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Abstract 
This paper proposes a unique approach to load forecasting using a fast con-
vergent artificial neural network (ANN) and is driven by the critical need for 
power system planning. The Mazoon Electrical Company in Oman provided 
the real data for the study of monthly load forecasting using ANNs, which are 
presented in this paper. The link between past, present, and future temperatures, 
loads, and humidities is learned by the artificial neural network (ANN). The test 
ANN predicts reasonably accurate results of predicted power loads. The under-
lying exercise uses a traditional multilayer ANN architecture with feed-forward 
and backpropagation techniques in addition to a recently proposed fast-conver-
gence algorithm that is deduced in terms of eigenvalues of a Hessian matrix 
associated with the input data of temperature and humidity changing over 
time. The anticipated results are cross verified with actual power load data 
obtained. 
 

Keywords 
Load Forecasting, Artificial Neural Network, Backpropagation Algorithm, 
Eigenvalues, Fast Learning Rate, Power System 

 

1. Introduction 

Power load forecasting using an artificial neural network (ANN) that allows for 
fast convergence with precise forecasts is the focus of this study. To ascertain how 
much power will be required at a specific moment to supply end customers and how 
that demand will impact the utility grid, accurate load forecasting is crucial. By using 
the power load forecast, waste and inefficiency may be prevented and sufficient 
power can be made available to fulfill consumption demands. 

As explained by Neelakanta and De Groff in [1], an artificial neural network 
(ANN) is a mathematical model that has been developed as a computational tool 
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based on the image of the biological brain complex. The Hessian matrix of the per-
tinent input data serves as the foundation for supervised training. Details provided 
by the Mazoon Electrical Company in Oman provide the pertinent data for this in-
vestigation. For the years 2007 and 2008, monthly load data is gathered for a specific 
Oman region known as Al Batinah. In other words, twenty-four months’ worth of 
temperature and humidity data—two whole years—must be entered into the ANN 
during training. The maximum, minimum, and average temperatures, as well as the 
maximum, minimum, and average humidity, are the six inputs. Megawatts of load 
data are the outputs. In other words, this load data serves as the training’s teacher. 
The intended output is comparable to that of a supervisory teacher. 

The mathematical method used by the artificial neural network is one that con-
verts data from an input space to an output space. In order to minimize the error—
that is, the difference between the network’s actual output vector and the intended 
output vector—supervised training aims to iteratively update a set of connectivity 
weights that are introduced between the neural layers in the ANN. 

A multi-layered feed-forward perceptron (MLFP) consisting of an input layer, one 
hidden layer, and one output is the test ANN used in the simulations (Figure 1). 
Through linked inner and hidden layers, the input values advance. In order to squash 
the total output to a limited level, it is fed into a nonlinear sigmoidal function. The 
sigmoid-compressed output is then compared with a teacher value, which stands for 
the intended output aim.  

 

 

Figure 1. Test ANN architecture constructed with 6 input neuron units (NUs), 1 hidden 
layer with 6 NUs, 1 output unit, and hyperbolic tangent sigmoid. 

 
A backpropagation gradient technique computes and applies the resulting error 

to the interconnection weights. In other words, an output, Oi, is indicated by the 
sigmoid-compressed value and compared to a teacher/supervisory (reference) value, 
Ti, which represents the intended output aim. After that, the error corresponding 
to (Oi − Ti) is backpropagated. This error is stated in terms of an error function, 
ε, which represents the mean-squared value of (Oi − Ti). When the error function 
is applied to the inter-connection weights, Wij, the backpropagation (BP) technique, 
usually allows a gradient based on steepest descent, which alters the weight vector 
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values (either increasing or decreasing).  
The rth ensemble of inputs {yi}, weighted across the input-layer (i = 1, 2, 3, ..., I = 

