

NORLIDA BINTI SHAARI ASIAH BINTI IBRAHIM

Editor

Fazlina binti Yunus

Writers

Norlida binti Shaari Asiah binti Ibrahim

Ilustrator

Norlida binti Shaari

First Published 2021

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

Published by

Politeknik Tun Syed Nasir Syed Ismail Hab Pendidikan Tinggi Pagoh, KM 1, Jalan Panchor, 84600 Pagoh, Johor Darul Takzim.

Tel: 06-974 2288 Fax: 06-974 2395

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Norlida Shaari, 1982-

FOCUS ON MEASUREMENT AND FORCE IN ENGINEERING SCIENCE / NORLIDA BINTI SHAARI, ASIAH BINTI IBRAHIM.

Mode of access: Internet eISBN 978-967-25516-3-8

- 1. Physical measurements.
- 2. Measurement.
- 3. Force and energy.
- 4. Goverment publications--Malaysia.
- 5. Electronic books.
- I. Asiah Ibrahim, 1973-. II. Title. 530.8

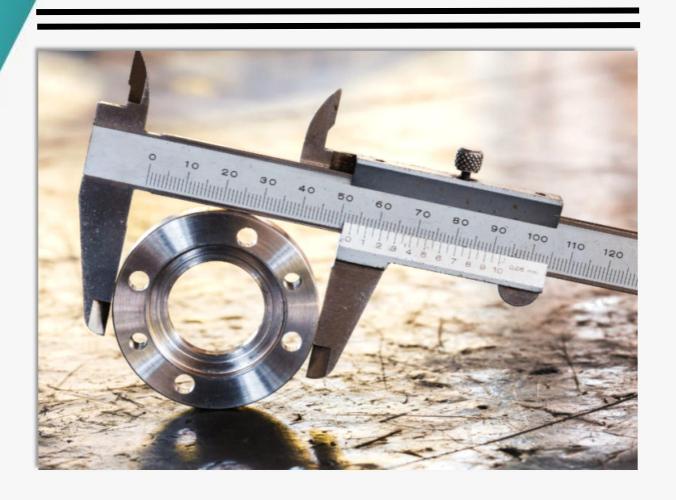
ACKNOWLEDGEMENTS

e would like to express our deep and sincere thanks to our head of department, Mr. Hairman bin Omar, who gave us the golden opportunity to do this wonderful eBook writing on the topics of Engineering Science.

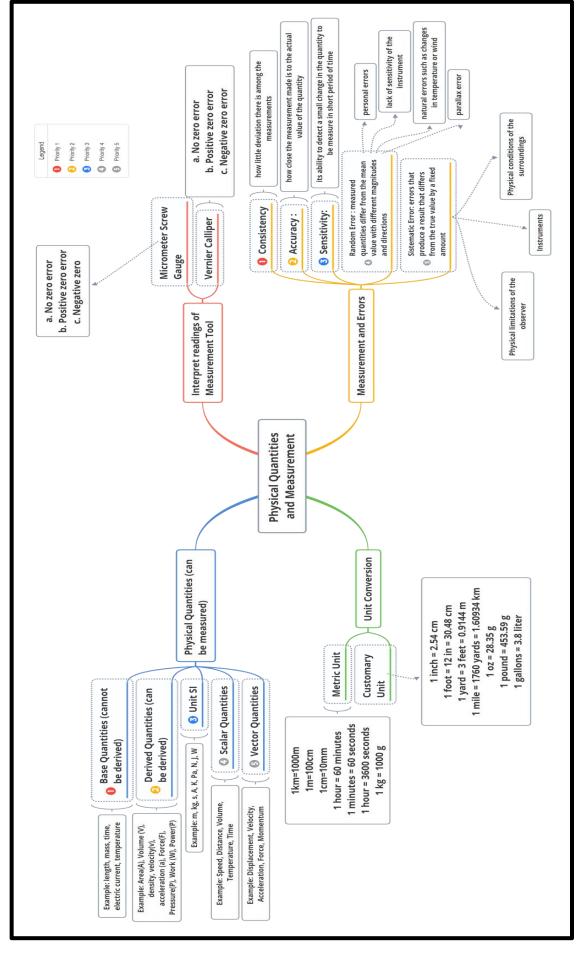
We would also like to thank our colleagues and parents who helped us a lot in finalizing this eBook writing within the limited time frame. Our completion of this eBook writing could not have been accomplished without their support, either morally and physically, the contributions are sincerely appreciated and gratefully acknowledged.

And most of all to our great creator, our Almighty God the author of knowledge and wisdom who made this possible.

ABSTRACT


This Electronic book (eBook) aims to introduce the reader to the field of Engineering Science or Physics Education, provides a basic knowledge for all engineering students. This eBook is designed to focus on specific topics, that are, Measurement and Force in Engineering Science. Physical quantities and Measurement topic is the key to explore such the concept of unit conversion from one unit to another and attention is also given to the exposure on how to read and use the measuring tools such as vernier caliper and micrometer screw gauge the right way and accurately. Force and Moment topic covers the theory such as force in equilibrium, why some structures are stronger and many others. Each topic ends with review questions as some exercises to test students' understanding. This eBooks is one way to enhance the digital library with global 24-hours-aday and 7-days-a-week access to authoritative information, and they enable users to quickly retrieve and access specific reference material easily, quickly and effectively. This eBook is very useful as a digital text book reference for students before they take the theory test. On top of that, it prepares students for the final examinations as well with the exposure to the frequently tested questions that appear in the exam which covers the cognitive level taxonomy blooms and in line with Polytechnic's Malaysia Curriculum.

CONTENTS


TITL	E PAG	GE .		i
СОР	YRIGI	HT PAG	GE CONTRACTOR OF THE CONTRACTO	ii
ACK	NOW	LEDGN	MENTS	iii
ABS	TRAC	Т		iv
1			L QUANTITIES AND REMENT	1
	CON	ICEPT I	МАР	2
	1.1	PHYS	ICAL QUANTITIES	3
		1.1.1	Base Quantities, Derived Quantities and	3
			International System of Units	
		1.1.2	Scalar and Vector Quantities	6
	1.2	MEAS	SUREMENT AND ERRORS IN	7
		MEAS	SUREMENT	
		1.2.1	Accuracy, Consistency and Sensitivity	8
		1.2.2	Random Error and Systematic Error	9
	1.3	SOLV	E PROBLEMS OF UNIT CONVERSION	13
		1.3.1	Units of Measurement	13
		1.3.2	Prefixes	15
		1.3.3	Metric and Customary Units Conversion	18
	1.4	MEAS	SUREMENT TOOLS READING	23
		INTER	RPRETATION	
		1.4.1	State the Measurement Reading from the	27
			Use of Vernier Caliners	

	1.4.2	State the Measurement Reading from the	35
		Use of Micrometer Screw Gauge	
EXE	RCISES		41
FOF	RCE		46
CON	ICEPT I	MAP	47
2.1	CONC	CEPT OF FORCE	48
	2.1.1	Definition of Force and Its Unit	48
	2.1.2	Types of Force	49
	2.1.3	Effects of Net Force	52
	2.1.4	Newton's First Law $\sum F=0$ and Newtons's	54
		Second Law $\sum F = ma$	
	2.1.5	Weight and Mass	55
	2.1.6	Definition Forces in Equilibrium	57
	2.1.7	Calculate Resultant Force	58
	2.1.8	Application of the Concept of Forces through	60
		Resolution Methods	
2.2	MON	IENT OF FORCE CONCEPT	64
	2.2.1	Definition of Moment Force and Its Unit	64
	2.2.2	Moment of Force Principle	68
	2.2.3	Application of the Moment of Force Concept	69
		and Formula in Solving the Related	
		Problems	
EXE	RCISES		75
SARR	Υ		85
EREN	ICES		87
	CON 2.1 2.2 EXEI	EXERCISES FORCE CONCEPT I 2.1 CONC 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.2.1 2.2.2	EXERCISES FORCE CONCEPT MAP 2.1 CONCEPT OF FORCE 2.1.1 Definition of Force and Its Unit 2.1.2 Types of Force 2.1.3 Effects of Net Force 2.1.4 Newton's First Law $\sum F = 0$ and Newtons's Second Law $\sum F = ma$ 2.1.5 Weight and Mass 2.1.6 Definition Forces in Equilibrium 2.1.7 Calculate Resultant Force 2.1.8 Application of the Concept of Forces through Resolution Methods 2.2 MOMENT OF FORCE CONCEPT 2.2.1 Definition of Moment Force and Its Unit 2.2.2 Moment of Force Principle 2.2.3 Application of the Moment of Force Concept and Formula in Solving the Related Problems EXERCISES SARRY

TOPIC 1 PHYSICAL QUANTITIES & MEASUREMENT

CONCEPT MAP OF PHYSICAL QUANTITIES AND MEASUREMENT

1.1 PHYSICAL QUANTITIES

Physical quantities may be measured using an instrument or can be derived. A physical quantity must be stated in magnitude with its unit. Figure 1.1 shows some examples of physical quantities.

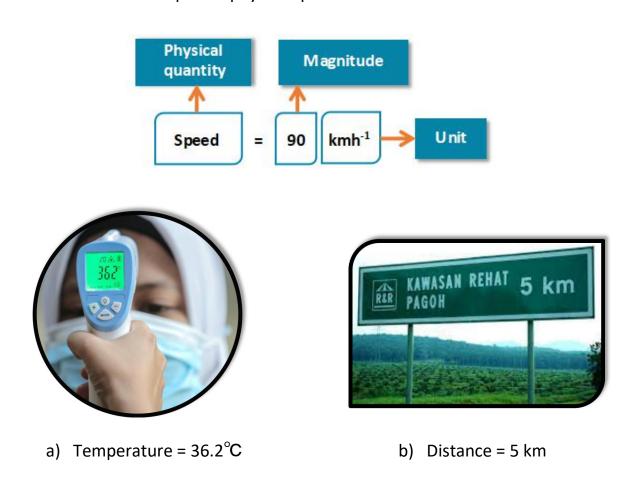


Figure 1.1 Examples of physical quantities

1.1.1 BASE QUANTITIES, DERIVED QUANTITIES AND INTERNATIONAL SYSTEM OF UNITS

 There are two types of physical quantities, that is, base quantities and derived quantities.

Base Quantities

- Fundamental quantities that cannot be derived in term of other quantities.
- Table 1.1 shows five base quantities derived quantities and their respective
 SI units.

Table 1.1 Five base quantities derived quantities and their respective SI unit

Base Quantity	Base Quantity Symbol	SI Unit	Symbol
Length	l	Meter	m
Mass	m	Kilogram	kg
Time	t	Second	s
Electric Current	I	Ampere	A
Temperature	Т	Kelvin	K

Derived Quantities

- Physical quantities that can be derived from the combination of base quantities through multiplication or division or both multiplication and division.
- **Table 1.2** shows some examples of derived quantities and their respective derived units.

Table 1.2 Examples of derived quantities and their respective derived units

Derived Quantity	Definition	SI Unit in terms of base units	Alternative name for SI unit
Area, A	length x length	m^2	
Volume, V	length x length x length	m^3	
Density,	mass / volume	kg m ⁻³	
Velocity, v	length / time	m s ⁻¹	
Acceleration, a	velocity / time	m s ⁻²	
Force, F	momentum / time	kg m s ⁻²	newton, N
Pressure, P	force / area	kg m ⁻¹ s ⁻²	pascal, Pa @ N m ⁻²
Work, W	force x distance	$kg m^2 s^{-2}$	joule, J
Power, P	work / time	$kg m^2 s^{-3}$	watt, W

International System of Units

- The International System of Units (SI), commonly known as the metric system, is the international standard for measurement.
- SI units are adopted as standard units to prevent problem causes by the difference in the units of measurement and to allow the accurate exchange of data and scientific knowledge worldwide.
- **Figure 1.2** displays seven SI basic units in the system.



Figure 1.2 SI basic units

1.1.2 SCALAR AND VECTOR QUANTITIES

- Physical quantities can be grouped into scalar quantities and vector quantities.
- Scalar quantities are physical quantities that have only magnitude.
- Vector quantities are physical quantities that have both magnitude and direction.
- The difference between scalar quantities and vector quantities can be described by two different situations. Situation 1 is described when a truck moves at a speed of 80 km/h. This situation involves with a scalar quantity because only magnitude is involved, with the speed of 80 km/h.
- While Figure 1.3 shows the situation 2 where, a truck travels at a distance of
 70 km to the eastward direction. Situation 2 involves with a vector
 quantities.

We describe the **journey of the truck** by **stating both magnitude and direction** of its travelling:

- (a) The magnitude is 70 km.
- (b) The direction is East.

Figure 1.3 A truck travels at a distance of 70 km to the eastward direction

• Some examples of scalar and vector quantities are listed in **Table 1.3**.

