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Abstract 
The Internet of Things (IoT) is rapidly developing with the promotion of new 
technologies such as LoRa, which offers extensive coverage, low power con-
sumption, and strong anti-interference capabilities. This study focuses on the 
application of LoRa technology in multi-floor home environments, particu-
larly addressing the challenges of signal multipath propagation. We conducted 
comprehensive measurements of LoRa signal strength and path loss across 
different floors and rooms. Through our path loss model analysis, notable dif-
ferences were observed in Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) 
environments, with initial path loss values of 58.32 decibels and 51.52 decibels, 
respectively, and standard deviations of 18.42 decibels for LOS and 2.84 deci-
bels for NLOS. Temporal fading analysis, using Rayleigh and Rician distribu-
tions, revealed significant variations in signal strength between daytime and 
nighttime, with some rooms being more stable during the daytime and others 
more stable at nighttime due to differences in the architectural structure and 
functionality of various rooms within the home environment. Packet recep-
tion rate (PRR) ranged from 89.07% to 99.89%, highlighting the reliability of 
data transmission under different conditions. This research fills a critical gap 
in the literature by providing empirical data on indoor multi-floor home en-
vironments and significantly contributes by verifying and modeling path loss 
and temporal fading, thereby improving the design and deployment strategies 
for LoRa-based smart home systems. 
 

Keywords 
LoRa, Smart Home, Path Loss Mode, Rician, Rayleigh, Packet Reception Rate 

 

1. Introduction 

The rapid advancement of the IoT [1] has significantly impacted various sectors, 
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such as smart building and smart home applications [2]-[4]. These indoor multi-
floor environments present unique challenges due to signal multipath propaga-
tion [5] caused by various obstacles. In the realm of smart homes, various wireless 
communication technologies are employed, including Wi-Fi [6], Zigbee [7] and 
Bluetooth [8]. Wi-Fi, while widely used for high-bandwidth applications such as 
video streaming and internet browsing, suffers from high power consumption and 
limited range, making it less ideal for battery-powered IoT devices. Zigbee, alt-
hough being low-power and suitable for short-range communication, faces issues 
with scalability and interference from other devices operating in the same fre-
quency bands. Bluetooth, commonly used for personal area networks, has limita-
tions in range and the number of devices it can effectively manage. These limita-
tions highlight the need for a more robust solution like LoRa [9], which can pro-
vide reliable communication over longer distances with lower power consump-
tion due to its extensive coverage and robustness against interference. It is a mod-
ulation technique for low-power wide-area networks (LPWANs) [10] and stands 
out in the context of smart homes for its ability to offer reliable, long-range com-
munication with minimal power requirements. It supports various applications, 
including environmental monitoring, energy management, security systems, and 
automation of household appliances. The extensive coverage of LoRa ensures con-
nectivity even in large multi-floor buildings, overcoming the range limitations of 
other wireless technologies. However, the current research area lacks a compre-
hensive study of path loss [11], large-scale fading (LSF) [12], multipath effects, 
and temporal fading [13] of the LoRa signal in a multi-floor home environment. 
Understanding these factors is crucial for optimizing the deployment and perfor-
mance of LoRa-based smart home systems. This study aims to address the existing 
gaps in the literature by conducting an in-depth investigation into the behavior of 
LoRa signals in multi-floor home environments. The primary objectives include 
measuring and modeling path loss, analyzing the multipath propagation effect, 
understanding the temporal fading of LoRa signals, and measuring and analyzing 
PRR. The contributions of this study are as follows: 
• This study conducted comprehensive measurements of LoRa signal strength 

in a multi-floor home environment. 
• This study modeled a path loss model for indoor multi-floor home environ-

ments and calculated and analyzed the parameters and applicability of three 
models. 

• This study analyzed temporal fading under the multipath propagation effect 
using Rayleigh and Rician distributions. 

