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Abstract

This paper proposes a unique approach to load forecasting using a fast con-
vergent artificial neural network (ANN) and is driven by the critical need for
power system planning. The Mazoon Electrical Company in Oman provided
the real data for the study of monthly load forecasting using ANNSs, which are
presented in this paper. The link between past, present, and future temperatures,
loads, and humidities is learned by the artificial neural network (ANN). The test
ANN predicts reasonably accurate results of predicted power loads. The under-
lying exercise uses a traditional multilayer ANN architecture with feed-forward
and backpropagation techniques in addition to a recently proposed fast-conver-
gence algorithm that is deduced in terms of eigenvalues of a Hessian matrix
associated with the input data of temperature and humidity changing over
time. The anticipated results are cross verified with actual power load data
obtained.
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1. Introduction

Power load forecasting using an artificial neural network (ANN) that allows for
fast convergence with precise forecasts is the focus of this study. To ascertain how
much power will be required at a specific moment to supply end customers and how
that demand will impact the utility grid, accurate load forecasting is crucial. By using
the power load forecast, waste and inefficiency may be prevented and sufficient
power can be made available to fulfill consumption demands.

As explained by Neelakanta and De Groff in [1], an artificial neural network

(ANN) is a mathematical model that has been developed as a computational tool
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based on the image of the biological brain complex. The Hessian matrix of the per-
tinent input data serves as the foundation for supervised training. Details provided
by the Mazoon Electrical Company in Oman provide the pertinent data for this in-
vestigation. For the years 2007 and 2008, monthly load data is gathered for a specific
Oman region known as Al Batinah. In other words, twenty-four months’ worth of
temperature and humidity data—two whole years—must be entered into the ANN
during training. The maximum, minimum, and average temperatures, as well as the
maximum, minimum, and average humidity, are the six inputs. Megawatts of load
data are the outputs. In other words, this load data serves as the training’s teacher.
The intended output is comparable to that of a supervisory teacher.

The mathematical method used by the artificial neural network is one that con-
verts data from an input space to an output space. In order to minimize the error—
that is, the difference between the network’s actual output vector and the intended
output vector—supervised training aims to iteratively update a set of connectivity
weights that are introduced between the neural layers in the ANN.

A multi-layered feed-forward perceptron (MLFP) consisting of an input layer, one
hidden layer, and one output is the test ANN used in the simulations (Figure 1).
Through linked inner and hidden layers, the input values advance. In order to squash
the total output to a limited level, it is fed into a nonlinear sigmoidal function. The
sigmoid-compressed output is then compared with a teacher value, which stands for

the intended output aim.

Inout Hidden Teacher
npu
Iaper layer input
Y Weights
Ti
Inputs O O \Z
yi=f(x) | © o
' | 0i=KZz
e 4 o
; K: Sigmoidal plus
linear scaling
V Weight vector <4—— Error
A neuronal unit g=f(0;, T)

Figure 1. Test ANN architecture constructed with 6 input neuron units (NUs), 1 hidden
layer with 6 NUs, 1 output unit, and hyperbolic tangent sigmoid.

A backpropagation gradient technique computes and applies the resulting error
to the interconnection weights. In other words, an output, O, is indicated by the
sigmoid-compressed value and compared to a teacher/supervisory (reference) value,
T;, which represents the intended output aim. After that, the error corresponding
to (O; — Ty) is backpropagated. This error is stated in terms of an error function,
€, which represents the mean-squared value of (O; — T;). When the error function
is applied to the inter-connection weights, Wy, the backpropagation (BP) technique,
usually allows a gradient based on steepest descent, which alters the weight vector
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values (either increasing or decreasing).