 Table 1.3 Examples of scalar and vector quantities

Scalar Quantities	Vector Quantities
Speed	Displacement
Distance	Velocity
Volume	Acceleration
Temperature	Weight
Time	Force
Mass	Gravity

1.2 MEASUREMENT AND ERRORS IN MEASUREMENT

Most experiments require you to make measurements. Measurement is a method to determine the value of a physical quantity. Therefore, in order to have perfect measurements, you need to measure correctly and for that, you must know the measuring procedure and systems.

Measurements are always somewhat different from

the "true value." These deviations from the true value are called errors. At some point in the manufacturing process, you will find that differences in measurement results (measured values) will begin to show-up due to one error or another. A variety of issues are able to contribute to a measurement error. If you encounter a measurement error, it is vital that you examine the cause of the error very thoroughly before using a countermeasure. This is important to maintain the quality of your result.

Accurate

1.2.1 CONSISTENCY, ACCURACY AND SENSITIVITY

Accuracy

- Accuracy measures how close the value of the measurements
 (the results of an experiment) to the true value.
- If it is too far from the target, it is not accurate.

Consistency

- The consistency of a measuring instrument is due to its ability to produce the same reading when a measurement is repeated.
- Precision is referred to the consistency of your results. In other words, from
 dartboard analogy, a sharpshooter may hit the bulls-eye once, but if he
 does not hit it with subsequent shots, his aim is not able to be considered
 as a precise target.

Figure 1.4 shows the results for four shooters A, B, C and D in a tournament. Each shooter fired four shots.

 If they are far apart from each other, they are not consistent. We aquire results that are both accurate and consistent.

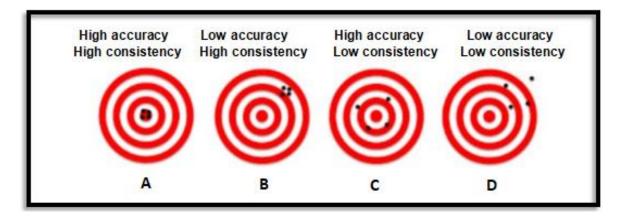


Figure 1.4 Results for four shooters A, B, C and D

Sensitivity

- When an instrument is high in measuring sensitivity, it may detect or respond to even small changes in the quantity to be measured.
- Smaller scale components in measuring are more sensitive.
- Figure 1.5 shows several examples of instruments with their respective degree of sensitivity.

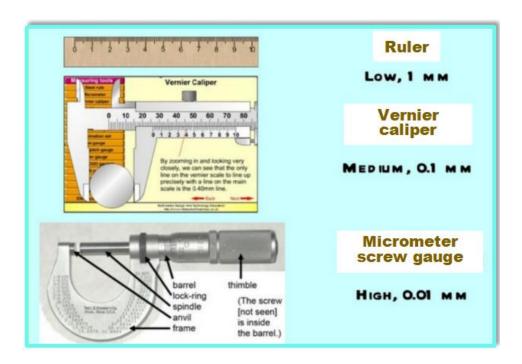


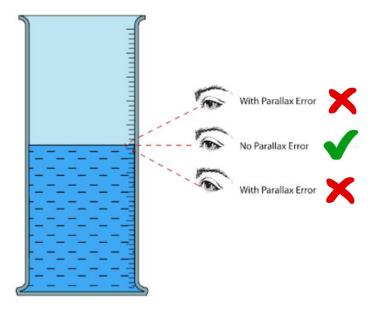
Figure 1.5 Examples of instruments with their respective degree of sensitivity

1.2.2 RANDOM ERROR AND SYSTEMATIC ERROR

Errors in Measurement

- Error in measurement is the difference between the measured value (value obtained in measurement) of a quantity and its true value.
- There are two main types of errors in a Measurement System, that are,
 random errors and systematic errors.

Random Errors


- Random errors are errors of measurement in which the measured quantities differ from the true value with different magnitudes and directions.
- Random errors produce different values in random directions. For example,
 you use a scale to weigh yourself and the scale gets 48 kg, 53 kg, and 32 kg.
- Random errors are usually result from the experimenter's inability to take
 the same measurement in the same manner to obtain the exact same
 number.

Source of Random Errors

- 1. Personal errors such as human limitations of sight and touch.
- 2. Imprecise or unreliable of measurement instrument. The instrument failes to respond at any small changes.
- 3. Natural errors such as changes volume in temperature or wind, while conducting the experiment.
- 4. Poorly controlled experimental procedures (e.g., parallax error).

Reducing Random Errors

- 1. Repeating several measurements to obtain an average value.
- 2. Maintain good experimental technique in mind (e.g., reading from a correct position).

Systematic Errors

- Systematic errors are those that produce a result that differs from the true
 value by a fixed amount and the measurement is always greater or less
 than the actual value.
- As for example, when measuring the wrist circumference of participants, you misinterpret the "2" on the measuring tape as a zero-point. All of your measurements have been increased by 2 centimetres.
- Consistent errors are produced by systematic errors, for instance, in a fixed amount (like 2 cm). If you repeat the experiment, you will get the same error.

• Figure 1.6 illustrates the contrast between systematic and random error

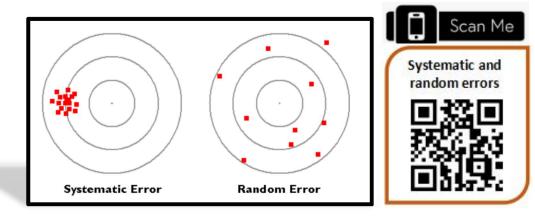


Figure 1.6 Contrast between systematic and random errors

Source of Systematic Errors

♦ Instruments

- Errors in scale (zero error).
- Errors in apparatus (it is damaged and in poor condition).

♦ Physical conditions of the surroundings

Temperature and atmospheric pressure.

♦ Physical limitations of the observer

• Reaction duration varies from one person to another.

Reducing Systematic Errors

- 1. Conduct the experiment with care.
- 2. Calibrate instruments by checking zero readings and scale calibration.

How to Minimize Measurement ERROR??

- Using an updated and precise measuring device that does not have any defects while conducting your experiment.
- 2. Before conducting an experiment, calibrate measurement instruments properly to avoid any inaccurate results.
- 3. All measurements in an experiment should occur under a controlled condition. External factors such as humidity, pressure, and temperature may all cause data to be skewed.
- 4. To minimise the effect of human error, personnel must double-check all observations, records, and measurements.
- 5. Taking several measurements to arrive an average value.
- 6. Conduct an experiment with care. Use all of the instruments and carry out procedures properly when conducting an experiment.

1.3 SOLVE PROBLEMS OF UNIT CONVERSION

In science, measuring is a fundamental skill, but not all measurement methods are created the same. People measure the same item in different ways and with various units. There must be a way to convert between various units in order for scientists to interact.

1.3.1 UNITS OF MEASUREMENT

There are many units available for a certain amount of physical quantities. This causes us to be confused. If there are multiple units accessible, a conversion factor to convert them to the other unit may exist. **Customary unit** also known as the **U.S. customary unit**, is **based on the English**

system of measurement which is seldom used nowadays. Table 1.4 shows the distinction between metric unit (refer subtopic 1.1.1, International System of Units) and customary unit.

Table 1.4 Distinction between metric unit and customary unit

METRIC UNIT (SI UNIT)	CUSTOMARY UNIT
Used in all parts of the world	Only used in the United States
Easy to convert	Not so simple conversion
Multiple or fraction of 10	No "formula"
Meters, grams, and liters are the	Inches, feet, yards, miles, ounces,
units of measurement	pounds, tons, fluid ounces, cups,
	pints quarts, and gallons are the
	units of measurement
Prefixes like kilo-, centi-, deca	
are used	

The advantages of metric systems are more dominant, which is why they are so popular and we use them often and. **Table 1.5** and **Table 1.6** respectively show the list of some basic unit conversions and metric units with common conversions.

Table 1.5 Basic unit conversions

В	asic Unit Conversio	in Important
	1 km →	1000 m
Length	1 m →	100 cm
	1 cm →	10 mm
	1 hour →	60 minute
Time	1 minute →	60 seconds
	1 hour →	3600 seconds
Mass	1 kg →	1000 g

Table 1.6 Metric units with common conversions

	Lengt	h	
1 inch (in)		2.54 centimeters (cm)	
foot (ft)	12 inches (in)	30.48 centimetres (cm)	
yard (yd)	3 feets (ft)	0.9144 metre (m)	
mile (mi)	1,760 yards (yd)	1.60934 kilometres (km)	
	Area		
in ²		6.4516 cm ²	
ft ²		0.09 m ²	
l yd²	9 ft²	0.8361 m ²	
acre	4,840 yd ²	4046.86 m ² / 0.405 hectare	
mile ²	640 acres	2.590 km ²	
	Mass (we	eight)	
1 ounce (oz)		28.35 grams (g)	
pound (lb)		453.59 grams (g)	
	Volum	ne	
gallons (gal)		3.8 liters (L)	
ft ³		0.03 m ³	
yd ³		0.76 m ³	
	Temperature	Conversion	
	Temper	ature	
onvert Fahren	heit (F) to Celcius (C)	(degrees F - 32) x 0.555	
	g (C) to Fahrenheit (F)	(degrees C x 1.8) + 32	

1.3.2 PREFIX

- Prefixes are used to simplify the description of physical quantities that are either large or tiny in SI units.
- Prefixes generate units that are right size for the application, e.g.,
 millimeter for measurement of the dimensions of small screws, or

kilometer for the measurement of distances on maps.

- Table 1.7 lists some frequently used SI prefixes and their multiplication factors.
- You must to be able to convert between the various prefixes. For instance,
 you may be requested to do a calculation in kilometres and then provide the
 answer in metres. To convert between prefixes, just count the steps and
 move the decimal point in that direction.

Table 1.7 Common SI prefixes and their multiplication

Prefix	Symbol	Value	Important Note
10			hel.
Tera	T	10 ¹²	Bigger units
Giga	G	10 ⁹	
Mega	M	10 ⁶	
kilo	k	10³	
hecto	h	10 ²	
deca	da	10¹	
deci	d	10 ⁻¹	
centi	С	10-2	
mili	m	10-3	
micro	μ	10-6	
nano	n	10 ⁻⁹	
pico	р	10 ⁻¹²	Smaller units

*Note: Need to know all except hecto, deca and deci.

PREFIXES

EXAMPLE 1.1

Use the appropriate prefixes to represent the following numbers:

- (a) 2500000 W
- (b) 0.001500 g
- (c) 7360 J
- (d) 0.000008 m

Solution:

Refer to **Table 1.7,** page 16 to find the appropriate prefixes.

(a) $2500000 \text{ W} = 2.5 \times 10^6 \text{ W} = 2.5 \text{ MW} \text{ where } 10^6 = \text{ M (Mega)}$

- (b) $0.001500 \text{ g} = 1.5 \times 10^{-3} \text{ g} = 1.5 \text{ mg} \text{ where } 10^{-3} = \text{ m (mili)}$
- (c) $7360 \text{ J} = 7.36 \times 10^3 \text{ J} = 7.36 \text{ kJ} \text{ where } 10^3 = \text{ k (kilo)}$
- (d) $0.000008 \text{ m} = 8.0 \times 10^{-6} \text{ m} = 8.0 \mu\text{m}$ where $10^{-6} = \mu \text{ (micro)}$

1.3.3 METRIC AND CUSTOMARY UNITS CONVERSION

Converting Units

In your everyday life, you might need to convert units. For example, suppose you wish to compare dimension of products at a shop. Unless each product size is stated in the same unit. When we convert units, we use conversion factors. Conversion factors are known-to-be-true connections between units. Some examples:

12 inches = 1 foot 16 ounces = 1 lb 1 minute = 50 seconds 24 hours = 1 day

 Diagram in Figure 1.7 below illustrates how to convert between metric length units.

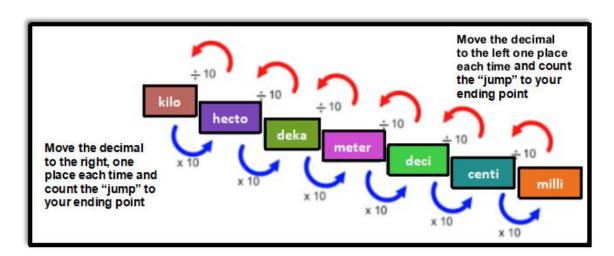



Figure 1.7 Converting between metric units of length



- Steps to converting units:
 - **Step 1:** Determine your starting point
 - **Step 2:** Count the "jumps" to your ending point.
 - **Step 3:** Move the decimal, the same number of jumps in the same direction.

Example:

How many jumps does it take?

*Note: Multiply all the numbers on the top and divide by the numbers on the bottom.