The remainder of this paper is organized as follows: Section 0 introduces related 
work, and Section 0 illustrates the path loss model. The measurement method is 
presented in Section 1. The experiments and their results are presented in Section 
3. Finally, section 5 concludes the paper. 

2. Related Work  

In wireless transmission networks, the wireless signal is inevitably subject to path 
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loss due to various obstacles like walls, trees, and air that hinder its propagation. 
[14]-[21] explored the use and validation of path loss models in different applica-
tion scenarios, including Low Power Wide Area Networks (LPWAN), millimeter-
wave wireless networks, indoor ultra-wideband propagation, dense small cell net-
works, device-to-device communication, and hospital environments. The studies 
employed various path loss models, such as the Free Space Path Loss (FSPL) model, 
regression coefficient models, the Longley-Rice Irregular Terrain Model (ITM), 
and the Log-Distance model. These models’ accuracy and applicability were veri-
fied through experimental measurements and simulations. Results indicated sig-
nificant differences in model performance across different environments, and in-
corporating terrain data or environment-specific parameters can enhance path 
loss prediction accuracy [19] [21]. However, the models were complex, with many 
parameters and high computational demands, making real-time applications 
challenging [19]; they were highly environment-dependent, showing varying per-
formance in different settings, lacking universality [20]; they had large prediction 
errors, with some models showing significant errors in actual signal prediction 
[14] [21]; there was a lack of comprehensive evaluation, with most studies missing 
multi-environment and multi-scenario validation [15] [18]; and there were appli-
cation limitations, with some models only applicable to specific frequency bands 
and scenarios, restricting their wider adoption and use [16] [19] [20]. 

Large-scale fading is an important factor to consider during long-distance wire-
less transmission. [22]-[26] discussed the application of LSF in various scenarios, 
including non-Bayesian activity detection, large-scale MIMO systems, disaster re-
lief scenarios, uplink capacity analysis, and sparse activity detection in multi-cell 
large-scale MIMO. These studies proposed using LSF information to improve de-
tection performance, enhance system capacity, build communication models for 
disaster scenarios, and increase spectrum efficiency. However, these studies com-
monly had the drawback of making many ideal condition assumptions, overlook-
ing the complexity and variability of real-world environments, which limits the 
accuracy and robustness of the models and methods in practical applications. 

During long-distance wireless transmission, there are usually various obstacles, so 
the shadow fading effect cannot be ignored. [27]-[31] primarily investigated shadow 
fading models and their effects in different environments and applications. [27] 
explored the correlation of shadow fading between links in multi-hop wireless 
networks, proposing a statistical model and validating its impact on network con-
nectivity. [28] proposed a method for detecting co-moving wireless devices using 
shadow fading by correlating signal strength variations. [29] compared two shadow 
fading models in ultra-wideband and other wireless systems, highlighting the ad-
vantages of the Gamma distribution model in performance analysis. [30] intro-
duced a statistical method based on log moments to estimate the composite fast 
fading and shadowing distribution in wireless communication. [31] presented a 
new fading-shadowing model and analyzed its performance in emergency wireless 
communications with unmanned aerial vehicles equipped with reconfigurable 
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intelligent surfaces. However, these models were complex and challenging to im-
plement directly in practical applications; some models made many assumptions 
specific to certain environments, lacking generality, and some methods required 
extensive experimental data for validation, increasing application difficulty and 
cost. 

In order to better study the signal attenuation during LoRa long-range wireless 
transmission, LoRa transmission modeling is needed. [32]-[38] employed various 
models to describe path loss in different environments, including the FSPL, Log-
Normal Shadowing Model (LNSM), Okumura-Hata model, and machine learning 
techniques such as Random Forest and Recurrent Neural Network (RNN). These 
studies aimed to optimize LoRa network coverage and performance by accurately 
modeling path loss to enhance the reliability and efficiency of IoT applications. 
These models performed differently across environments: traditional models like 
FSPL [32] [33] [38] were accurate in obstacle-free environments but had large er-
rors in complex settings; LNSM [34] and Okumura-Hata [35] models considered 
environmental impacts through empirical data but may still produce errors in new 
application scenarios. Machine learning methods, like Random Forest [35] and 
RNN [32], significantly improved path loss prediction accuracy but faced chal-
lenges in adaptability to new environments. Overall, the accuracy and applicabil-
ity of LoRa path loss models required further optimization to suit the variable real-
world application environments.  

