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ABSTRACT 

Water is a fundamental resource for life and the progression of human civilization. 

The escalating global population and its growing demand for clean water are posing 

significant challenges to the existing water resources. Regular monitoring of water 

bodies and large-scale estimation of Surface Water Quality Parameters (SWQPs) is 

crucial; conversely, remote sensing provides extensive spatial and temporal coverage. 

This study integrates satellite data, Artificial Neural Networks (ANNs), and ground 

truth water quality data for modelling SWQPs. Initially, atmospheric correction 

algorithms, including Fast Line of Sight Atmospheric Analysis of Hypercubes 

(FLAASH), Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS), 

and Atmospheric Correction (ATCOR), have been employed to produce surface 
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reflectance values of the water region. Then, a python code was developed to determine 

the coefficient of determination (R²) and Root Mean Squared Error (RMSE) values 

between each atmospherically corrected algorithm and the Landsat8 reference data. 

Secondly, this study compiles the most precise atmospherically corrected algorithm 

FLAASH with ANN to construct a Landsat8-based Backpropagation Neural Network 

(BPNN) model for modeling Total Organic Carbon (TOC) and Total Dissolved Solids 

(TDS). Thirdly, the developed BPNN models were trained with varying epochs (800 to 

10,000) to assess their impact on the training process. Adjusting the epochs to 1200 

guarantees that the models remain cost-effective and efficient while maintaining 

accuracy, thereby minimizing processing time and computational costs for future 

initiatives. 
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1. Introduction 

The growing population’s demand for clean water threatens current supplies [1]. 

Traditional in-situ water quality assessment techniques, while accurate for specific locations, 

are time-consuming, costly, and labor-intensive, failing to provide a comprehensive overview 

of entire water bodies. This makes timely reporting and prediction of water quality challenging 

over large areas. However, remote sensing has emerged as an accessible and efficient tool for 

water quality monitoring. Although its accuracy may not match conventional methods, remote 

sensing provides time and cost efficiency over large areas and enables regular monitoring of 

remote regions. Consequently, it is increasingly used for monitoring and estimating surface 

water pollution [2]. 

Pre-processing of raw remote sensing data is essential before interpretation or analysis to 

correct errors and enhance data processing capabilities. Although data suppliers may perform 

some steps, users often need to execute additional pre-processing on the available data [3]. 

Atmospheric correction methods, including FLAASH, QUAC, DOS, and ATCOR, have been 
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implemented to minimize atmospheric interference and align corrected image reflectance with 

actual ground conditions 

Due to the complex nature of water quality, which often lacks simple linear relationships 

with satellite spectral data, mapping SWQPs using ANNs based on remotely sensed imagery is 

effective. ANNs model accurate nonlinear relationships, providing a reliable means to estimate 

SWQPs [4], whereas conventional regression techniques often prove insufficient. 

Consequently, contemporary studies focus on learning-based techniques for more precise 

SWQP retrieval. The fundamental ANN, the Multi-Layer Perceptron (MLP), a type of 

Feedforward Neural Network (FNN), predicts relationships between SWQP concentrations and 

atmospherically corrected satellite data. In FNNs, information flows unidirectionally from 

input nodes to output nodes through hidden nodes, and they are frequently used in classification 

and pattern recognition tasks. MLP training employs backpropagation, which adjusts network 

weights by efficiently computing the gradient of the loss function with respect to the weights 

for individual input-output samples [5]. 

The primary objectives of this study are to: (1), conduct a comprehensive statistical 

analysis comparing Level 2 Landsat8 data with atmospherically corrected images derived 

through various techniques, including FLAASH, QUAC, DOS, and ATCOR. (2), develop a 

novel MATLAB code crafted specifically within the MATLAB environment. This advanced 

code compiles the most accurately atmospherically corrected image data alongside in-situ 

measurements to construct Landsat8-based BPNNs for estimating TDS and TOC over the 

watersheds within the study area. (3), train the BPNN models using different numbers of epochs 

for each SWQP. For each configuration, the processing time required to complete the training 

process was precisely recorded, aiming to identify the optimal number of epochs that can 

balance model accuracy and processing time. And (4), compile the most efficient Landsat8-

based BPNN for each SWQP, incorporating a water mask to present a spatial distribution map. 

This map will illustrate the spatiotemporal variation of each SWQP across each pixel of the 

study area 
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2. Materials and methods 

Fig. 1 Presents a flowchart detailing the extraction of SWQP concentrations using 

satellite imagery and a Landsat8-based BPNN. This section examines the New Brunswick 

study area and outlines pre-processing steps, including radiometric calibration, geometric 

correction, atmospheric corrections to enhance water quality accuracy, in-situ water 

measurements, and model performance evaluation. 