6 units) and the hidden-layer (j = 1, 2, 3, ..., J = 6 units), is represented by the summed 
value (Σzi) at the output unit in Figure 1. A hyperbolic tangent (sigmoidal) func-
tion, f(.), then squashes its linearly scaled value, K × Σzi (where K is a linear-scal-
ing constant), producing the result Oi = f(K × Σzi). Additionally, the set {Wij} spec-
ifies the coefficients of weighting of the connections between the input- and hid-
den-layers. Additionally, as shown, the ANN’s topology incorporates backpropa-
gation and supervised learning enabled by a teacher value Ti. The gradient of an 
error, ε, which depends on (Oi, Ti), is defined by: (±ΔWij): and the entity α × 
(±ΔWij) is then applied iteratively to change the current value of Wij until the error 
(ε) hits zero or a designated low, “stop” value. In this case, α stands for a learning 
coefficient that can be selected to attain a desired (quick) rate of convergence of the 
enforced repetition. 

One effective method for training feed-forward neural networks is the backprop-
agation algorithm. However, it has a slow convergence rate and may produce less-
than-ideal results because it updates the weights using the steepest descent approach 
[2]. As a result, a method that speeds up convergence is employed in this work [3] 
[4]. In other words, the authors have created a generalized process that, when the 
learning coefficient is chosen well, causes the ANN to converge to more accurate 
values more quickly [3] [4]. 

The number of iterations needed to train the net is significantly reduced when 
this quicker method is used. The authors have demonstrated that the greatest ei-
genvalue of the Hessian matrix should be inversely proportional to the learning 
rate α [3] [4]. There are I = 6 input units, y = {y1, y2, …yI} in Figure 1. In the current 
example, yTy is an I × I (6 × 6) square matrix, and it corresponds to the Hessian 
matrix. This Hessian matrix can be expressed diagonally [HD]. The Hessian matrix’s 
symmetry results in a single, distinct eigenvalue, λII, in the diagonal form, as illus-
trated below (all other eigenvalues are zero):  

[ ]

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 II

HD

λ

… 
 … 
 = …
 
… … … … … 
 … 

                    (1) 

To facilitate faster convergence, the learning rate (α) applied to the test ANN 
would be equivalent to the reciprocal of the biggest, single eigenvalue, λII, of the 
Hessian matrix, as mentioned before. The input data for the current study relates 
to each ensemble of the test power load profile under investigation. The infor-
mation provided by the Mazoon Electrical Company in Oman is the basis for the 
power load data that is taken into consideration. The meteorological department 
of Oman provided the temperature and humidity data. As a result, the effective-
ness of the research conducted here using the suggested ANN-based approach and 
the power load predictions are cross-checked against specifics of the actual power 
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load values.  
This research predicts a monthly necessary power demand using the suggested 

neural network model and compares it with actual data. Using the learning rate 
as the reciprocal of the greatest eigenvalue of the Hessian matrix, it will be demon-
strated that convergence towards accurate prediction is achieved rapidly.  

2. ANN-Based Load Forecasting Method 
2.1. Description of the Data Set and Motivation for the ANN to  

Perform Load Forecasting 

As everyone knows, there is a relationship between temperature, humidity, and load 
characteristics. In warmer climates, more energy is required to cool. Air tempera-
ture is a necessary, but not sufficient, variable for adequately predicting electricity 
demand. Humidity plays an important role as well in electricity use. A combina-
tion of temperature and humidity affects necessary power load. Forecasting elec-
tric load is essential for power systems’ operational planning and for preventing 
disruptions. Predictions from load forecasting might be short-term (for the next 
few hours or days) or long-term (for the next few months or years). The cost and 
dependability of the entire power system are strongly impacted by how accurate 
these projections are. Accurate load forecasting keeps the power system stable and 
balanced by ensuring that there is always an enough supply of electricity to fulfill 
demand. Utilities can also prevent the additional expenses that come with produc-
ing too much or too little electricity by using demand forecasts. 

Therefore, a way to forecast electricity load is proposed here. ANNs can be used 
to do this task of estimating needed future power loads by using historical load data 
as well as historical data on temperature and humidity. The results of this study are 
confirmed by comparing them with real data, and it will be shown the ANN model 
used was able to predict correctly and give closely matching numbers on monthly 
power loads. The ANN used was successfully able to spot a pattern between inputs 
of temperature and humidity and output power load. 