The rth ensemble of inputs {y:}, weighted across the input-layer (i=1,2, 3, ..., I =
6 units) and the hidden-layer (j =1, 2, 3, ..., ] = 6 units), is represented by the summed
value (2z;) at the output unit in Figure 1. A hyperbolic tangent (sigmoidal) func-
tion, f(.), then squashes its linearly scaled value, K x Xz; (where K is a linear-scal-
ing constant), producing the result O; = f(K x Xz;). Additionally, the set {Wj} spec-
ifies the coefficients of weighting of the connections between the input- and hid-
den-layers. Additionally, as shown, the ANN’s topology incorporates backpropa-
gation and supervised learning enabled by a teacher value T;. The gradient of an
error, €, which depends on (O;, Ti), is defined by: (:tAWjj): and the entity a x
(£AWyj) is then applied iteratively to change the current value of Wy until the error
(¢) hits zero or a designated low, “stop” value. In this case, a stands for a learning
coefficient that can be selected to attain a desired (quick) rate of convergence of the
enforced repetition.

One effective method for training feed-forward neural networks is the backprop-
agation algorithm. However, it has a slow convergence rate and may produce less-
than-ideal results because it updates the weights using the steepest descent approach
[2]. As aresult, a method that speeds up convergence is employed in this work [3]
[4]. In other words, the authors have created a generalized process that, when the
learning coefficient is chosen well, causes the ANN to converge to more accurate
values more quickly [3] [4].

The number of iterations needed to train the net is significantly reduced when
this quicker method is used. The authors have demonstrated that the greatest ei-
genvalue of the Hessian matrix should be inversely proportional to the learning
rate a 3] [4]. There are I = 6 input units, y = {y, y», ...yi} in Figure 1. In the current
example, yTy is an I x I (6 x 6) square matrix, and it corresponds to the Hessian
matrix. This Hessian matrix can be expressed diagonally [HD]. The Hessian matrix’s
symmetry results in a single, distinct eigenvalue, Ay, in the diagonal form, as illus-

trated below (all other eigenvalues are zero):

00 0 .. 0
00 0 .. 0

[HD]=|0 0 0 .. © (1)
00 0 ... 4]

To facilitate faster convergence, the learning rate (a) applied to the test ANN
would be equivalent to the reciprocal of the biggest, single eigenvalue, Ay, of the
Hessian matrix, as mentioned before. The input data for the current study relates
to each ensemble of the test power load profile under investigation. The infor-
mation provided by the Mazoon Electrical Company in Oman is the basis for the
power load data that is taken into consideration. The meteorological department
of Oman provided the temperature and humidity data. As a result, the effective-
ness of the research conducted here using the suggested ANN-based approach and

the power load predictions are cross-checked against specifics of the actual power
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load values.

This research predicts a monthly necessary power demand using the suggested
neural network model and compares it with actual data. Using the learning rate
as the reciprocal of the greatest eigenvalue of the Hessian matrix, it will be demon-

strated that convergence towards accurate prediction is achieved rapidly.

2. ANN-Based Load Forecasting Method

2.1. Description of the Data Set and Motivation for the ANN to
Perform Load Forecasting

As everyone knows, there is a relationship between temperature, humidity, and load
characteristics. In warmer climates, more energy is required to cool. Air tempera-
ture is a necessary, but not sufficient, variable for adequately predicting electricity
demand. Humidity plays an important role as well in electricity use. A combina-
tion of temperature and humidity affects necessary power load. Forecasting elec-
tric load is essential for power systems’ operational planning and for preventing
disruptions. Predictions from load forecasting might be short-term (for the next
few hours or days) or long-term (for the next few months or years). The cost and
dependability of the entire power system are strongly impacted by how accurate
these projections are. Accurate load forecasting keeps the power system stable and
balanced by ensuring that there is always an enough supply of electricity to fulfill
demand. Utilities can also prevent the additional expenses that come with produc-
ing too much or too little electricity by using demand forecasts.

Therefore, a way to forecast electricity load is proposed here. ANNs can be used
to do this task of estimating needed future power loads by using historical load data
as well as historical data on temperature and humidity. The results of this study are
confirmed by comparing them with real data, and it will be shown the ANN model
used was able to predict correctly and give closely matching numbers on monthly
power loads. The ANN used was successfully able to spot a pattern between inputs
of temperature and humidity and output power load.