When we utilise dimensional analysis, we use a cancellation system in which our objectives is to cancel out "units", and then calculate the remaining numbers. The only units that do not cancel are the units we want to convert to. Let us have a look at some examples of unit conversions.

METRIC UNITS CONVERSION

EXAMPLE 1.2

Convert the following metric units:

- (a) $100905 \text{ cm}^2 \text{ to } \text{m}^2$
- (b) $80 \text{ kN/m}^2 \text{ to N/cm}^2$
- (c) $9969 \text{ kg/m}^3 \text{ to g/cm}^3$
- (d) $\frac{1}{2}$ day to second

Solution:

These problems can be solved by referring to the information provided in **Table 1.5** (page 14) and **Figure 1.7** (page 18).

(a) $100905 \text{ cm}^2 \text{ to m}^2$

Note that, 100 cm = 1 m

$$= 100905 \text{ cm}^2 \times \frac{1^2 \text{ m}^2}{100^2 \text{ cm}^2}$$

=
$$100905 \text{ cm}^2 \times \frac{1 \text{ m}^2}{10000 \text{ cm}^2}$$

 $= 10.0905 \,\mathrm{m}^2$

(b) $80 \text{ kN/m}^2 \text{ to N/cm}^2$

Note that, 1 m = 100 cm

$$= 80000 \frac{N}{m^2} \times \frac{1^2 \text{ m}^2}{100^2 \text{ cm}^2}$$

$$= 80000 \frac{N}{m^2} \times \frac{1^2 \text{ m}^2}{10000 \text{ cm}^2}$$

 $= 8 \text{ N/cm}^2$

(c) $9969 \text{ kg/m}^3 \text{ to g/cm}^3$

Note that, 1 kg = 1000 g

1 m = 100 cm

$$= 9969 \frac{kg}{m^3} \times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{1^3 \text{ m}^3}{100^3 \text{ cm}^3}$$

$$= 9969 \frac{\text{kg}}{\text{m}^3} \times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{1^3 \text{ m}^3}{100^3 \text{ cm}^3}$$

$$= 9969 \times \frac{1000 \text{ g}}{1000000 \text{ cm}^3}$$

 $= 9.969 \text{ g/cm}^3$

(d) $\frac{1}{2}$ day to second

Note that, $\frac{1}{2} day = 12 hours$

1 hour = 3600 s

$$= 12 \frac{\text{hours}}{1 \frac{3600 \text{ s}}{1 \frac{\text{hour}}{1 \text{ hour}}}}$$

= 43200 s

If there are two units to change (refer questions (b) and (c) for instance), choose one unit to change first. Then, multiply by a second fraction to change the other. In other situation, if one or more of the units is squared or cubed (as shown in question (a)), you are

just converting centimeters to meters (100~cm=1~m). Next, square it ($100^2~cm^2=1^2~m^2$). This will square all numbers and units involved.

CUSTOMARY UNITS CONVERSION

EXAMPLE 1.3

Convert between the following customary units:

- (a) yards (yd) and feet (in), 4 yd = _____feet
- (b) ounces (oz) and pounds (lb), 32 oz = _____lb
- (c) feet (ft) and inches (in), 5 ft = _____in

Solution:

Refer to the informations provided in **Table 1.6** (page 15).

(a) yards (yd) and feet (in), 4 yd = _____feet

Step 1: Note that, 3 ft = 1 yd

Table 1.6

Length		
1 inch (in)		2.54 centimeters (cm)
1 foot (ft)	12 inches (in)	30.48 centimetres (cm)
1 yard (yd)	3 feets (ft)	0.9144 metre (m)
1 mile (mi)	1,760 yards (yd)	1.60934 kilometres (km)

Step 2: Therefore, $4 \text{ yd} = 4 \times 3 \text{ ft} = 12 \text{ ft}$

(b) ounces (oz) and pounds (lb), 32 oz = ____feet

Step 1: Note that, 1 lb = 16 oz

Step 2: Therefore, $32 \text{ oz} = 32 \div 16 \text{ oz} = 2 \text{ ft}$

(c) feet (ft) and inches (in), 5 ft = ____in

Step 1: Note that, 1 ft = 12 in

Step 2: Therefore, $5 \text{ ft} = 5 \times 12 \text{ in} = 60 \text{ in}$

1.4 MEASUREMENT TOOLS READING INTERPRETATION

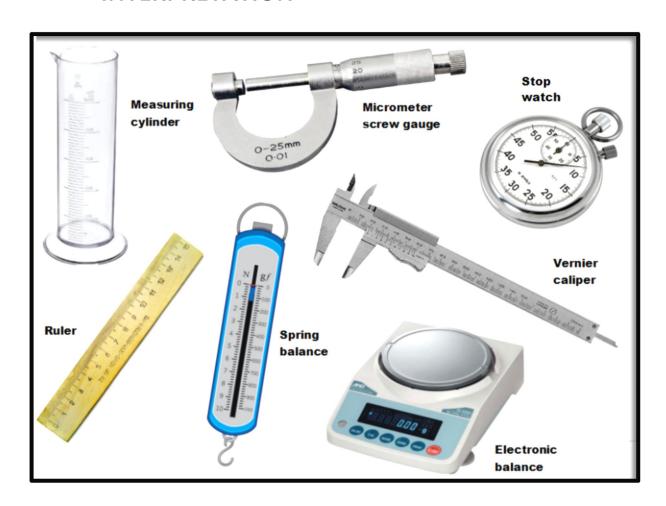


Figure 1.8 Examples of measurement tools

Measurement and Measuring Devices

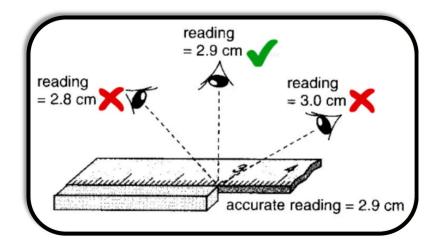
Experiments are carried out in science and engineering. During experiments, we must take readings. Thus, all these experiments require some kind of measurement. Figure 1.8 manifests some examples of measurement tools that can be used for measurement purposes. Measurement can be done directly or indirectly. When measurements are taken directly using tools, instruments or other calibrated measuring devices, they are called direct measurement. In this section, we shall study the use of ruler, vernier caliper and micrometer screw gauge to measure length, diameter and etc.

(a) Ruler

- A ruler is used to measure lengths from a few cm up to 1 m.
- A meter ruler has an accuracy of 0.1 cm (1 mm).

Precautions While Using a Ruler to Measure Length

- Ensure that the object is in contact with the ruler to a avoid inaccurate readings.
- 2. Avoid parallax errors. The eye must be kept vertically above the end of the object so that the corresponding graduatn can be read clearly. If the eye is not kept exactly vertically above the end of the object, it leads into error called "parallax error" as shown in **Figure 1.9**.
- 3. Avoid zero and end errors. The ends of a ruler, which may be worn out, are a source of errors in measurement. Thus, it is advisable to use the division mark `1' of the scale as the zero point when taking a measurement as illustrated in Figure 1.10. The length of the object is obtained by subtracting higher reading from lower reading.



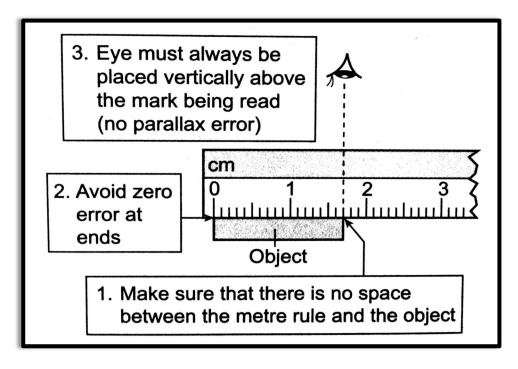

Figure 1.9 Parallax error

Figure 1.10 Use the division mark `1' of the scale as the zero point when taking a measurement

How to Measure Length Correctly Using a Metric Scale Ruler

Metric rulers may include any combination of meters (m), centimeters (cm) and milimeters (mm). Figure 1.11 below shows the proper technique to use a metric scale ruler in centimeters.

Figure 1.11 Proper technique to use a metric scale ruler in centimeters

(b) Vernier Caliper

- Vernier caliper is more accurate than a ruler, since it has the smaller scale of 0.1 mm.
- It is capable of measuring lengths of less than 10 cm.
- The accuracy of a vernier caliper is up to 0.1 mm (0.01 cm).
- **Figure 1.12** depicts parts of a vernier caliper and their functions which are as follows:
- Upper jaws (inside jaws) determining inside measurements such as the diameter of a hole or slot.
- Lower jaws (outside jaws) measuring outside dimensions such as width, length and diameter.
- Depth rod measuring the depth of an object or a hole.

Parts of Vernier Caliper

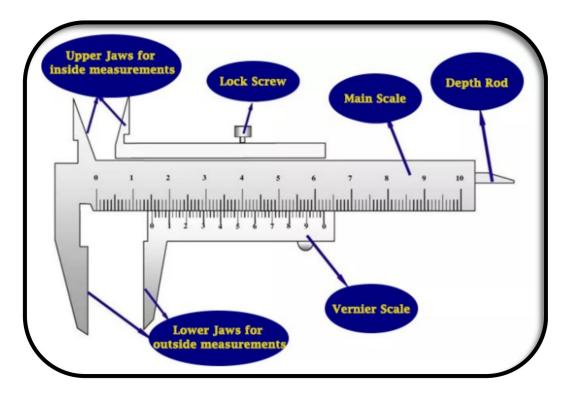


Figure 1.12 Parts of a vernier caliper

1.4.1 STATE THE MEASUREMENT READING FROM THE USE OF VERNIER CALIPERS

How to Use a Vernier Caliper?

- To measure outer/inner dimensions of an object, the object is placed between the jaws, which are then moved together until they contact the object.
- 2. The screw clamp may then be tightened to ensure that the reading does not change while the scale is being read.
- 3. Take the reading. **Figure 1.13** shows the measurement reading technique for vernier caliper.

Measurement Reading Technique for Vernier Caliper

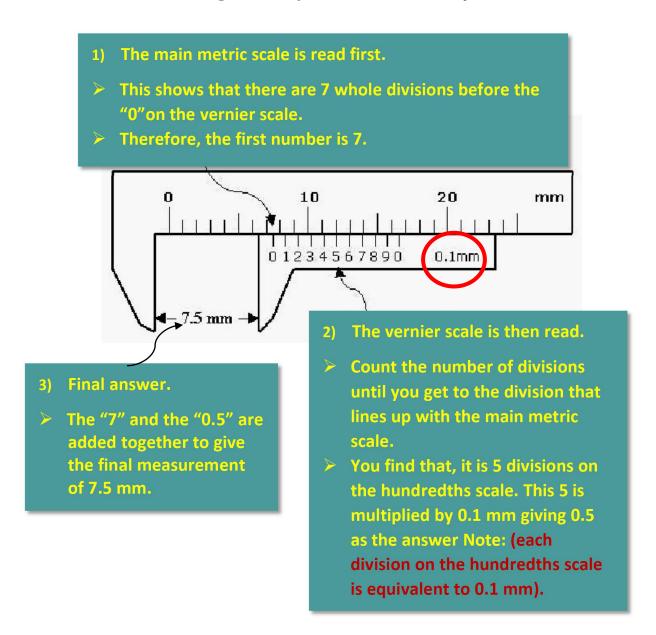
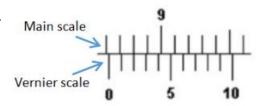
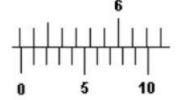


Figure 1.13 Measurement reading technique for vernier caliper

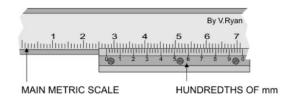


STATE THE MEASUREMENT READING FROM THE USE **OF VERNIER CALIPERS**

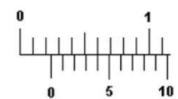
EXAMPLE 1.4


Find the readings of the vernier calipers below.

1.

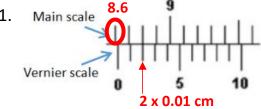

Answer:_____ cm

2.


Answer: cm

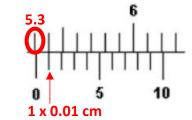
3.

Answer:____ mm


4.

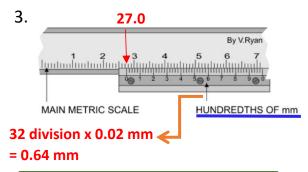
Answer:____cm

Solution:


1.

Main scale: 8.6 cm Vernier scale: + 0.02 cm 8.62 cm

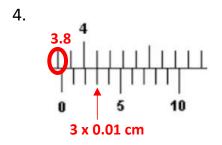
Answer: 8.62 cm


2.