The ANN ability to learn from experience (existing data) makes this method 
very useful in forecasting power load. An underlying relationship between the in-
puts and the outputs is assumed by ANN forecasting [5]. The MLFP ANN used in 
this work has an inherent capability of arbitrary input-output mapping, and this 
makes it successful in forecasting power load. 

2.2. Prescription of the Teacher Value 

The data used to train the neural network is taken from the Mazoon Electrical 
Company, Oman [6]. Load data for twenty-four months (years 2007 and 2008) 
are collected for a particular region called Al Batinah in Oman. This monthly load 
data was then used as teacher values for the ANN (after normalization). The in-
formation that is inputted into the input layer of the neural network comprises 
normalized historical weather information on humidity and temperatures over 
the same twenty-four months. The test ANN architecture shown in Figure 1 needs 
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a teacher value (Ti) in both training as well as in prediction phase. It is prescribed 
as follows: Month 1 data consisting of 6 normalized inputs (maximum temper-
ature Tmax, minimum temperature Tmin, average temperature Tavg, maximum 
humidity Hmax, minimum humidity Hmin, average humidity Havg) is paired 
with a teacher value consisting of month 1 power load requirements Loadavg. 
Similarly, month 2 data consisting of 6 corresponding normalized weather inputs 
is paired with a teacher value consisting of month 2 power load requirements. 
Weather information for twenty-four months is thus inputted into the ANN and 
is paired with corresponding power load output requirements. In this method, the 
ANN is trained to spot the monthly pattern between weather parameters (max-
imum temperature, minimum temperature, average temperature, maximum hu-
midity, minimum humidity, average humidity) and the required load output 
power. 

Table 1 summarizes the initial data procured on weather conditions of temper-
ature and humidity over the twenty-four-month period. 

 
Table 1. Initial data procured on temperature and humidity and power load. 

Month/year Tmax ˚C Tmin ˚C Tavg ˚C Hmax Hmin Havg 
Loadavg 

MW 
Jan/07 30 12 21 89 25 57 96.65 

Feb/07 36 16 26 94 17 55.5 94.95 

March/07 36 17 26.5 95 10 52.5 115.85 

April/07 42 16 29 95 10 52.5 199.6 

May/07 44 26 35 88 7 47.5 247.8 

June/07 46 24 35 98 15 56.5 192.95 

July/07 46 28 37 98 16 57 258.9 

Aug/07 45 27 36 92 20 56 247.4 

Sept/07 43 25 34 98 11 54.5 228 

Oct/07 38 20 29 98 12 55 173.2 

Nov/07 61 18 39.5 94 22 58 121.5 

Dec/07 33 16 24.5 89 33 61 96.65 

Jan/08 29 13 21 98 28 63 106.725 

Feb/08 36 11 23.5 88 18 53 84.225 

March/08 38 17 27.5 99 8 53.5 143.075 

April/08 43 21 32 94 9 51.5 208.925 

May/08 45 23 34 95 9 52 266.525 

June/08 48 29 38.5 92 9 50.5 296.175 

July/08 45 27 36 94 8 51 270.1 

Aug/08 46 25 35.5 98 25 61.5 237.15 

Sept/08 44 26 35 99 15 57 278.05 

Oct/08 41 24 32.5 93 14 53.5 256.025 

Nov/08 35 18 26.5 94 21 57.5 166.95 

Dec/08 30 14 22 99 39 69 109.575 
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Weather and load-normalized parameters are shown in Table 2. 
 

Table 2. Normalized initial data procured on temperature, humidity and power load. 