The ANN ability to learn from experience (existing data) makes this method
very useful in forecasting power load. An underlying relationship between the in-
puts and the outputs is assumed by ANN forecasting [5]. The MLFP ANN used in
this work has an inherent capability of arbitrary input-output mapping, and this

makes it successful in forecasting power load.

2.2. Prescription of the Teacher Value

The data used to train the neural network is taken from the Mazoon Electrical
Company, Oman [6]. Load data for twenty-four months (years 2007 and 2008)
are collected for a particular region called Al Batinah in Oman. This monthly load
data was then used as teacher values for the ANN (after normalization). The in-
formation that is inputted into the input layer of the neural network comprises
normalized historical weather information on humidity and temperatures over

the same twenty-four months. The test ANN architecture shown in Figure 1 needs
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a teacher value (T;) in both training as well as in prediction phase. It is prescribed
as follows: Month 1 data consisting of 6 normalized inputs (maximum temper-
ature Tmax, minimum temperature Tmin, average temperature Tavg, maximum
humidity Hmax, minimum humidity Hmin, average humidity Havg) is paired
with a teacher value consisting of month 1 power load requirements Loadavg.
Similarly, month 2 data consisting of 6 corresponding normalized weather inputs
is paired with a teacher value consisting of month 2 power load requirements.
Weather information for twenty-four months is thus inputted into the ANN and
is paired with corresponding power load output requirements. In this method, the
ANN is trained to spot the monthly pattern between weather parameters (max-
imum temperature, minimum temperature, average temperature, maximum hu-
midity, minimum humidity, average humidity) and the required load output
power.

Table 1 summarizes the initial data procured on weather conditions of temper-

ature and humidity over the twenty-four-month period.

Table 1. Initial data procured on temperature and humidity and power load.

Month/year ~ Tmax ‘C Tmin °C Tavg ‘C  Hmax Hmin Havg L(;j[iillvg
Jan/07 30 12 21 89 25 57 96.65
Feb/07 36 16 26 94 17 55.5 94.95

March/07 36 17 26.5 95 10 52.5 115.85
April/07 42 16 29 95 10 52.5 199.6
May/07 44 26 35 88 7 47.5 247.8
June/07 46 24 35 98 15 56.5 192.95
July/07 46 28 37 98 16 57 258.9
Aug/07 45 27 36 92 20 56 247.4
Sept/07 43 25 34 98 11 54.5 228

Oct/07 38 20 29 98 12 55 173.2
Nov/07 61 18 39.5 94 22 58 121.5
Dec/07 33 16 24.5 89 33 61 96.65
Jan/08 29 13 21 98 28 63 106.725
Feb/08 36 11 23.5 88 18 53 84.225

March/08 38 17 27.5 99 8 53.5 143.075
April/08 43 21 32 94 9 51.5  208.925
May/08 45 23 34 95 9 52 266.525
June/08 48 29 38.5 92 9 50.5  296.175
July/08 45 27 36 94 8 51 270.1
Aug/08 46 25 355 98 25 61.5 237.15
Sept/08 44 26 35 99 15 57 278.05

Oct/08 41 24 325 93 14 535  256.025

Nov/08 35 18 26.5 94 21 57.5 166.95

Dec/08 30 14 22 99 39 69 109.575
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Weather and load-normalized parameters are shown in Table 2.

Table 2. Normalized initial data procured on temperature, humidity and power load.

Month/year Tmax ‘C Tmin °C Tavg ‘C Hmax Hmin Havg Load MW

Jan/07 0.492 0.414 0.532 0.89 0.641 0.826 0.270
Feb/07 0.590 0.552 0.658 0.94 0.436 0.804 0.266
March/07 0.590 0.586 0.671 0.95 0.256 0.761 0.324
April/07 0.689 0.552 0.734 0.95 0.256 0.761 0.558
May/07 0.721 0.897 0.886 0.88 0.179 0.688 0.693
June/07 0.754 0.828 0.886 0.98 0.385 0.819 0.540
July/07 0.754 0.966 0.937 0.98 0.410 0.826 0.724
Aug/07 0.738 0.931 0.911 0.92 0.513 0.812 0.692
Sept/07 0.705 0.862 0.861 0.98 0.282 0.790 0.638
Oct/07 0.623 0.690 0.734 0.98 0.308 0.797 0.485
Nov/07 1 0.621 1 0.94 0.564 0.841 0.340
Dec/07 0.541 0.552 0.620 0.89 0.846  0.8841 0.270
Jan/08 0.475 0.448 0.532 0.98 0.718 0.913 0.299
Feb/08 0.590 0.379 0.595 0.88 0.462 0.768 0.236