Main scale: 5.3 cm

Vernier scale: + 0.01 cm 5.31 cm

Answer: 5.31 cm



Main scale: 27.0 mm

Vernier scale: + 0.64 mm

27.64 mm

Answer: 27.64 mm

Main scale: 3.8 cm

Vernier scale: + 0.03 cm

3.83 cm

Answer: 3.83 cm

Zero Error of Vernier Caliper

Zero error indicates that a measuring tool gives a false reading when the true value of measured quantity is zero. Zero errors must be subtracted from the observed measurement to get the true value. Zero errors are one of the most commonly occurring errors in measuring instruments such as vernier calipers.

A vernier caliper zero error occurs when the vernier caliper is set to its closed position, for example, with the measuring jaws in contact with each other but the zero on the vernier scale does not match with the zero on the main scale, that is to say the reading is not zero. Zero errors can occur due to improper vernier caliper calibration or as a result of mechanical shock which disturbs the alignment of the jaws.

There are **3 conditions** of **zero errors of vernier caliper**: **no zero error**, **positive zero error and negative zero error. Figure 1.14** shows cases of zero error in a vernier caliper.

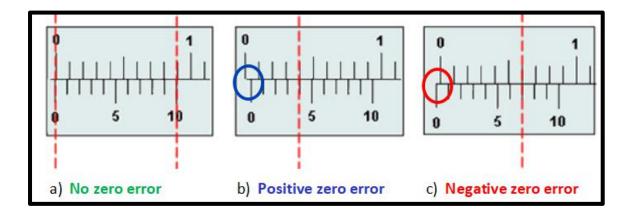


Figure 1.14 Cases of zero error in a vernier caliper

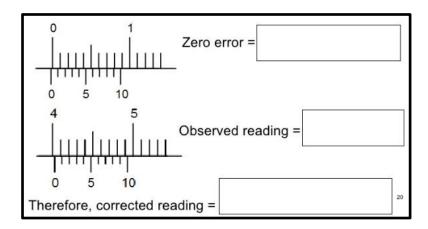
> No Zero Error: The two zero marks coincide.

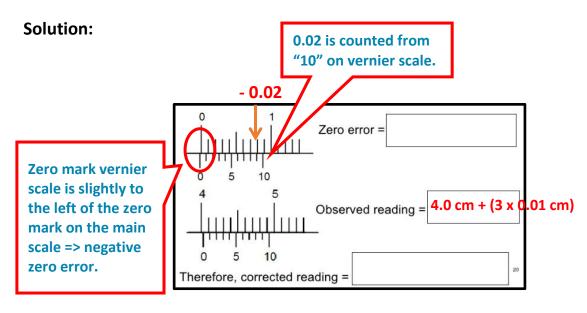


Negative zero error: The zero of vernier scale is left to the zero mark on the main scale (remember as, just vice versa of +ve zero error)

Table 1.8 shows the steps to read the 3 conditions of zero errors of vernier caliper.

Table 1.8 Steps to read the 3 conditions of zero errors of vernier caliper


Checking for zero error	Observed reading	Actual reading = observed reading – zero error
Two zero marks coincide => No zero error	Reading = $1.2 + 0.03$ = 1.23 cm	1.23 cm as no zero error correction required.
Zero mark on the vernier scale is slightly to the right of the zero mark on the main scale => positive zero error Reading = + 0.03 cm (count from 0)	Reading = 1.2 + 0.06 = 1.26 cm	1.26 – (+0.03) = 1.23 cm
Zero mark on the vernier scale is slightly to the left of the zero mark on the main scale => negative zero error Reading = - 0.03 cm (count from 10).	Reading = 1.20 cm	1.20 – (- 0.03) = 1.23 cm


STATE THE MEASUREMENT READING FROM THE USE OF VERNIER CALIPERS (WITH ZERO ERROR)

EXAMPLE 1.5

Determine the actual reading for the vernier caliper readings in **Fgure 1.15**.

Figure 1.15

Zero error = -0.02 cm

Observed reading = 4.03 cm

Corrected reading = 4.03 cm - (-0.02 cm)

= +4.05 cm

(c) Micrometer Screw Gauge

- A micrometer screw gauge is more accurate than a ruler and vernier calliper because it has the smallest scale of 0.01 mm.
- The range of a micrometer is 0-25 mm.
- The accuracy of a micrometer is up to 0.01 mm.

Parts of Micrometer Screw Gauge

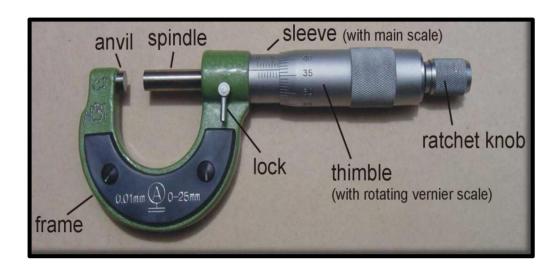


Figure 1.16 Parts of a micrometer screw gauge

The micrometer screw gauge is used for measuring diameters of wires, the thickness and of a workpiece, and much more. **Figure 1.16** shows the parts of a micrometer screw gauge.

1.4.2 STATE THE MEASUREMENT READING FROM THE USE OF MICROMETER SCREW GAUGE

How to Use a Micrometer?

- Turn the thimble until the object is gripped gently between the anvil and spindle
- 2. Turn the ratchet knob until a "click" sound is heard. This is to prevent exerting too much pressure on the object measured.
- 3. Take the reading. **Figure 1.17** shows the measurement reading technique for micrometer screw gauge.

Measurement Reading Technique For Metric Micrometer

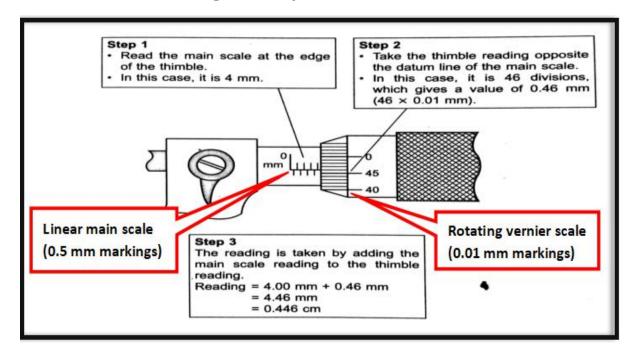
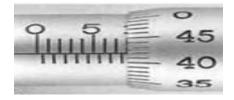


Figure 1.17 Measurement reading technique for micrometer screw gauge

STATE THE MEASUREMENT READING FROM THE USE OF MICROMETERS SCREW GAUGE

EXAMPLE 1.6


Read the following metric micrometer screw gauge measurements.

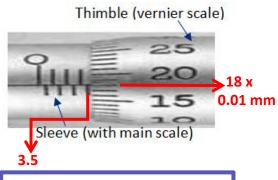
1. Thimble (vernier scale)

Answer: ____mm

2.

Answer:_____mm

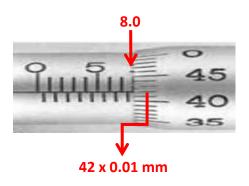
3.



Answer: _____mm

Solution:

1.



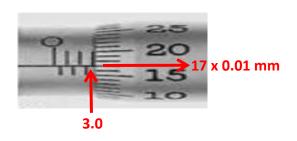
Sleeve: 3.50 mm Thimble: +

3.68 mm

0.64 mm

2.

Sleeve: 8.00 mm


Thimble: + <u>0.42 mm</u>

<u>8.42 mm</u>

Answer: 3.68 mm

Answer: **8.42 mm**

3.

Sleeve: 3.00 mm

Thimble: + 0.17 mm

3.17 mm

Answer: 3.17 mm

Zero Error of Micrometer Screw Gauge

When using a micrometer screw gauge, we must first check that there is zero error. This is to check whether zero mark on thimble scale coincides to the datum line on the main scale and if reading on main scale is 0 when we are not measuring anything (anvil is in contact with spindle). Figure 1.18 shows the cases of zero error in a micrometer screw gauge.

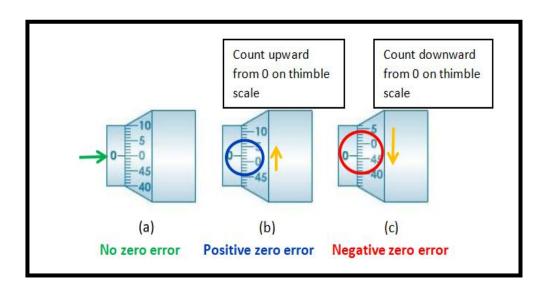
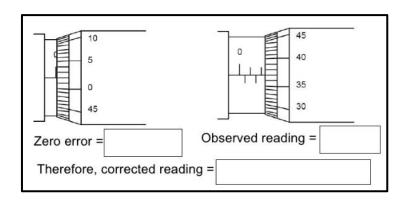


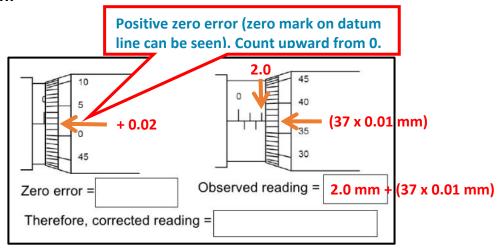
Figure 1.18 Cases of zero error in a micrometer screw gauge

Case (a) No zero-error occurs when the zero mark on thimble scale coincides with datum line on the main scale and reading on main scale is "0". Case (b) Positive zero-error of 2 circular scale division. Positive zero-error correction is done by subtracting the positive zero-error from the actual reading. Case (c) Negative zero-error of 4 circular scale division. Negative zero-error correction is done by adding the negative zero-error from the actual reading. For reading on zero errors, we have to read it from thimble scale. Table 1.9 shows the steps of checking and correcting zero errors when using the micrometer screw gauge.


Table 1.9 Steps of checking and correcting zero errors of a micrometer screw gauge

Checking for zero error	Observed reading	Actual reading = observed reading – zero error
zero mark on thimble scale coincides with datum line on the main scale and reading on main scale is 0 => No zero error	Reading = 2.0 + 0.25 = 2.25 mm	2.25 mm as no zero error correction required.
Zero mark on datum line can be seen => positive zero error Reading = + 0.07 mm (count from 0)	Reading = $2.0 + 0.32$ = 2.32 mm	2.32 – (+0.07) = 2.25 mm
Zero mark on datum line cannot be seen => negative zero error Reading = - 0.02 mm (count down from 0)	Reading = 2.0 + 0.23 = 2.23 mm	2.23 – (- 0.02) = 2.25 mm

STATE THE MEASUREMENT READING FROM MICROMETER SCREW GAUGE USAGE (WITH ZERO ERROR)


EXAMPLE 1.7

Determine the actual reading for the micrometer readings in Fgure 1.18.

Figure 1.18

Solution:

Zero error = + 0.02 mm

Observed reading = 2.37 mm

Corrected reading = 2.37 mm - (+0.02 mm)

 $= +2.35 \, mm$

PHYSICAL QUANTITIES AND MEASUREMENT

- Q1 Describe the differences between base quantity and derived quantity with TWO (2) examples.
- Q2 List TWO (2) base quantities and derived quantities with their respective SI units.
- Q3 Classify the given physical quantities below into base and derived quantities.

5 packets inside: Total 80.5 g

For each packet, add 150 cm³ of hot water at 70°C. Stir until thicken.

All done in 3 minutes.

10 kJ of energy per serving

Expiry date: 23/08/2023

- **Q4** List the types of errors in measurement.
- Q5 Describe THREE (3) differences between the errors stated in Q4.
- **Q6** Random errors in an experimental measuarements are caused by unknown and unpredictable changes in an experiment:
 - a. Give **TWO (2)** examples of cause of random errors.
 - b. Give **TWO (2)** approaches to minimize random errors.

