement environment.

Table 1. LoRa physical layer settings.

Spreading ~ Bandwidth . Frequence Transmit
Coding rate ~ Preambles
factor (KHz) (MHz) Power (dBm)

500 4/5 8 470 - 510 20

4. Measurement Method

On the third floor, we set the LOS and NLOS measurements as illustrated in Fig-
ure 1, with the gateway on the desk in the study. In the LOS scenario, a total of 80
points were measured, all aligned linearly with the gateway. The first point was

positioned 0.1 meters from the gateway, with each subsequent point spaced 0.1
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meters apart. In the NLOS scenario, a total of 31 points were measured and aligned
linearly. The first point was placed in the adjacent bathroom, with a horizontal
distance d1 of 1.7 meters and a vertical distance d2 of 0.3 meters from the gateway.
Each subsequent point was measured at intervals of 0.1 meters. The distance d
from the gateway to each of the 31 points is calculated using the Pythagorean the-

orem [51].

Balcony

coccccsenad—

Bedroom

Balcony

. 3F 4 B
i } y !
v ,/ \, /(
\\\ 7 A vt

End node Gateway

Figure 1. LOS and NLOS measurement mode.

The layout schematic in Figure 2 illustrates the distribution of gateways and
end nodes throughout the home. Appliances and furniture are installed on the
first floor: an air conditioner, gas stove, water heater, tables, chairs and sofa, re-
frigerator, television, and microwave oven. The second floor features two beds, a
water heater, three air conditioners, and a bathroom. The third floor is equipped
with two air conditioners, a television, a bed, a water heater, and a sofa. The meas-
uring environment is characterized by a complex array of household furniture and
appliances. Figures 3(a)-(c) show the placement of measurement locations for
some of the end nodes contained: the first-floor living room, the third-floor bath-
room, and the third-floor study. The gateway was placed in the third-floor study,
as depicted in Figure 3(d), also highlighted by a red circle. The antennas of the
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gateway and the end nodes were oriented vertically and horizontally relative to
the ground, respectively. The measurement environment consisted of rooms with

brick walls and wooden furniture.

Balcony

Balcony

a

Bedroom

Bedroom

=
-

¢

Bathroom

ﬂﬁ

Bathroom

Living room Bedroom

\

1 =

e e

Balcony

! vE v v z

End node Gatt;\}vay

r:—

Figure 2. 3-story home building measurement point locations.

Figure 3. Measurement of physical photos.

5. Results
5.1. Large Scale Fading

Compare the path loss fitting performance of the non-fixed model, fixed model,
and free-space model (FSM). Figure 4(a) and Figure 4(b) show the fitting results
of the three models, where blue dots represent measurement samples, the red solid

lines represent the non-fixed model, the orange dashed lines represent the fixed
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Autocorrelation

model, and the gray dashed lines represent the FSM. Table 2 shows the results for

both scenarios. We found that the fixed model performs well at short distances

but shows significant deviations at longer distances due to its failure to fully ac-

count for the nonlinear effects of distance on path loss. The FSM assumes no ob-

stacles in the propagation path and ignores multipath effects and terrain varia-

tions. In contrast, the non-fixed model has flexible parameters that better adapt

to various factors in the actual wireless propagation environment, such as building

obstacles, terrain variations, and multipath effects.

Table 2. Results of the LOS and NLOS.

Non-Fixed Intercept

(computed from the Equation (5))

Fixed Intercept
(measured at db)