March/08 0.623 0.586 0.696 0.99 0.205 0.775 0.400
April/08 0.705 0.724 0.810 0.94 0.231 0.746 0.584

May/08 0.738 0.793 0.861 0.95 0.231 0.754 0.746
June/08 0.787 1 0.975 0.92 0.231 0.732 0.829
July/08 0.738 0.931 0.911 0.94 0.205 0.739 0.756
Aug/08 0.754 0.862 0.899 0.98 0.641 0.891 0.663
Sept/08 0.721 0.897 0.886 0.99 0.385 0.826 0.778
Oct/08 0.672 0.828 0.823 0.93 0.359 0.775 0.716
Nov/08 0.574 0.621 0.671 0.94 0.538 0.833 0.467
Dec/08 0.492 0.483 0.557 0.99 1 1 0.307

2.3. Prescription of the Learning Coefficient and Adjustment of the
Weights

To update the interconnection weights, the backpropagated error is applied using
the formula w (new) = w (old) £ p x (de/dw). The weight coefficients {wy} should
be able to adopt values that allow the output error, € to rapidly converge to zero
(or a predetermined extremely small, “stop” value) at the required learning rate.
To achieve a rapid convergence of the net, the relevant learning rate is inferred [3]
[4].

In the present study, each input data set consists of six (normalized) weather
parameters (as listed in Table 2), and constructing a corresponding transpose [y,
Y25 - Y6l @ [6 x 6] Hessian matrix [H] is specified as follows: [HD] = [y1, Y2, «..,
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Y6l® [¥15 Y25 --o» Y], A symmetric square [(I = 6) x (I = 6)] matrix with one non-
vanishing eigenvalue as a diagonal element is referred to by the equivalent [HD].
In other words, there is only one non-vanishing eigenvalue left for every ensemble

data set.

Table 3. Computed Hessian eigenvalues, s for the ensemble data sets {r = 1, 2, ...24}.

r 1 2 3 4 5 6 7 8 9 10
Ass 3.77  3.03 3.41 392 428 371 4.00 344 317 284
r 11 12 13 14 15 16 17 18 19 20
Ass 242 3.02 327 429 3.09 364 401 419 3.82  3.39
r 21 22 23 24
Ass 2.86 269 281 2.58

As indicated earlier, the desired learning rate can be set inversely proportional
to the maximum eigenvalue of the data set. From data in Table 3, this maximum
eigenvalue, Amay, occurs for the ensemble, r = 14 and has a value, An. = 4.2936.

Hence, corresponding learning rate ais: (1/Amax) = 0.2329.

3. Results and Discussion
3.1. Learning Curves

The learning rate used in the training plans mentioned above is a = 1/Ana. By de-
termining pertinent learning curves, it is shown how effective it is to use (@ = 1/Amax)
for the learning rate (instead of the conventional, arbitrarily defined number, say,
a = 0.001) to achieve a fast convergence. Figure 2 shows examples of these com-
parisons using learning curves derived for an exemplary training ensemble with
r = 1. By first determining an appropriate value for the learning rate based on a =

1/Amax., you can see that the convergence rate is significantly faster.

Learning Curve obtained with a set of training ensembles for a. = 0.2329
0.18

0.16

0.14

0.12+
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error

0.08+

0.06
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0.02+

0 5 10 15 20 25
Number of iterations
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Learning Curve obtained with a set of training ensembles for a=0.001
0.16 . . : . - ;

0.14
0.12
0.1

0.08

error

0.06
0.04
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Figure 2. Learning curves obtained with the set of training ensemble r = 1 using an arbi-
trary learning coefficient, @ = 0.001 and adopting an optimum value of a = 0.2329.