- Q7 The measurement error is defined as the differences between a true value and a measured value. Give **ONE** (1) example of the cause of errors during experiment and state **TWO** (2) best ways of reducing errors.
- **Q8** Describe the differences between consistency and accuracy by using appropriate diagram.
- **Q9** Define and give **ONE (1)** example for each following term:
 - a. Scalar quantity
- b. Vector quantity
- Q10 For each situation below, determine whether each of the quantities involved is a scalar or vector quantity. Explain your answer.
 - Fatin buy 4 kg of sugar for her mother to bake cakes.
 - Aminah runs 7 km for a Palastine Marathon.
 - ◆ Danial heats some water from 25°C to 100°C to make hot chocolate.
 - ◆ An airplane is heading north at an airspeed of 700 km/h.
 - ◆ A man pushes a heavy crate with a force of 70 N towards a lift.
 - A deer running 15 m/s due west.
 - Ariel took seven hours to drive his car from Kuala Lumpur to Kota Baharu.
- **Q11** Use the appropriate prefixes to represent the following numbers:

a. 0.003 g

d. 1700000 m

b. 800000 Hz

e. 40000000 W

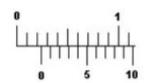
c. 2300 N

f. 500 J

Q12 Convert the following metric units:

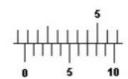
- a. 500000 N/m² to kN/mm²
- b. 15 m³ to cm³
- c. $200 \text{ kg/m}^3 \text{ to g/cm}^3$
- d. 160 km/h to m/s

- e. 10 h to s
- f. 250 000 μm to km
- g. 45 mm/min to m/s
- h. 920 mm² to m²

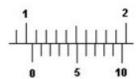

Q13 Convert the following customary units:

- a. 35 foot to inches
- b. 4 yards to inches
- c. 24000 feet to miles
- d. 2.6 gallons to litters

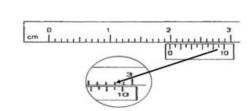
- e. 50 oz to pound
- f. $13\frac{3}{4}$ ft³ to m³
- g. 1 kg to oz
- h. 5.18 km² to hectare


Q14 Read the following vernier caliper measurements.

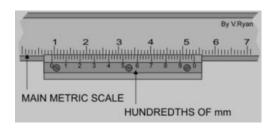
a.


Answer: _____cm

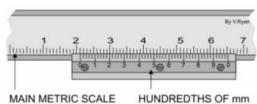
b.


Answer: _____cm

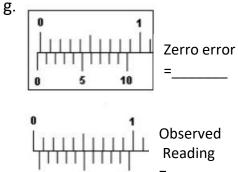
_


Answer: _____cm

d

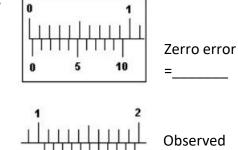

Answer: _____cm

e.



Answer: _____mm

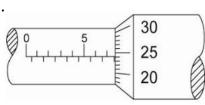
f.



Answer: _____mm

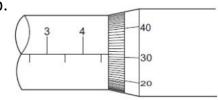
Corrected reading: _____cm

h.

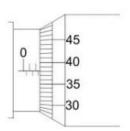


Corrected reading: _____cm

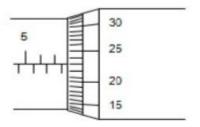
Reading


Q15 Read the following metric micrometer screw gauge measurements.

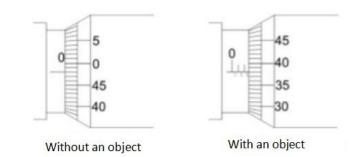
a.


Answer: _____mm

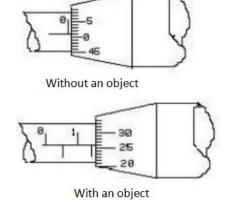
b.


Answer: _____mm

c.

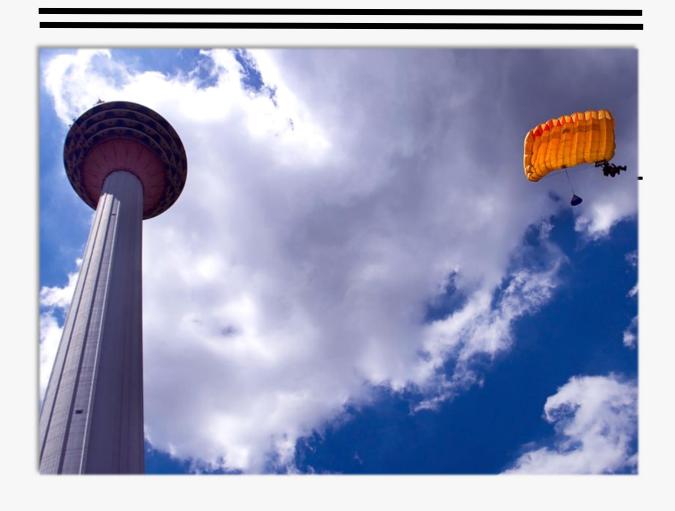

Answer: _____mm

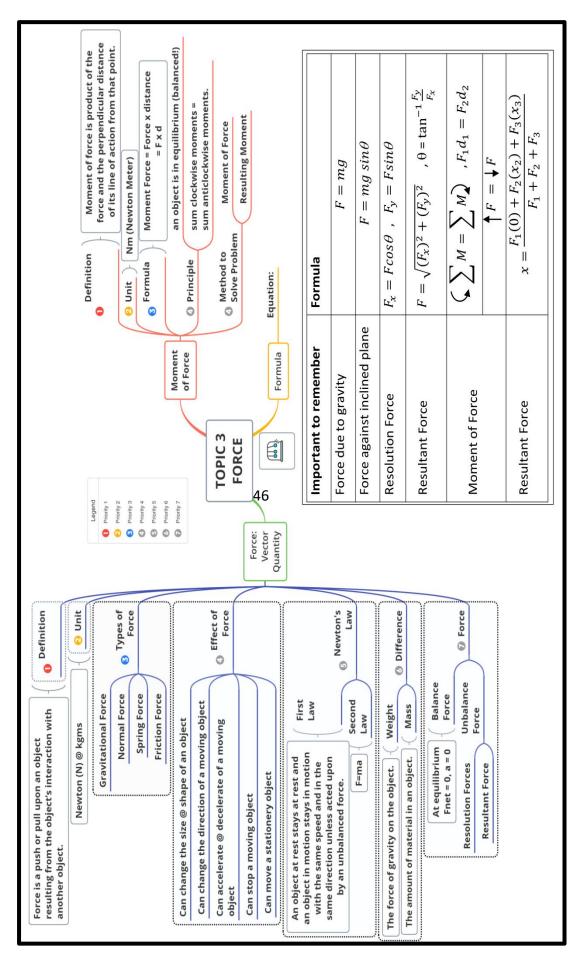
d. If zero error occurred is -0.05 mm


Corrected reading: ____mm

e.

Answer: _____mm


f.


Answer: _____mm

TOPIC 2 FORCE

CONCEPT MAP OF FORCE

2.1 CONCEPT OF FORCE

- Force is defined as any influence that changes the state of motion of an object.
- Force also known as a push or a pull action is a vector quantity which has both magnitude and direction as shown in Figure 2.1.

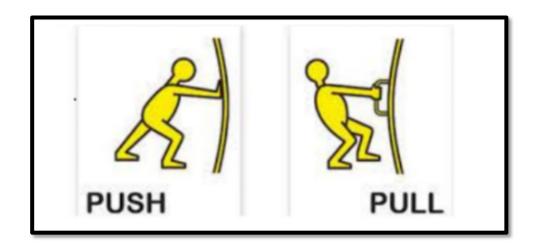


Figure 2.1 Pushes and pulls of forces is a vector quantity

2.1.1 DEFINITION OF FORCE AND ITS UNIT

- Force is a quantitative measure of the interaction between any physical,
 concerning its motion, geometrical shape, direction and its environment.
- In the theory of physics, a force also known as any influence that will change the motion of an object, for example its velocity proportional to acceleration.
- Force is a derived quantity that can be measured in Newton (N) or that
 causes an object with a mass of 1 kg to accelerates at 1 m/s² (1 kgms⁻²).

2.1.2 TYPES OF FORCE

• There are many types of forces. Several main types of force are :

i. Gravitational force or Weight

 Can be defined as the gravitational force acting on the object. If the mass of an object is m kg, then its weight can be calculated as;

$$F = W = mg$$

gravitational acceleration on the earth, g = 9.81 ms⁻²

 The force of gravity on the earth is always directed 'downwards' due to the centre of the earth and equal to the weight of the object as shown in Figure 2.2.

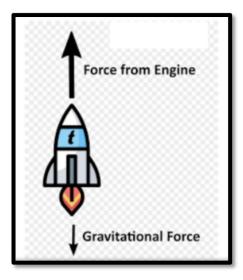


Figure 2.2 Gravitational force acting on the rocket

ii. Frictional force

 Can be defined as the force that opposes the relative motion of two surfaces. Frictional force can be illustrated such as in Figure 2.3.

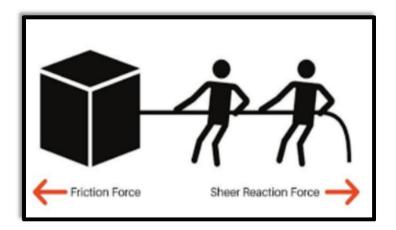


Figure 2.3 Frictional force acting against the pulling force and motion

- Types of frictional force are:
 - > static friction : friction that acts on stationary object
 - kinetic friction: friction that acts while the object is moving

iii. Reaction force

The force also known as normal reaction, that opposes the force
 exerted on a surface which is perpendicular to the surface, in 90° as
 shown in Figure 2.4.

Figure 2.4 Reaction force acting perpendicular to the surface

iv. Magnetic force

Force exerted on a magnetic object, acting between the magnetic poles of two magnets, as shown in Figure 2.5.

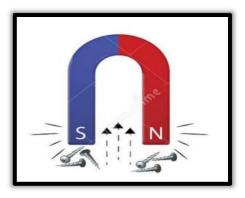


Figure 2.5 Magnetic force acting on the conductor nail

v. Electrical force

- The electric force between stationary charged body is conventionally known as the electrostatic force. Electrostatic force is an attractive and repulsive force between particles are caused due to their electric charges.
- Figure 2.6 shows electric charge and electric force :

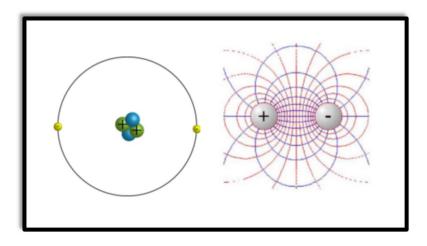


Figure 2.6 Particles of electric charge and electric force

- There are several example acting of forces :
 - Push: a force to move something away
 - Pull: a force to move something toward us
 - o Gravity: a force that attracts two object sitting next to each other
 - Magnetism: a force that pulls metal toward a magnet
 - o Friction: a force that slows or stops when objects rub together

2.1.3 EFFECTS OF NET FORCE

- When the forces acting on an object are balanced, they cancel each other
 out, known as the net force because the force is equal to zero.
- Figure 2.7 shows general effects of net force.

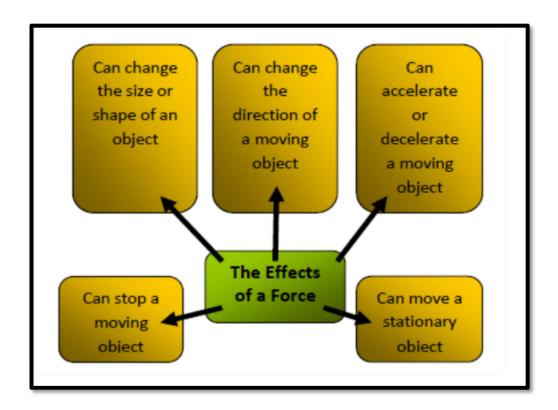


Figure 2.7 The effects net force

An examples effects of net force as shown in Figure 2.8 (a), (b) and (c):

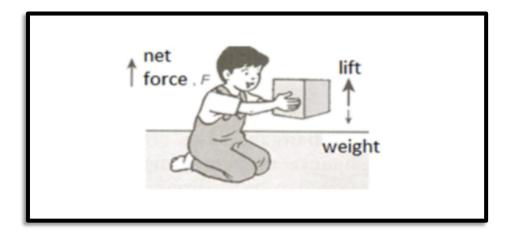


Figure 2.8 (a) Upward net force

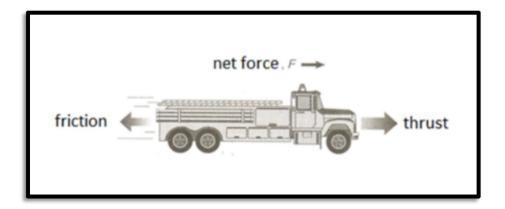


Figure 2.8 (b) Forward net force

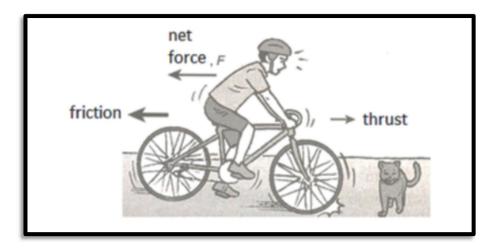


Figure 2.8 (c) Backward net force

2.1.4 NEWTON'S FIRST LAW AND SECOND LAW

Newton's First Law ($\sum F = 0$)

- Newton's First Law of motion states that an object at rest will remains at rest and an object in motion will remains in motion with the same speed and direction, until unbalanced force occurs on the objects.
- Figure 2.9 shows an example of Newton's First Law.