Month/year Tmax ˚C Tmin ˚C Tavg ˚C Hmax Hmin Havg Load MW 

Jan/07 0.492 0.414 0.532 0.89 0.641 0.826 0.270 

Feb/07 0.590 0.552 0.658 0.94 0.436 0.804 0.266 

March/07 0.590 0.586 0.671 0.95 0.256 0.761 0.324 

April/07 0.689 0.552 0.734 0.95 0.256 0.761 0.558 

May/07 0.721 0.897 0.886 0.88 0.179 0.688 0.693 

June/07 0.754 0.828 0.886 0.98 0.385 0.819 0.540 

July/07 0.754 0.966 0.937 0.98 0.410 0.826 0.724 

Aug/07 0.738 0.931 0.911 0.92 0.513 0.812 0.692 

Sept/07 0.705 0.862 0.861 0.98 0.282 0.790 0.638 

Oct/07 0.623 0.690 0.734 0.98 0.308 0.797 0.485 

Nov/07 1 0.621 1 0.94 0.564 0.841 0.340 

Dec/07 0.541 0.552 0.620 0.89 0.846 0.8841 0.270 

Jan/08 0.475 0.448 0.532 0.98 0.718 0.913 0.299 

Feb/08 0.590 0.379 0.595 0.88 0.462 0.768 0.236 

March/08 0.623 0.586 0.696 0.99 0.205 0.775 0.400 

April/08 0.705 0.724 0.810 0.94 0.231 0.746 0.584 

May/08 0.738 0.793 0.861 0.95 0.231 0.754 0.746 

June/08 0.787 1 0.975 0.92 0.231 0.732 0.829 

July/08 0.738 0.931 0.911 0.94 0.205 0.739 0.756 

Aug/08 0.754 0.862 0.899 0.98 0.641 0.891 0.663 

Sept/08 0.721 0.897 0.886 0.99 0.385 0.826 0.778 

Oct/08 0.672 0.828 0.823 0.93 0.359 0.775 0.716 

Nov/08 0.574 0.621 0.671 0.94 0.538 0.833 0.467 

Dec/08 0.492 0.483 0.557 0.99 1 1 0.307 

2.3. Prescription of the Learning Coefficient and Adjustment of the 
Weights 

To update the interconnection weights, the backpropagated error is applied using 
the formula w (new) = w (old) ± μ × (dε/dw). The weight coefficients {wij} should 
be able to adopt values that allow the output error, ε to rapidly converge to zero 
(or a predetermined extremely small, “stop” value) at the required learning rate. 
To achieve a rapid convergence of the net, the relevant learning rate is inferred [3] 
[4]. 

In the present study, each input data set consists of six (normalized) weather 
parameters (as listed in Table 2), and constructing a corresponding transpose [y1, 

y2, ..., y6]T, a [6 × 6] Hessian matrix [H] is specified as follows: [HD] = [y1, y2, ..., 
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y6]T [y1, y2, ..., y6], A symmetric square [(I = 6) × (I = 6)] matrix with one non-
vanishing eigenvalue as a diagonal element is referred to by the equivalent [HD]. 
In other words, there is only one non-vanishing eigenvalue left for every ensemble 
data set. 

 
Table 3. Computed Hessian eigenvalues, λ66 for the ensemble data sets {r = 1, 2, …24}. 

r 1 2 3 4 5 6 7 8 9 10 

λ66 3.77 3.03 3.41 3.92 4.28 3.71 4.00 3.44 3.17 2.84 

r 11 12 13 14 15 16 17 18 19 20 

λ66 2.42 3.02 3.27 4.29 3.09 3.64 4.01 4.19 3.82 3.39 

r 21 22 23 24       

λ66 2.86 2.69 2.81 2.58       

 
As indicated earlier, the desired learning rate can be set inversely proportional 

to the maximum eigenvalue of the data set. From data in Table 3, this maximum 
eigenvalue, λmax, occurs for the ensemble, r = 14 and has a value, λmax = 4.2936. 
Hence, corresponding learning rate α is: (1/λmax) = 0.2329. 

3. Results and Discussion 
3.1. Learning Curves 

The learning rate used in the training plans mentioned above is α = 1/λmax. By de-
termining pertinent learning curves, it is shown how effective it is to use (α = 1/λmax) 
for the learning rate (instead of the conventional, arbitrarily defined number, say, 
α = 0.001) to achieve a fast convergence. Figure 2 shows examples of these com-
parisons using learning curves derived for an exemplary training ensemble with 
r = 1. By first determining an appropriate value for the learning rate based on α = 
1/λmax., you can see that the convergence rate is significantly faster. 
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Figure 2. Learning curves obtained with the set of training ensemble r = 1 using an arbi-
trary learning coefficient, α = 0.001 and adopting an optimum value of α = 0.2329. 