3.2. A Note on Learning Coefficient

Selecting a learning coefficient (also known as learning rate) in an ANN involves
finding a value that allows the network to learn effectively by updating its weights
without getting trapped in local minima or diverging due to excessively large, itera-
tive steps of updates. Mostly, the choice of learning coefficient is done by trial and
error with a small value in the beginning and gradually increasing it to an optimal
value by monitoring the training loss on a validation set.

In order to facilitate a rapid convergence towards a desirable level of output
prediction, it is suggested that the learning rate (a) applied to the test ANN, should
correlate with the reciprocal of the biggest, single eigenvalue, Ay of the aforemen-
tioned Hessian matrix. Choosing the largest, single eigenvalue, Ay is specific to en-
forcing the derivative of e to zero as required at the global minimum. The Hessian
representation specifies the average over all inputs of yy, with yT being the trans-
pose of y in multidimensional cases. Additionally, the cost surface’s form is rep-
resented by the Hessian, whose eigenvalues indicate how steep the surface is along
the curvature directions; a steep curvature is indicated by a big eigenvalue. As
such, the learning rate being inversely proportional to this large eigenvalue im-
plies an optimally small value towards attaining the global minimum needed. Rel-
evant single learning rate chosen thereof will not cause any divergence along the
steep directions (specifically pertinent to the large eigenvalue direction). In es-
sence, denoting Am., as the largest eigenvalue of the Hessian matrix, the learning
rate of the order of (1/Amax), would lead to optimal convergence towards the global
minimum.

In all, the choice of learning rate as above is based on the gradient descent op-
timization with an enforced architecture of the test ANN to have identical number
of neurons in the input and first hidden layer so that the resulting interconnection

weight coefficients are represented by a symmetric square matrix; and, the corre-
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sponding Hessian format is diagonalized to obtain the highest eigenvalue as
above.

The learning rate is a hyperparameter that controls the extent of changing the
model, in response to the estimated error each time the model weights are updated
in the iteration implied. If the learning rate is too small, it may result in a long
training process and a too large a value may result in learning a sub-optimal set of
weights too fast, that is, causing an unstable training process. Thus, the learning
rate is the most important hyperparameter when configuring the neural network.
Therefore, the proposed method is devised to offset the traditional intuitive guess
or trial-and-error approach in prescribing learning rate, with a simple architec-
tural symmetric connectivity between equal number of neurons taken at the input
and the first hidden layer. The efficacy of relevant convergence performance is
verified with data pertinent to predicting power load details in an actual electric

power system.

3.3. Predicted ANN Output Values

The following Table 4 shows the predicted load for January 2009. The input data
was for the previous 24 months (prior to January 2009).

Table 4. Predicted load compared to actual load power.

Month Actual load Predicted load Percentage error
Jan 2009 103.7 MW 101.3 MW 2.3%

As can be seen in Table 4, the predicted results are very close to actual historical
data.

4. Conclusions

An encouraging use of ANN for load forecasting has been shown in the current

study. The outcomes, which are displayed in Table 4, are extremely encouraging.

The data confirms that the ANN predicts future power loads with a high degree of

accuracy. Table 4 shows that the ANN prediction of power load closely matches

the historical measured values.
A list of the study’s main findings is as follows:

e Forecasting electric load is an application for ANN. The findings demonstrate
that the ANN can effectively interpolate between training sets’ load and weather
pattern data to produce future load patterns.

o It was discovered that the convergence rate can be accelerated by first determin-
ing an appropriate value for the learning rate based on (a = 1/Anax), where Anax
is the maximum eigenvalue of the corresponding Hessian matrices of the input
data.

o The ANN also converges with slightly more accurate values when Anm.y is used.

e The enhancement offered here can be regarded as a worthwhile and practical

substitute for employing an arbitrary learning rate.
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