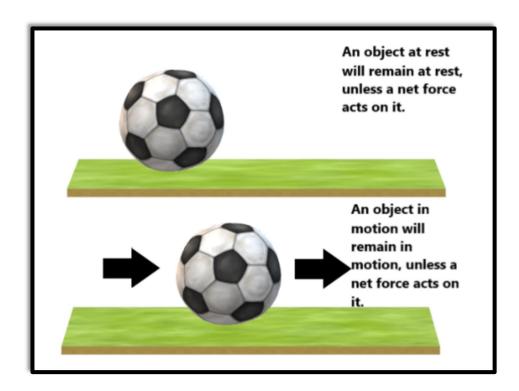
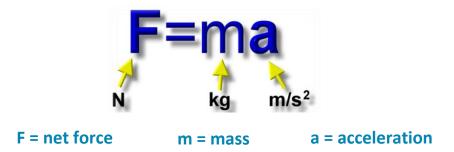



Figure 2.9 An example of Newton's First Law

- Inertia is the tendency of an object to stay at rest or preserve its state of motion. This concept is quantified in Newton's First Law of Motion.
- The greater the mass, the stronger the inertia and it will make an object reluctant to move up or to stop. This external physical quantity which is required to change the state of motion of an object is called force.

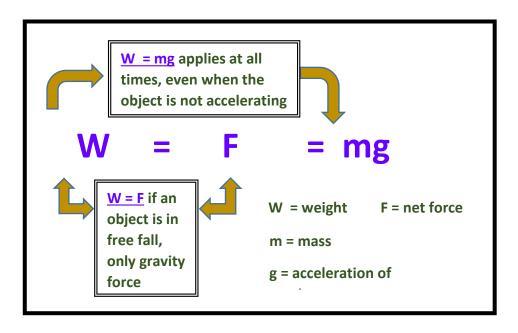
Newton's Second Law ($\sum F = ma$)

 Newton's second law is about the relationship between force, mass and acceleration and can be described as below:

• For example, to launch a rocket, the magnitude of thrust is increased, which

in turn increases the acceleration.

According to the second law of motion given by Sir Issac Newton, the force is proportional to the acceleration, therefore the speed achieved by the rocket finally helps it to escape the earth's gravitational field and enter space.


2.1.5 WEIGHT AND MASS

What is the difference between weight and mass? Many people use these terms interchangeably, on Earth it might works. However, on the Moon or on other planets, we will have to get more precise when we talk about how much stuff is in our stuff. The difference between weight and mass as shown in **Table 2.1**.

Table 2.1 Comparison of mass and weight

NO	MASS	WEIGHT	
1	Mass is a property of matter. An object's mass is the same everywhere.	Weight depends on the effect of gravity. The influence of gravity determines weight. The weight varies according to where you are.	
2	Mass can never be zero.	Weight can be zero if no gravity acts upon an object, as in space.	
3	Mass does not change according to location.	Weight increases or decreases with higher or lower gravity.	
4	Mass is scalar quantity. It has magnitude only.	Weight is a vector quantity. It has magnitude and is directed toward the centre of the earth.	
5	Mass may be measured using an ordinary balance.	Weight is measured using a spring balance.	
6	Mass is usually measured in grams and kilograms.	Weight is often measured in Newton, a unit of force.	

Relationship between weight, force, mass and acceleration of gravity.

2.1.6 DEFINITION FORCES IN EQUILIBRIUM

- If the size and direction of a force acting on an object are exactly balanced, then there is no net force acting on the object and the object is said to be in equilibrium.
- **Figure 2.10 (a) and (b)** show two objects are at equilibrium. However, the forces are not equal.

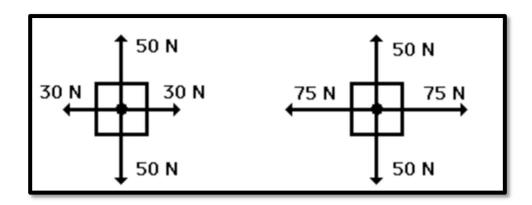
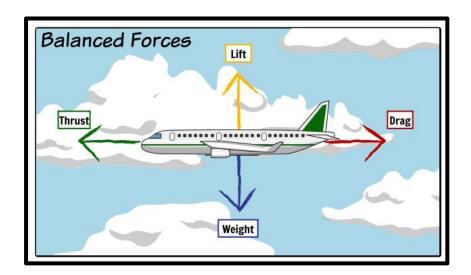



Figure 2.10 (a) Two objects are at equilibrium since the forces are balanced

Figure 2.10 (b) Size and direction of the forces acting on an object are exactly balanced

- Types of equilibrium (in balance) :
 - Static equilibrium if the combined effects of all the forces acting on a body is zero (rest), then its static equilibrium.
 - Dynamic equilibrium when a body is in state of uniform motion and the resultant of all the force acting upon it is zero, it is a dynamic equilibrium.
- **Figure 2.11** shows a relationship between equilibrium and a non-equilibrium.

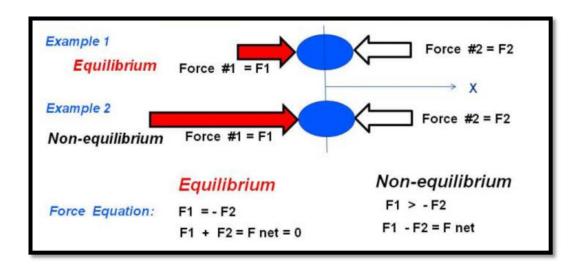


Figure 2.11 Equilibrium and non-equilibrium factor

2.1.7 CALCULATE RESULTANT FORCE

- Resultant force can be defined as a system of forces is acting on an object, the difference between the forces is called the Resultant force. For example,
 2 N force to the left and 7 N force to the right gives a resultant force of 5 N to the right.
- Figure 2.12 (a), (b), (c) shows an example of the size and direction of resultant force, determines how a body moves.

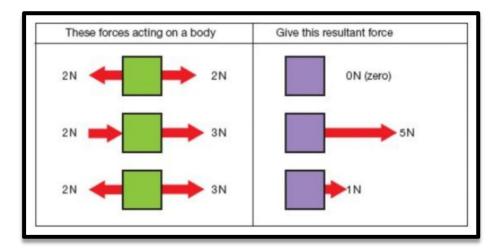


Figure 2.12 (a) Resultant force

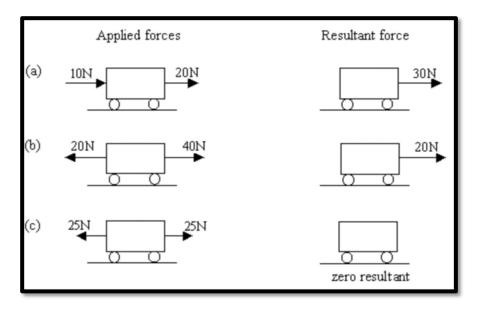


Figure 2.12 (b) Multi direction of force action

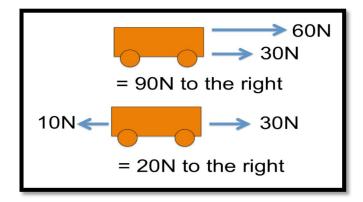
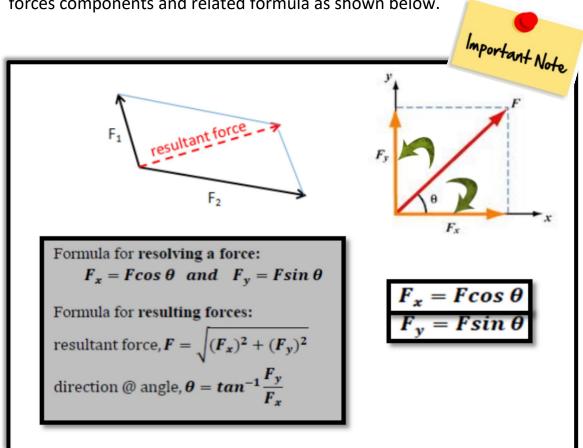
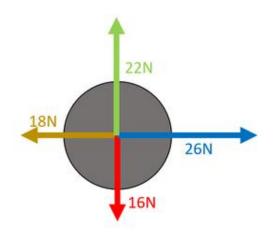



Figure 2.12 (c) Different direction of resultant force action

2.1.8 APPLICATION OF THE CONCEPT OF FORCE THROUGH RESOLUTION METHODS

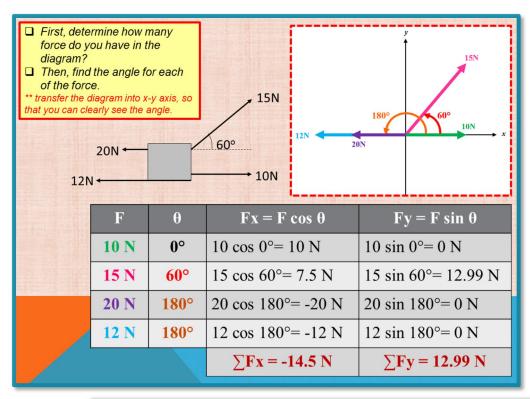

- Resolution of a force can be defined as the process of splitting up the given force into several components, without changing its effect on the body.
- The resultant of two or more vectors of forces can be found by adding the forces components and related formula as shown below.

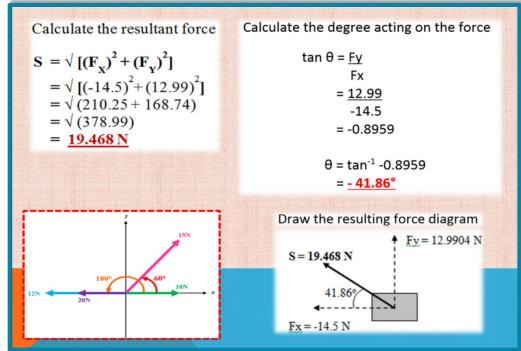
APPLICATION OF THE CONCEPT OF FORCE THROUGH RESOLUTION METHODS

EXAMPLE 1

Determine the angle of each force;

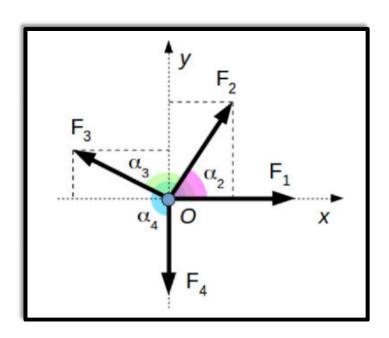
Solution steps:


- ☐ First, determine how many force do you have in the diagram?
- \Box Then, find the angle for each of the force.


** built the solution table, so that you can clearly see the angle.

F	α	Fx = F Cos α	Fy = F Sin α
F1=26N	00	26 Cos 0 ⁰ = 26 N	26 Sin 0 ⁰ = 0 N
F2=22N	90°	22 Cos 90 ⁰ = 0 N	22 Sin 90° = 22 N
F3=18N	180 ⁰	18 Cos 180 ⁰ = -18N	18 Sin 180 ⁰ = 0 N
F4=16N	270°	16 Cos 270 ⁰ = 0 N	16 Sin 270 ⁰ = -16 N
	Σ	8 N	6 N

EXAMPLE 2


Diagram shows forces acting on an object. Calculate the resulting force acting on the object and draw resulting force diagram;

EXAMPLE 3

Calculate the resulting force acting on the object;

F	α	Fx =F Cos α	Fy =F Sin α
F1=10N	O ⁰	$10 \cos 0^0 = 10 \text{ N}$	10 Sin $0^0 = 0$ N
F2=5N	37 ⁰	5 Cos 37 ⁰ = 3.99 N	5 Sin 37 ⁰ = 3 N
F3=5N	150°	5 Cos 150 ^o = -4.33 N	5 Sin 150 ⁰ = 2.5 N
F4=4N	270 ⁰	4 Cos 270 ⁰ = 0 N	4 Sin 270 ⁰ = -4 N
Σ		9.66 N	1.5 N

Resultant Force , R =
$$\sqrt[2]{\sum (f_x)^2 + \sum (f_y)^2}$$

= $\sqrt{(9.66)^2 + (1.5)^2}$
= $\sqrt{93.316 + 2.25}$
= $\sqrt{95.566}$
= 9.776 N

Direction,
$$\theta = tan^{-1} \frac{f_y}{f_x}$$

= $tan^{-1} \frac{1.5}{9.66}$
= 2.71°

2.2 MOMENT OF FORCE CONCEPT

- Forces can cause an object to rotate and the turning effect of the force is called a moment.
- If a resultant force acts on an object about a fixed turning point (the pivot) it
 will cause the object to rotate. For example turning a nut with a spanner,
 applying a screwdriver, opening a door fixed on hinges.
- Let us imagine pushing a door open. You push on the door handle and the
 door rotates around its hinges (the hinges are a pivot). You exerted a force
 that caused the door to rotate, the rotation was the result of the moment
 of your pushing force.