LSF
Scenario by q.) n o PL(do) n o
[dB] [-] [dB] [dB] (-] [dB]
LOS 58.32 2.34 18.42 51.52 48.47 2.84
NLOS 57.00 2.26 18.50 67.00 6.00 5.25
Average 57.66 2.3 18.46 59.26 27.23 4.04
FSM 59.95 - - 40.05 - -
Path Loss Model Path Loss Model
e measurement point ,; e« measurement point L
Non-Fixed Model 3 80 Non-Fixed Model
————— Fixed Model T o ~~ Fixed Model
~~~~~ Free Space Model A 3 ) ----- Free Space Model
% 70 P
(%2}
o]
- e 0
£ 60 *
®©
o
BO| e
1 2 4 8 1.5 2 2.5 3 3.5
Distance (m) Distance (m)
(a) (b)
Autocorrelation vs Distance Autocorrelation vs Distance
—— Autocorrelation 1.0 —— Autocorrelation
----- Threshold = 0.1 08 ---=- Threshold = 0.1
----- Decorrelation Distance = 2.30 m ) ----- Decorrelation Distance = 2.14 m
| c
5 06
B 04
g 0.2
E— Z 00
02 W
0 1 2 3 4 5 6 7 8 1.5 2 2.5 3 3.5
Distance (m) Distance (m)
@ @

Figure 4. The path loss model measurement result.
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Figure 4(c) and Figure 4(d) show the decorrelation distance of LOS and NLOS
with values of 2.3 m and 2.14 m, respectively. The shorter decorrelation distance
in NLOS environments compared to LOS is primarily due to the increased reflec-
tions, scattering, and diffraction in NLOS propagation paths. These factors cause
more frequent and severe fluctuations in signal strength, leading to a faster de-

crease in autocorrelation.

5.2. Temporal Fading

The RSS samples collected from various rooms in a multi-floor building demon-
strate significant variations in signal strength between daytime (7 - 22) and
nighttime (22 - 7). The RSS samples for the first-floor rooms, including the bath-
room, dining room, kitchen, and living room, exhibit similar patterns of varia-
tion. Figures 5(a)-(d) all illustrate that during the daytime, the signal strength
tends to be weaker and more variable. This instability is due to increased activity
levels within the house, leading to more physical obstructions and higher inter-
ference from other electronic devices in use. Conversely, during the nighttime,
the signal strength is observed to be more stable and generally stronger. The
reduced human activity and lesser usage of electronic devices during the
nighttime contribute to a clearer signal path with fewer interferences and ob-
structions. The second-floor rooms, comprising the bathroom and study, ex-
hibit similar trends in their RSS samples, as shown in Figure 5(e) and Figure
5(f). For the third-floor rooms, including the bathroom and study, the RSS sam-
ples, depicted in Figure 5(g) and Figure 5(h), follow the same pattern observed
on the lower floors. This pattern indicates the significant impact of environmen-

tal factors on LoRa signal performance.

The first-floor living room 20 The first-floor kitchen 2 The first-floor dining room The first-floor bathroom

RSS (dBm)

3 &

RSS (dBm)
2

RSS (dBm)

3 8

RSS (dBm)
3

90 ¢ — 722 90 ¢ —122|] 0 ¢ ——722 90
—27 —227. —27

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

The third-floor study

The second-floor bathroom

—722
-30 —227 30+ -30

RSS (dBm)
& 3 3
RSS (dBm)
5 4 8
RSS (dBm)
g 3 &
RSS (dBm)

90+ 1 90 ¢ —722 90 —7-22
—227 —227

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

(e) (5) () (1)

Figure 5. RSS values of the end nodes deployed on the 8th floor and 9th floor at 2 pm - 7 pm and 7 pm - 12 pm, respectively.
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Figure 6 shows the PDF and CDF of the RSS samples for the first floor. We can
see that the K'values of all measured end nodes are higher during the daytime than
at nighttime. It is expected that K'values might be higher during the nighttime due
to more stable environments. However, in this analysis, higher K values during
the daytime are observed in several rooms. This can be attributed to specific usage
patterns and structural factors: The living room, kitchen, and dining room are
used throughout the daytime for various activities, which involve intermittent ra-
ther than continuous use of electronic devices. These rooms benefit from natural
light and ventilation during the daytime, reducing the reliance on electronic light-
ing and appliances that generate interference. The controlled and less intensive
use of electronic devices in these rooms during the daytime leads to a more stable

environment for signal propagation, resulting in higher Kvalues.
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The measurement results of the second floor are shown in Figure 7. During the
daytime, the bathroom exhibits a lower Kvalue compared to the nighttime. This
substantial difference can be attributed to increased human activity and the use of
reflective surfaces such as mirrors and tiles during the daytime, which enhance
multipath effects. During the nighttime, reduced activity and fewer interactions
with these surfaces result in a higher K value due to a more stable environment
with fewer multipath reflections. In contrast, the study room demonstrates a dif-
ferent pattern. The daytime K value is higher than the nighttime K value. The
higher K'values during the daytime can be explained by its specific usage charac-
teristics. During the daytime, this room is used for focused tasks such as studying