3. Modeling Methodology 
3.1. Large-Scale Fading 

LSF, also known as path loss, is a key component in the characterization of radio 
wave propagation in wireless communication systems. It describes the attenua-
tion of the received signal strength (RSS) over long distances and various obsta-
cles, such as buildings and terrain, between the transmitter (Tx) and receiver 
(Rx). This type of fading primarily results from the combined effects of path loss 
and shadowing. In LSF analysis, it is crucial to model the path loss accurately, 
analyze the shadowing effect, and determine the relevant distances in different 
environments. 

3.1.1. Path Loss Model 
Path loss refers to the reduction in power density of an electromagnetic wave as it 
propagates through space. It is influenced by the distance between the Tx and Rx 
and the environment through which the wave travels. It is typically modeled using 
the following equation [39].  

 ( ) ( )0
0

10 log dPL d PL d n X
d σ= + +  (1) 

where:  
• d  is the separation distance between Tx and Rx.  
• Xσ  is a zero-mean Gaussian distributed variable with standard deviation σ .  
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• ( )0PL d  is the path loss at the reference distance (1 meter in this study). The 
least squares regression [40] was used to calculate ( )0PL d . First, for each 
measurement sample i, the error ie  is defined as follows: 

 ( ) ( )( )0 10 logi i ie PL PL d n d= − +  (2) 

where iPL  is the measured path loss at distance id . The sum of the squared 
errors S can be computed as follows: 

 ( ) ( )( ) 22
0

1 1
10 log

N N

i i i
i i

S e PL PL d n d
= =

 = = − + ∑ ∑  (3) 

where N is the total number of measurement samples. To calculate ( )0PL d , 
the partial derivative of the objective function of ( )0PL d , and let the deriva-
tive be zero: 

 
( ) ( ) ( )( )0

10

2 10 log 0
N

i i
i

S PL PL d n d
PL d =

∂  = − − + = ∂ ∑  (4) 

From Equation (4), the ( )0PL d  can be solved as follows: 

 ( )0
1 1

1 10 log
N N

i i
i i

PL d PL n d
N = =

 
= − 

 
∑ ∑  (5) 

• n  is the path loss exponent, which varies by environment. For example, in 
free space, n  is typically 2, while in urban or indoor environments, n  can 
range from 2 to 4 or higher. The same least-squares regression is used to cal-
culate n , which is derived as follows: 

 
( )

( )
01 1

2

1

log log

10 log

N N
i i ii i

N
ii

PL d PL d d
n

d
= =

=

−
= ∑ ∑

∑
 (6) 

3.1.2. Shadowing Effect 
Shadowing [41], or log-normal fading [42], refers to the variations in signal 
strength caused by obstacles like buildings, trees, and other large objects obstruct-
ing the LOS between Tx and Rx. The term Xσ  in the path loss model accounts 
for these random variations. It is modeled as a zero-mean Gaussian random vari-
able with standard deviation σ , which is derived as follows: 

 ( )
1

1 n

i
i

X X
N

σ
=

= −∑  (7) 

where iX  is the deviation between the i-th measured sample and the predicted 
values. X  is the mean of all deviations. 