2.2.1 DEFINITION OF MOMENT FORCE AND ITS UNIT

- In physics, moment of force is a measure of its tendency to cause a body to rotate about a specific point or axis.
- The rotational or turning effect, the moment, has a magnitude easily calculated from the formula:

$$M = F x d$$

- Where M = the moment of a force (Nm), F = force applied (N) and d is the pependicular distance (m) from the pivot point to the line of action of the force.
- Figure 2.13 (a), (b) shows the moment of a force. The maximum moment produces by pushing/pulling the spanner at a right angle (at 90°) to the line
 (d) between the pivot point and the line of action where the force is applied.

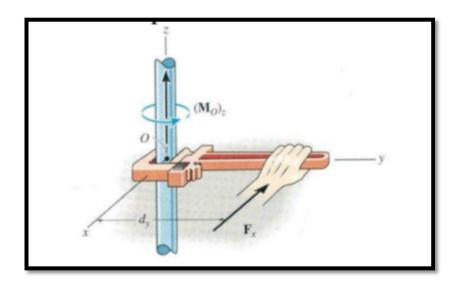


Figure 2.13 (a) Basic moment of a force by turning the spanner

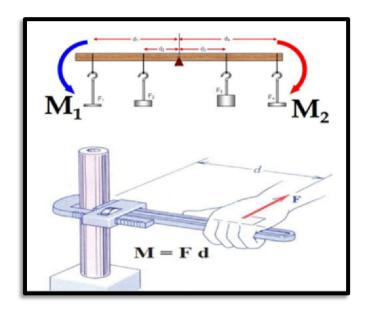


Figure 2.13 (b) Law and application of moment

• The characteristics of moment as shown in **Table 2.2**.

Table 2.2 Characteristics of moment

No	Characteristics of moment
1.	It is the measurement of the perpendicular distance from the point of rotation to the force's line of action
2.	The symbol of the moment is M and SI unit is Nm
3.	Moment is a static force
4.	Moment is produced by any lateral force and used in non-rotational events
5.	Moment is referred to the nature of the force to move the object.

• Figure 2.14 (a), (b) shows an example of an application moment

Figure 2.14 (a) Moment application

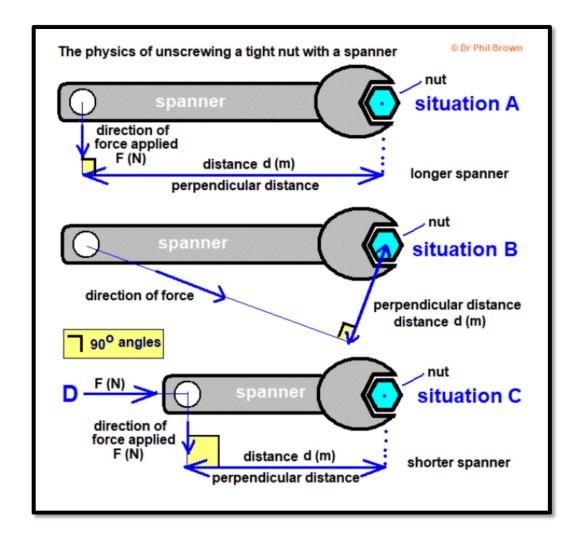
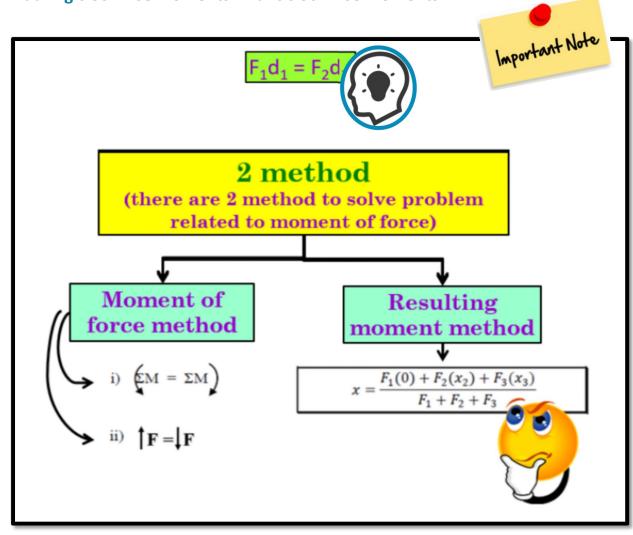
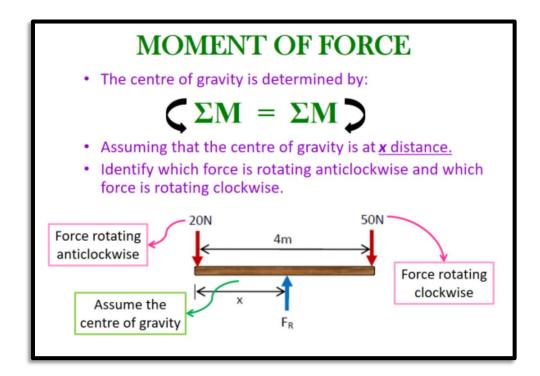
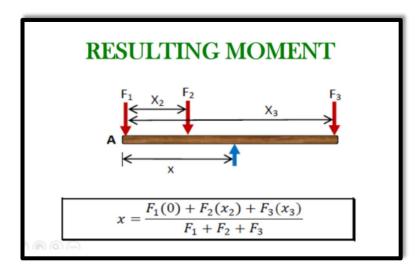



Figure 2.14 (b) Mechanical forces of rotation

- If a resultant force acts on an object about a fixed turning point (the pivot)
 it will cause the object to rotate, has a magnitude easily calculated from the formula M = F x d.
- The maximum moment by pushing/pulling the spanner at a right angle (at 90°) to the line (d) between the pivot point and the line of action where the force is applied.

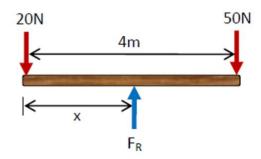

2.2.2 MOMENT OF FORCE PRINCIPLE

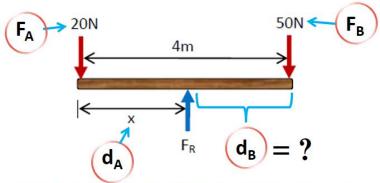
- The Principle of Moments:
 - An object is in equilibrium (balanced!).
 - The sum of the clockwise moments is equal to the sum of the anticlockwise moments.
- There are two methods to solve problem related to the moment of force during clockwise moments = anticlockwise moments.



2.2.3 APPLICATION OF THE MOMENT OF FORCE CONCEPT AND FORMULA IN SOLVING THE RELATED PROBLEMS

 The concept of moment of force as it is referring to the centre of gravity as below:

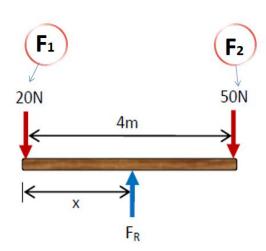

The concept of resulting moment of force referring to the centre of gravity is
determined by dividing sum of moment with sum of forces as below (assume
centre of gravity at x and take A as reference).


MOMENT OF FORCE METHOD

EXAMPLE 1A

Determine the center of gravity for the system shown below by assuming the object is in equilibrium.

solution:



Assume the center of gravity is at **x** distance

RESULTING MOMENT METHOD

EXAMPLE 1B

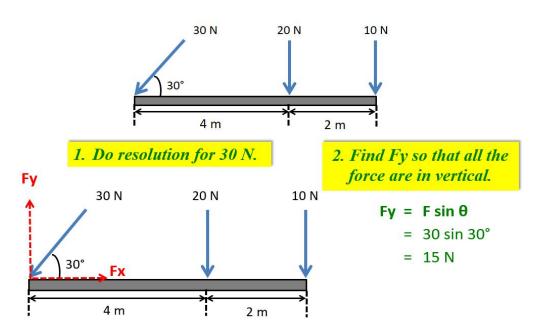
By using the same diagram, determine the center of gravity for the system.

solution:

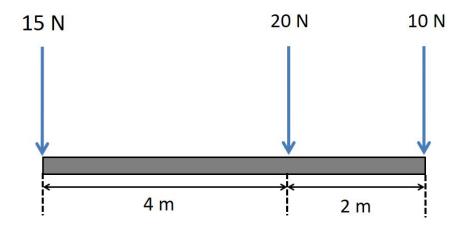
$$x = \frac{F_{1}(0) + F_{2}(x_{1})}{F_{1} + F_{2}}$$

$$= \frac{20(0) + 50(4)}{20 + 50}$$

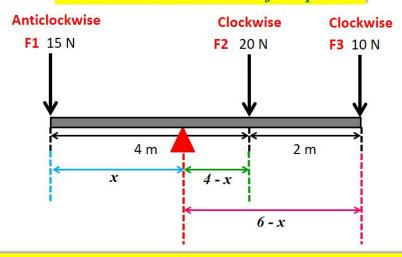
$$= \frac{0 + 200}{70}$$


$$= 2.86 \text{ m}$$

MOMENT OF FORCE METHOD


EXAMPLE 2A

Find the centre of gravity to keep it in equilibrium by using moment of force method.


Solution;

3. Draw the new diagram by replacing 30 N with the Fy value.

- Let us the pivot between F1 and F2;
 - 4. Assume the location of the pivot.

- 5. Identify whether the force is clockwise or anticlockwise.
- 6. Find the distance for each force. (The distance is between force and pivot)
 - 7. Write the formula for moment of force method and substitute all the force with their distance in the formula. Find the value of x.

$$\sum M = \sum M$$

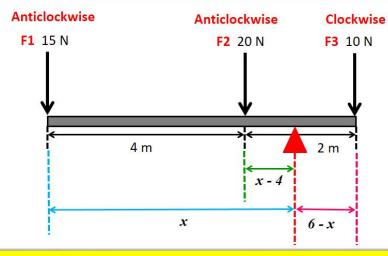
$$F_1d_1 = F_2d_2 + F_3d_3$$

$$15 (x) = 20 (4-x) + 10 (6-x)$$

$$15x = 80 - 20x + 60 - 10x$$

$$15x = 140 - 30x$$

$$15x + 30x = 140$$


$$45x = 140$$

$$x = \frac{140}{45}$$

$$x = 3.11 \text{ meter}$$

Let us change the pivot between F2 and F3;

** You may assume that the pivot is in between F2 and F3.

** Then, follow the same steps as previous. Determine whether the force is clockwise or anticlockwise and find the distance for each force.

** Hence, substitute all the force with their distance in the formula.

$$\sum M = \sum M$$

$$F_1d_1 + F_2d_2 = F_3d_3$$

$$15 (x) + 20 (x - 4) = 10 (6 - x)$$

$$15x + 20x - 80 = 60 - 10x$$

$$35x - 80 = 60 - 10x$$

$$35x + 10x = 60 + 80$$

$$45x = 140$$

$$x = \frac{140}{45}$$

$$x = 3.11 \text{ meter}$$

 Use the same diagram by using resulting moment method (the answer should be as the same as before).

** supposedly you will get the same answer as before.

FORCE

SET 1

- 1. List FOUR (4) examples of forces.
- 2. State **THREE (3)** differences between weight and mass.
- 3. The solar panels are fitted to a frame supported by a beam, as shown in the Figure 1 (a) and the forces are acted on the beam as shown in the Figure 1 (b) below. Calculate the size of reaction force, R₂ by considering the moments at R₁.



Figure 1

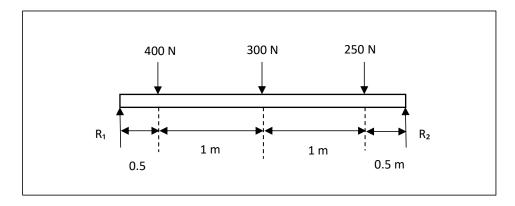


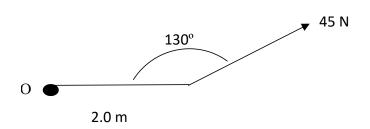
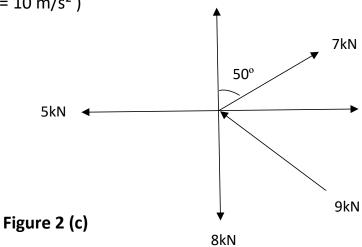
Figure 1 (b)

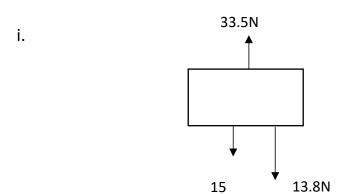
- 1. i. Define force and state its unit.
 - ii. Define force in equilibrium.
- 2. Find the moment of each force shown below at the point O. ($g = 9.81 \text{ m/s}^2$)

i. 0 0.6 m

Figure 2 (a)

ii.