or remote work, involving a stable setup with minimal movement and fewer active
electronic devices compared to other times. This consistent environment reduces
multipath reflections and signal fluctuations, leading to higher K'values. At night,
the study may be repurposed for other activities or left unused, which could in-
troduce variability in the environment and lower the K'value due to different pat-

terns of electronic device usage and human activity.
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Figure 7. PDF and CDF of the end nodes deployed on the 2nd floor at 7 am - 10 pm and 10 pm - 7 am, respectively.

Figure 8 illustrates the PDF and CDF of the RSS samples for the third floor.
Analysis of the K'values for the third floor showed a consistent trend of lower K
values during the daytime than the nighttime for both the bathroom and the study.
In the bathroom, frequent usage of water fixtures and mirrors during the daytime
introduces more multipath effects, causing a greater dispersion of signal paths and
thereby reducing the K factor. Similarly, the study room is likely to experience
increased activity during the daytime, such as studying, working, and the use of
electronic devices, which contribute to a higher number of signal reflections and
a lower K'value. In contrast, during the nighttime, human activity decreases sig-

nificantly, resulting in fewer interactions with reflective surfaces and electronic
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devices. This reduction in activity leads to a more stable environment with fewer

multipath reflections, thereby increasing the K factor.
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Figure 8. PDF and CDF of the end nodes deployed on the 3rd floor at 7 am - 10 pm and 10 pm - 7 am, respectively.
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Figure 9. A total of 8 room measurement sites from the 1st to 3rd floors were measured for

reception success during daytime and nighttime.

Figure 9 illustrates the PRR at various measurement locations during the two
time periods. Overall, the PRR during the daytime are slightly higher than those
during the nighttime, and we found that certain rooms have higher PRR during
the daytime, such as the first-floor living room (99.89%), the first-floor kitchen
(99.56%), the second-floor bathroom (99.67%), and the third-floor study (99.33%).
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The primary reasons for the higher PRR during the daytime in these rooms are
related to the specific patterns of activity and the nature of interference sources.
During the daytime, many electronic devices that cause interference (such as tel-
evisions and entertainment systems) are used more heavily in the evening, reduc-
ing their impact during the daytime. Additionally, during the daytime, doors and
windows are more likely to be open, allowing for better air circulation and less
obstruction to signal propagation. Conversely, the rooms with higher PRR during
the nighttime include the first-floor dining room (89.07%), the first-floor bath-
room (99.44%), the second-floor study (99.22%), and the third-floor bathroom
(99.44%). The reasons for higher PRR during the nighttime in these rooms are
due to reduced external interference and environmental noise, as well as decreased
human activity, which reduces signal blockage and reflection, thereby improving
PRR. Particularly, the third-floor study, where the gateway is placed, shows con-
sistently high PRR both daytime and nighttime due to its central role in signal
reception, experiencing the least interference and having the shortest signal prop-

agation path.

6. Conclusion

Based on the findings and analysis presented in this paper, we conducted a com-
prehensive investigation into the behavior of LoRa signals in multi-floor home
environments, focusing on path loss, multipath propagation, temporal fading, and
PRR. The measurements revealed significant differences in signal strength and
path loss across different floors and rooms, highlighting the challenges of signal
multipath propagation in complex indoor environments. The study modeled a
non-fixed path loss model, which demonstrated higher accuracy and adaptability
compared to the fixed model and FSM. Temporal attenuation analysis shows that
there is a significant difference in signal strength between daytime and nighttime,
with some rooms having higher signal stability during the daytime and others
during the nighttime due to the different functions and usage of each room. Ad-
ditionally, our evaluation of the PRR indicated high reliability in data transmis-
sion across different conditions. The results underscore the importance of under-
standing indoor signal propagation to optimize the deployment and performance
of LoRa-based smart home systems. Future research will explore machine learn-
ing for real-time signal prediction and the interactions between LoRa and other
IoT technologies to further enhance the robustness and efficiency of smart home
systems, advancing the field of indoor wireless communications and expanding

the use of LoRa technology in the growing IoT space.
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