3.1.3. Decorrelation Distance 
Decorrelation distance [43] is a key parameter in characterizing the spatial corre-
lation of shadow fading in wireless communication environments. It is defined as 
the distance over which the autocorrelation of the signal’s shadow fading compo-
nent drops to a specified threshold: 0.1 in this study. This distance indicates how 
quickly the signal variations due to shadowing become uncorrelated as the receiver 
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moves away from the transmitter. The normalized autocorrelation function ( )xxR i , 
is given by: 

 ( ) 1
2

1

N i
p p ip

xx N
qq

X X
R i

X

−
+=

=

=
∑
∑

 (8) 

where pX , p iX +  and qX  are the deviation of the shadow fading measurement 
samples at different locations. 

3.2. Temporal Fading 

In wireless communication, temporal fading is caused by multipath propagation 
and the Doppler effect. However, since devices in smart homes are typically sta-
tionary, the Doppler effect is more relevant to mobile devices, making temporal 
fading in smart homes primarily influenced by multipath propagation alone. Mul-
tipath effects refer to signals traveling from the transmitter to the receiver along 
multiple paths, including direct, reflected, diffracted, and scattered paths. The sig-
nals arriving at the receiver at different times cause their superposition to result 
in either constructive interference (signal enhancement) or destructive interference 
(signal attenuation), leading to fluctuations in the RSS. Scattering refers to the phe-
nomenon where wireless signals encounter obstacles that are irregular or smaller 
than the signal wavelength (such as leaves or rough surfaces of buildings), causing 
the signals to scatter in various directions and resulting in a more dispersed energy 
distribution at the receiver, which receives multipath signals from different direc-
tions. Temporal fading is the change in signal strength over time caused by these 
phenomena. Temporal fading can be divided into slow fading and fast fading: slow 
fading is caused by large-scale changes (such as the macroscopic movement of de-
vices or building obstructions), resulting in relatively gradual changes in signal 
strength; fast fading is caused by small-scale changes (such as multipath propaga-
tion and phase interference), leading to rapid changes in signal strength. By ana-
lyzing the measured RSS with Rayleigh [44] and Rician [45] distributions, we can 
gain a more comprehensive understanding of the impact of temporal fading on 
LoRa signals.  

3.2.1. Rayleigh Distribution 
In a multipath propagation environment without a LOS, the RSS follows the Ray-
leigh distribution. The Rayleigh distribution is applicable to scenarios where all 
signals are from scattered paths, with its probability density function (PDF) [46] 
given by:  

 ( ) ( )
2

22
2 e , 0

rrf r rσ

σ

−
= ≥  (9) 

where r  is the RSS, and σ  is the standard deviation of the signal strength. The 
cumulative distribution function (CDF) [47] of the Rayleigh distribution is:  

 ( ) ( )
2

221 e , 0
r

F r rσ
−

= − ≥  (10) 
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3.2.2. Rician Distribution 
The Rician distribution model is used to describe the RSS in environments with 
LOS and multipath propagation. Its PDF is given by: 

 ( ) ( )
2 2

22
02 2e , 0

r Ar rAf r I rσ

σ σ

+
−  = ≥ 

 
 (11) 

where r  is the RSS, A is the amplitude of the direct path signal, σ  is the stand-
ard deviation of the multipath components, and 0I  is the modified Bessel func-
tion of the first kind. Among the parameters of Rician distribution, the Rician 
factor K has important physical significance and represents the ratio between the 
power of the direct-view path signal and the power of the multipath-scattered sig-
nal, which reflects the relative strengths of the direct-view path and multipath ef-
fects in the channel [48]. This factor is defined as follows: 

 
2

22
AK
σ

=  (12) 

When K is high, the direct path signal dominates, resulting in smaller signal fluc-
tuations and fading, which is suitable for outdoor open environments or LOS trans-
mission scenarios. While K is low, the scattered path signals dominate, leading to 
larger signal fluctuations and fading, commonly found in indoor environments or 
scenarios with many obstacles. When 0K = , the Rician distribution degenerates 
into the Rayleigh distribution, where all signals are from scattered paths. 