Figure 2 (b)

3. Calculate the magnitude and the direction of the resultant force from

Figure 2 (c). (Use $g = 10 \text{ m/s}^2$)

- 1. State:
 - i. the definition of moment and its unit.
 - ii. TWO (2) types of moment.
- 2. Determine the direction of the force for the diagram below.

ii. 25 35N 17N

3. Calculate the magnitude and angle of the resultant force for Figure 3 (a).

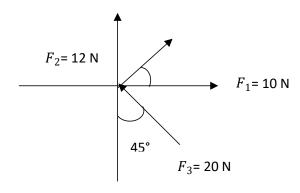


Figure 3 (a)

- 1. State FOUR (4) effects of force on an object.
- 2. Describe **THREE (3)** differences between mass and weight
- 3. Determine the magnitude and direction of resultant force produced from the system of forces below, using the resolution method in **Figure 4 (a)**.

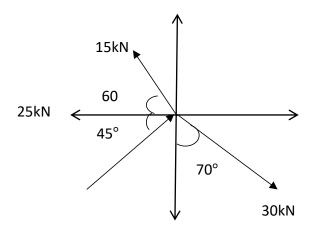


Figure 4 (a)

4. Calculate the centre of gravity of the beam in **Figure 4 (b)**, so that it is in equilibrium.

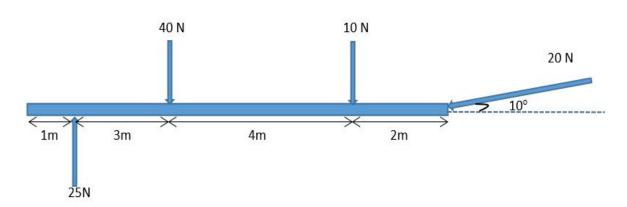


Figure 4 (b)

- 1. State TWO (2) differences between weight and mass.
- 2. i. Describe Newton's Second Law
 - ii. Based on **Figure 5 (a)**, determine the value of F_1 so that the object is in equilibrium.

3. **Figure 5 (b)** shows forces acting on a block.Calculate the magnitude of resultant force acting on the block.

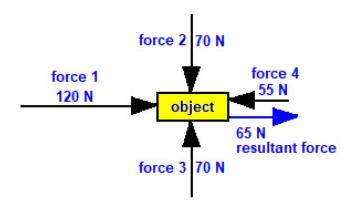
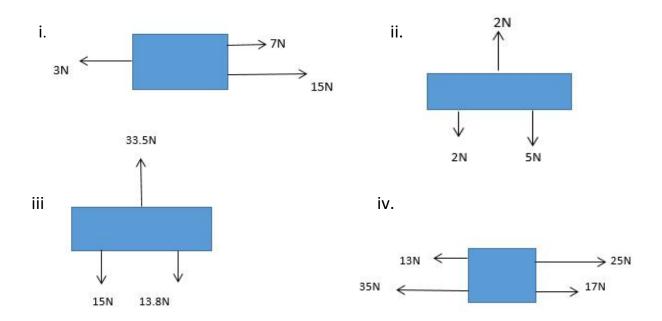
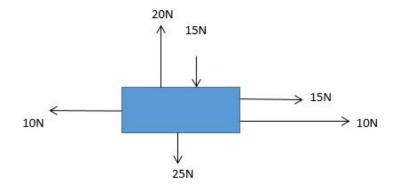
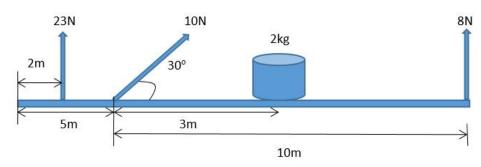
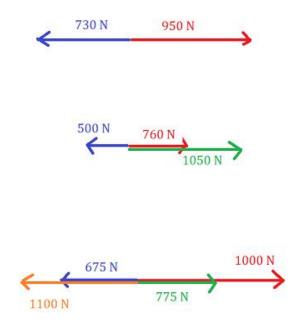




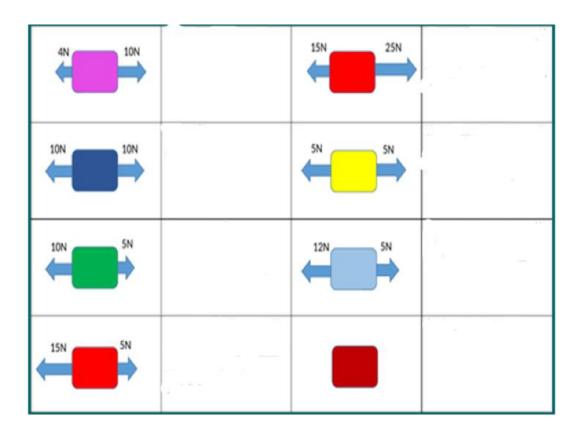
Figure 5 (b)


1. Find the magnitude of the resultant force and determine its direction for each of situation's below :

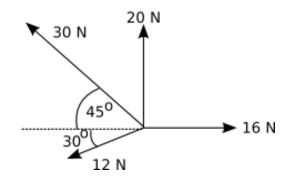

2. Calculate the net force acting on the x-axis and y-axis of an object below:


3. Calculate the centre of gravity of the following beam so that it is in equilibrium.

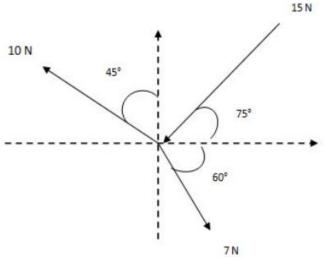
1. Find the magnitude of the resultant force and determine its direction for each of situation's below :



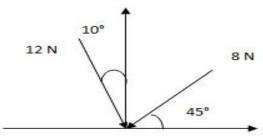
2. Calculate the centre of garvity of the following beam so that it is in equilibrium.



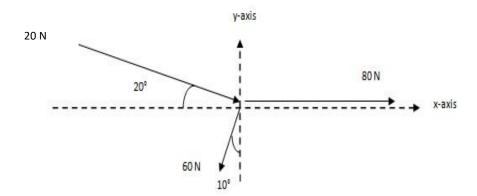
From point A


1. Find the magnitude of the resultant force and determine its direction for each of situation below :

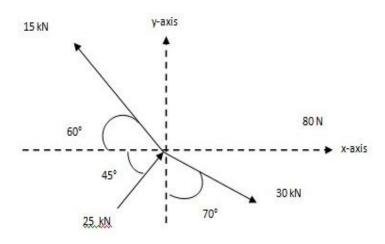
- 2. Determine the magnitude and direction of the resultant of these forces when they are pulling away from the point. The following forces act at a point:
 - 16 newtons due east
 - 20 newtons due north
 - 30 newtons north west
 - 12 newtons 30° south of west

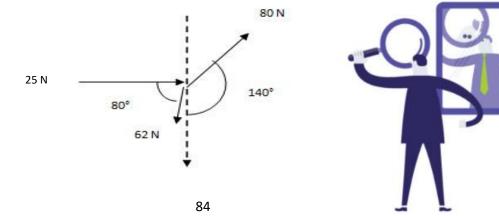


- 1. Define force and its S.I unit
- 2. Express force definition below:
 - i. Push
 - ii. Pull
 - iii. Gravity
 - iv. Magnetism
 - v. Friction
- 3. State **TWO (2)** examples of activities that involve force in everyday life.
- 4. State **FOUR (4)** effects of force on an object.
- 5. Describe Newton's Second Law.
- 6. State TWO (2) differences between weight and mass.
- 7. State the definition of moment and its unit.
- 8. Find the moment of 20 N force with an axis of rotation at a distance 0.5 m from the force.
- A spanner of length 10 cm is used to open a nut by applying a minimum force of
 N. Calculate the moment to force required.
- 10. Calculate the magnitude of resultant force and the direction of the following figure :



Calculate the magnitude of resultant force and the direction of the following figures :


1.


2.

3.

4.

GLOSSARY

A. PHYSICAL QUANTITIES AND MEASUREMENT

Physical quantities:

Physical that can be measured.

Based quantity:

Physical quantity that can not be derived from other physical quantities.

Derived quantities:

Quantities that are derived from the combination of several base quantities by multiplication or division.

Scalar quantities:

Physical quantities with magnitude only.

Vector quantities:

Physical quantities with direction and magnitude.

Error:

The difference between the actual value of a quantity and the value obtained in measurement.

Systematic errors:

Errors that produce a result that differs from the true value by a fixed amount and the measurement is always greater or less than the actual value.

Random errors:

Errors of measurements in which the measured quantities differ from the mean value with different magnitudes and directions. However this readings are closed to the real value.

B. FORCE

Force:

Push or pull upon an object resulting from the object's interaction with another object.

Weight:

The force of gravity on the object.

Mass:

The amount of material in an object.

Balance Force:

When all the forces that act upon an object are balanced.

Force in equiblirium:

An object at rest is equilibrium because the force acting on it are balance and resultant force is zero.

Resolution of Forces:

Breaking down a single vector into 2 or more components.

Moment of force:

Product of the force and the perpendicular distance of its line of action from that point.

- Yew Kok Leh, Chang See Leong, & Abdul Halim Jama'in. (2021). *Focus Physics*. Bangi: Pelangi Sdn. Bhd.
- Chia Song Choy, Koay Kheng Chuan, Dr. Ooi Hean Beng, Mohd Khairul Anuar Md Mustafa & Rema Ragavan. (2019). *Dual Language Programme Physics Form 4*. Petaling Jaya: Sasbadi Sdn. Bhd.
- Asiah Ibrahim, Normazita Mat Ali, & Norlida Shaari. (2018). *Drill and Practice of Engineering Science*. Kuala Lumpur: Perpustakaan Negara Malaysia.
- Fazlina Yunus, Norlida Shaari, & Asiah Ibrahim. (2019). *Progressive Exercises for Engineering Science*. Kuala Lumpur: Perpustakaan Negara Malaysia.
- Azhari Zakaria, Azia Idayu Awang, Hardyta Bujang Pata, Khairani Yaakub, & Noor Affande Abdul. (2015). *Engineering Science*. Shah Alam: Oxford Fajar. Sdn. Bhd
- Khairani, Linawati, Zeyana, & Azah. (2017). *Engineering Science-Active Learning Guidance*. Kuala Lumpur: Perpustakaan Negara Malaysia.
- Excel@Physic. (2014). *Micrometer Screw Gauge: Zero Error*. Retrieved August 19, 2021, from http://www.excelatphysics.com/micrometer-screw-gauge.html
- Dont' Memorise. (2017, May 15). Scalar Quantity and Vector Quantity Physics [Video]. YouTube. https://www.youtube.com/watch?v=Pj8Zh0A-uLU
- Fizzics Organization. (2021, February 15). Random and systematic error explained [Video]. YouTube. https://www.youtube.com/watch?v=huDRfgbc1HA

- Eng. Waleed Alzaghal. (2020, December 6). Reading Metric Vernier Caliper with 0.02 mm Resolution [Video]. YouTube. https://www.youtube.com/watch?v=J3IEx1HxpwU
- Azlina Awang. (2021, Feb 6). *Use of Measuring Instruments, Accuracy, Consistency, Sensitivity and Errors* [Video]. YouTube. https://www.youtube.com/watch?v=iccOqHn1pL4
- myhometuition. (2014, July 14). *Micrometer Screw Gauge Taking Reading* [Video]. YouTube. https://www.youtube.com/watch?v=QH5UoTDwqVM
- Mathispower4u. (2011, June 17). Examples: Convert Lengths Between the Standard and Metric System [Video]. YouTube. https://www.youtube.com/watch?v=3HumkXBKP0k
- Debbie, B. (2015, February 5). Understanding the Effects of a Force. *Physic.* http://missdebbiephysics.blogspot.com/2015/02/form-4-25-understanding-effects-of-force.html
- x-engineer.org. (2021). How to calculate the resultant force acting on an object. Retrieved August 17, 2021, from https://x-engineer.org/undergraduate-engineering/physics/solid-mechanics/calculate-resultant-force-object/
- the Physics Classroom. (2014). *Balance and Unbalance Forces*. Retrieved August 15, 2021, from https://www.physicsclassroom.com/class/newtlaws/Lesson-1/Balanced-and-Unbalanced-Forces
- National Aeronautics and Space Administration. (2021, May 13). Equilibrium 2 Forces. Retrieved August 17, 2021, from https://www.grc.nasa.gov/www/k-12/airplane/equilib.html
- BYJU'S. (2021). Difference Between Torque And Moment. Retrieved August 21, 2021, from https://byjus.com/physics/difference-between-torque-and-moment/