3.2. A Note on Learning Coefficient 

Selecting a learning coefficient (also known as learning rate) in an ANN involves 
finding a value that allows the network to learn effectively by updating its weights 
without getting trapped in local minima or diverging due to excessively large, itera-
tive steps of updates. Mostly, the choice of learning coefficient is done by trial and 
error with a small value in the beginning and gradually increasing it to an optimal 
value by monitoring the training loss on a validation set. 

In order to facilitate a rapid convergence towards a desirable level of output 
prediction, it is suggested that the learning rate (α) applied to the test ANN, should 
correlate with the reciprocal of the biggest, single eigenvalue, λII of the aforemen-
tioned Hessian matrix. Choosing the largest, single eigenvalue, λII is specific to en-
forcing the derivative of e to zero as required at the global minimum. The Hessian 
representation specifies the average over all inputs of yTy, with yT being the trans-
pose of y in multidimensional cases. Additionally, the cost surface’s form is rep-
resented by the Hessian, whose eigenvalues indicate how steep the surface is along 
the curvature directions; a steep curvature is indicated by a big eigenvalue. As 
such, the learning rate being inversely proportional to this large eigenvalue im-
plies an optimally small value towards attaining the global minimum needed. Rel-
evant single learning rate chosen thereof will not cause any divergence along the 
steep directions (specifically pertinent to the large eigenvalue direction). In es-
sence, denoting λmax as the largest eigenvalue of the Hessian matrix, the learning 
rate of the order of (1/λmax), would lead to optimal convergence towards the global 
minimum. 

In all, the choice of learning rate as above is based on the gradient descent op-
timization with an enforced architecture of the test ANN to have identical number 
of neurons in the input and first hidden layer so that the resulting interconnection 
weight coefficients are represented by a symmetric square matrix; and, the corre-
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sponding Hessian format is diagonalized to obtain the highest eigenvalue as 
above. 

The learning rate is a hyperparameter that controls the extent of changing the 
model, in response to the estimated error each time the model weights are updated 
in the iteration implied. If the learning rate is too small, it may result in a long 
training process and a too large a value may result in learning a sub-optimal set of 
weights too fast, that is, causing an unstable training process. Thus, the learning 
rate is the most important hyperparameter when configuring the neural network. 
Therefore, the proposed method is devised to offset the traditional intuitive guess 
or trial-and-error approach in prescribing learning rate, with a simple architec-
tural symmetric connectivity between equal number of neurons taken at the input 
and the first hidden layer. The efficacy of relevant convergence performance is 
verified with data pertinent to predicting power load details in an actual electric 
power system. 

3.3. Predicted ANN Output Values 

The following Table 4 shows the predicted load for January 2009. The input data 
was for the previous 24 months (prior to January 2009). 

 
Table 4. Predicted load compared to actual load power. 

Month Actual load Predicted load Percentage error 

Jan 2009 103.7 MW 101.3 MW 2.3% 

 
As can be seen in Table 4, the predicted results are very close to actual historical 

data. 

4. Conclusions 

An encouraging use of ANN for load forecasting has been shown in the current 
study. The outcomes, which are displayed in Table 4, are extremely encouraging. 
The data confirms that the ANN predicts future power loads with a high degree of 
accuracy. Table 4 shows that the ANN prediction of power load closely matches 
the historical measured values. 

A list of the study’s main findings is as follows: 
• Forecasting electric load is an application for ANN. The findings demonstrate 

that the ANN can effectively interpolate between training sets’ load and weather 
pattern data to produce future load patterns. 

• It was discovered that the convergence rate can be accelerated by first determin-
ing an appropriate value for the learning rate based on (α = 1/λmax), where λmax 
is the maximum eigenvalue of the corresponding Hessian matrices of the input 
data. 

• The ANN also converges with slightly more accurate values when λmax is used. 
• The enhancement offered here can be regarded as a worthwhile and practical 

substitute for employing an arbitrary learning rate. 
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