3.3. Coverage Estimation 

We estimated the coverage range of the LoRa signal in an indoor multi-floor home 
environment. The selected parameters are listed in Table 1. We assume an ambi-
ent attenuation coefficient of 45, an attenuation coefficient of 15 dB per floor, a 
signal-to-noise ratio (SNR) of −6 dB, a transmitter and receiver antenna gain of 0 
dBi for both, and 0 dB connector loss. By estimating using the Free Space Path 
Loss Model [49] and the ITU-R P.1238 model [50], the coverage range of the LoRa 
signals is derived: 137.37 meters. This distance allows a single gateway to com-
pletely cover the entire three-layer measurement environment. 
 
Table 1. LoRa physical layer settings. 

Spreading  
factor 

Bandwidth  
(KHz) 

Coding rate Preambles 
Frequence  

(MHz) 
Transmit 

Power (dBm) 

 500 4/5 8 470 - 510 20 

4. Measurement Method 

On the third floor, we set the LOS and NLOS measurements as illustrated in Fig-
ure 1, with the gateway on the desk in the study. In the LOS scenario, a total of 80 
points were measured, all aligned linearly with the gateway. The first point was 
positioned 0.1 meters from the gateway, with each subsequent point spaced 0.1 
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meters apart. In the NLOS scenario, a total of 31 points were measured and aligned 
linearly. The first point was placed in the adjacent bathroom, with a horizontal 
distance d1 of 1.7 meters and a vertical distance d2 of 0.3 meters from the gateway. 
Each subsequent point was measured at intervals of 0.1 meters. The distance d 
from the gateway to each of the 31 points is calculated using the Pythagorean the-
orem [51]. 

 

 
Figure 1. LOS and NLOS measurement mode. 

 
The layout schematic in Figure 2 illustrates the distribution of gateways and 

end nodes throughout the home. Appliances and furniture are installed on the 
first floor: an air conditioner, gas stove, water heater, tables, chairs and sofa, re-
frigerator, television, and microwave oven. The second floor features two beds, a 
water heater, three air conditioners, and a bathroom. The third floor is equipped 
with two air conditioners, a television, a bed, a water heater, and a sofa. The meas-
uring environment is characterized by a complex array of household furniture and 
appliances. Figures 3(a)-(c) show the placement of measurement locations for 
some of the end nodes contained: the first-floor living room, the third-floor bath-
room, and the third-floor study. The gateway was placed in the third-floor study, 
as depicted in Figure 3(d), also highlighted by a red circle. The antennas of the 
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gateway and the end nodes were oriented vertically and horizontally relative to 
the ground, respectively. The measurement environment consisted of rooms with 
brick walls and wooden furniture. 

 

 
Figure 2. 3-story home building measurement point locations. 

 

 
Figure 3. Measurement of physical photos. 

5. Results 
5.1. Large Scale Fading 

Compare the path loss fitting performance of the non-fixed model, fixed model, 
and free-space model (FSM). Figure 4(a) and Figure 4(b) show the fitting results 
of the three models, where blue dots represent measurement samples, the red solid 
lines represent the non-fixed model, the orange dashed lines represent the fixed 
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model, and the gray dashed lines represent the FSM. Table 2 shows the results for 
both scenarios. We found that the fixed model performs well at short distances 
but shows significant deviations at longer distances due to its failure to fully ac-
count for the nonlinear effects of distance on path loss. The FSM assumes no ob-
stacles in the propagation path and ignores multipath effects and terrain varia-
tions. In contrast, the non-fixed model has flexible parameters that better adapt 
to various factors in the actual wireless propagation environment, such as building 
obstacles, terrain variations, and multipath effects. 
 
Table 2. Results of the LOS and NLOS. 

LSF  
Scenario 

Non-Fixed Intercept  
(computed from the Equation (5)) 

Fixed Intercept  
(measured at d0) 

PL(d0) 
[dB] 

n 
[-] 

σ 
[dB] 

PL(d0) 
[dB] 

n 
[-] 

σ 
[dB] 

LOS 58.32 2.34 18.42 51.52 48.47 2.84 

NLOS 57.00 2.26 18.50 67.00 6.00 5.25 

Average 57.66 2.3 18.46 59.26 27.23 4.04 

FSM 59.95 - - 40.05 - - 

 

 
Figure 4. The path loss model measurement result. 
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Figure 4(c) and Figure 4(d) show the decorrelation distance of LOS and NLOS 
with values of 2.3 m and 2.14 m, respectively. The shorter decorrelation distance 
in NLOS environments compared to LOS is primarily due to the increased reflec-
tions, scattering, and diffraction in NLOS propagation paths. These factors cause 
more frequent and severe fluctuations in signal strength, leading to a faster de-
crease in autocorrelation. 

5.2. Temporal Fading 

The RSS samples collected from various rooms in a multi-floor building demon-
strate significant variations in signal strength between daytime (7 - 22) and 
nighttime (22 - 7). The RSS samples for the first-floor rooms, including the bath-
room, dining room, kitchen, and living room, exhibit similar patterns of varia-
tion. Figures 5(a)-(d) all illustrate that during the daytime, the signal strength 
tends to be weaker and more variable. This instability is due to increased activity 
levels within the house, leading to more physical obstructions and higher inter-
ference from other electronic devices in use. Conversely, during the nighttime, 
the signal strength is observed to be more stable and generally stronger. The 
reduced human activity and lesser usage of electronic devices during the 
nighttime contribute to a clearer signal path with fewer interferences and ob-
structions. The second-floor rooms, comprising the bathroom and study, ex-
hibit similar trends in their RSS samples, as shown in Figure 5(e) and Figure 
5(f). For the third-floor rooms, including the bathroom and study, the RSS sam-
ples, depicted in Figure 5(g) and Figure 5(h), follow the same pattern observed 
on the lower floors. This pattern indicates the significant impact of environmen-
tal factors on LoRa signal performance. 

 

 
Figure 5. RSS values of the end nodes deployed on the 8th floor and 9th floor at 2 pm - 7 pm and 7 pm - 12 pm, respectively. 
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Figure 6 shows the PDF and CDF of the RSS samples for the first floor. We can 
see that the K values of all measured end nodes are higher during the daytime than 
at nighttime. It is expected that K values might be higher during the nighttime due 
to more stable environments. However, in this analysis, higher K values during 
the daytime are observed in several rooms. This can be attributed to specific usage 
patterns and structural factors: The living room, kitchen, and dining room are 
used throughout the daytime for various activities, which involve intermittent ra-
ther than continuous use of electronic devices. These rooms benefit from natural 
light and ventilation during the daytime, reducing the reliance on electronic light-
ing and appliances that generate interference. The controlled and less intensive 
use of electronic devices in these rooms during the daytime leads to a more stable 
environment for signal propagation, resulting in higher K values. 

 

 
Figure 6. PDF and CDF of the end nodes deployed on the 1st floor at 7 am - 10 pm and 10 pm - 7 am, respectively. 
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The measurement results of the second floor are shown in Figure 7. During the 
daytime, the bathroom exhibits a lower K value compared to the nighttime. This 
substantial difference can be attributed to increased human activity and the use of 
reflective surfaces such as mirrors and tiles during the daytime, which enhance 
multipath effects. During the nighttime, reduced activity and fewer interactions 
with these surfaces result in a higher K value due to a more stable environment 
with fewer multipath reflections. In contrast, the study room demonstrates a dif-
ferent pattern. The daytime K value is higher than the nighttime K value. The 
higher K values during the daytime can be explained by its specific usage charac-
teristics. During the daytime, this room is used for focused tasks such as studying 
or remote work, involving a stable setup with minimal movement and fewer active 
electronic devices compared to other times. This consistent environment reduces 
multipath reflections and signal fluctuations, leading to higher K values. At night, 
the study may be repurposed for other activities or left unused, which could in-
troduce variability in the environment and lower the K value due to different pat-
terns of electronic device usage and human activity. 

 

 
Figure 7. PDF and CDF of the end nodes deployed on the 2nd floor at 7 am - 10 pm and 10 pm - 7 am, respectively. 

 
Figure 8 illustrates the PDF and CDF of the RSS samples for the third floor. 

Analysis of the K values for the third floor showed a consistent trend of lower K 
values during the daytime than the nighttime for both the bathroom and the study. 
In the bathroom, frequent usage of water fixtures and mirrors during the daytime 
introduces more multipath effects, causing a greater dispersion of signal paths and 
thereby reducing the K factor. Similarly, the study room is likely to experience 
increased activity during the daytime, such as studying, working, and the use of 
electronic devices, which contribute to a higher number of signal reflections and 
a lower K value. In contrast, during the nighttime, human activity decreases sig-
nificantly, resulting in fewer interactions with reflective surfaces and electronic 
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devices. This reduction in activity leads to a more stable environment with fewer 
multipath reflections, thereby increasing the K factor. 

 

 
Figure 8. PDF and CDF of the end nodes deployed on the 3rd floor at 7 am - 10 pm and 10 pm - 7 am, respectively. 

5.3. Coverage 
 

 
Figure 9. A total of 8 room measurement sites from the 1st to 3rd floors were measured for 
reception success during daytime and nighttime. 

 
Figure 9 illustrates the PRR at various measurement locations during the two 

time periods. Overall, the PRR during the daytime are slightly higher than those 
during the nighttime, and we found that certain rooms have higher PRR during 
the daytime, such as the first-floor living room (99.89%), the first-floor kitchen 
(99.56%), the second-floor bathroom (99.67%), and the third-floor study (99.33%). 
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The primary reasons for the higher PRR during the daytime in these rooms are 
related to the specific patterns of activity and the nature of interference sources. 
During the daytime, many electronic devices that cause interference (such as tel-
evisions and entertainment systems) are used more heavily in the evening, reduc-
ing their impact during the daytime. Additionally, during the daytime, doors and 
windows are more likely to be open, allowing for better air circulation and less 
obstruction to signal propagation. Conversely, the rooms with higher PRR during 
the nighttime include the first-floor dining room (89.07%), the first-floor bath-
room (99.44%), the second-floor study (99.22%), and the third-floor bathroom 
(99.44%). The reasons for higher PRR during the nighttime in these rooms are 
due to reduced external interference and environmental noise, as well as decreased 
human activity, which reduces signal blockage and reflection, thereby improving 
PRR. Particularly, the third-floor study, where the gateway is placed, shows con-
sistently high PRR both daytime and nighttime due to its central role in signal 
reception, experiencing the least interference and having the shortest signal prop-
agation path. 

6. Conclusion 

Based on the findings and analysis presented in this paper, we conducted a com-
prehensive investigation into the behavior of LoRa signals in multi-floor home 
environments, focusing on path loss, multipath propagation, temporal fading, and 
PRR. The measurements revealed significant differences in signal strength and 
path loss across different floors and rooms, highlighting the challenges of signal 
multipath propagation in complex indoor environments. The study modeled a 
non-fixed path loss model, which demonstrated higher accuracy and adaptability 
compared to the fixed model and FSM. Temporal attenuation analysis shows that 
there is a significant difference in signal strength between daytime and nighttime, 
with some rooms having higher signal stability during the daytime and others 
during the nighttime due to the different functions and usage of each room. Ad-
ditionally, our evaluation of the PRR indicated high reliability in data transmis-
sion across different conditions. The results underscore the importance of under-
standing indoor signal propagation to optimize the deployment and performance 
of LoRa-based smart home systems. Future research will explore machine learn-
ing for real-time signal prediction and the interactions between LoRa and other 
IoT technologies to further enhance the robustness and efficiency of smart home 
systems, advancing the field of indoor wireless communications and expanding 
the use of LoRa technology in the growing IoT space. 
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