2.1. Selected study area 

Fig. 2 illustrates the water bodies incorporated in this study, displayed within the study 

area boundaries, and overlaid on the mosaic generated from Landsat8 OLI satellite imagery. 

New Brunswick, which is located on the Atlantic coast, borders the states of Maine in the 

United States to the west, the Bay of Fundy to the southeast, the Gulf of Saint Lawrence to the 

northeast, and Quebec to the north. The province's abundant diversity of water bodies is 

maintained by precipitation that falls throughout the year. Notably, the main discharge basins 

are the Bay of Fundy to the south and the Gulf of Saint Lawrence to the east and north. Within 

New Brunswick, numerous lakes dot the landscape, with Grand Lake standing out as the largest 

freshwater lake. Additionally, the province features several waterfalls, including the impressive 

Grand Falls, which holds the distinction of being the largest waterfall in the region [6]. The 

study focuses on assessing the SWQPs in the watersheds located within the province’s borders. 
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Figure 1: The proposed methodology flowchart. 

 

2.2. Satellite image data 

In this study, two different datasets of images have been employed. Each dataset consists 

of seven Landsat8 OLI satellite images, which are freely available on two levels: Level 1T and 

Level 2. The Level 1T product, which has been used in this study, is an image that has been 

geometrically corrected and rectified to the World Geodetic System 1984 (WGS 84) datum and 

the Universal Transverse Mercator (UTM) projection. It is a terrain-corrected image that has 

been corrected for sensor orientation and other factors that can affect the quality of the image. 

The Level 2 product includes the atmospherically corrected surface reflectance with a thirty 



Karim M. El Zahar, Hafez A. Afify, Essam Sharaf El Din 

https://iaeme.com/Home/journal/IJCIET   36 editor@iaeme.com 

meters spatial resolution. In this research work, the Level 2 product served as the study's 

reference data in order to identify the most accurate atmospheric correction method.  

 

 

Figure 2: The selected study area along with waterbodies highlighted in red color. 

 

The images used in the study have been acquired at different dates and different zones, 

as depicted in Table 1. The dates for the utilized images were selected with utmost care to 

ensure that the cloud cover was minimal. The dates of the image acquisition matched the 

available dates of the water sampling process to ensure that the measurements were as accurate 

as possible. 

 

3. Processing of landsat8 satellite data  

Raw image data requires pre-processing before interpretation or analysis. Although data 

providers may perform some steps, users must often complete additional pre-processing. This 

section discusses the applied operations, including geometric correction, radiometric 

calibration, and atmospheric correction [3], [7]. 
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Table 1: The World Reference System (WRS), UTM zone, and the dates of the selected 

datasets for the study area. 

WRS Path- Row UTM zone 
Date 

The 1st dataset The 2nd dataset 

Path 9 – Row 27 20 13-9-2017 29-10-2022 

Path 9 – Row 28 20 21-5-2016 11-9-2022 

Path 10 – Row 27 19 25-8-2019 4-10-2022 

Path 10 – Row 28 19 25-8-2019 2-9-2022 

Path 10 – Row 29 19 8-7-2019 1-6-2023 

Path 11 – Row 27 19 14-9-2018 23-5-2023 

Path 11 – Row 28 19 14-9-2018 23-5-2023 

 

3.1. Geometric correction 

Fourteen Landsat8 OLI processing Level 1T images were used. They have been 

geometrically corrected and rectified to the WGS 84 datum and UTM projection. 

3.2. Radiometric correction 

Radiometric calibration transforms Digital Numbers (DNs) into physical units, such as 

radiance (W/m²/sr/µm) or Top-Of-Atmosphere (TOA) reflectance, ensuring data accuracy and 

consistency. This process corrects systematic errors and temporal variations, enabling reliable 

comparisons of images captured at different times. By converting DNs to physical units, it 

represents the actual electromagnetic radiation at the sensor's ground-equivalent location 

during image capture. Calibration techniques vary depending on the sensor and analysis 

requirements 

The general equations used in radiometric calibration are as follows: 

➢ Conversion to Radiance: The DNs in an image are first converted to radiance 

using the following equation (1): 

                                                         𝐿 = 𝐺 ∗ 𝐷𝑁 + 𝐵                                                     (1) 

 

Where L: the spectral radiance (W/m²/sr/µm), G: the gain or radiance scaling factor, DN: 

the digital number of the pixel, and B: the bias or radiance offset. 

 

➢ Conversion to Reflectance: The radiance is then converted to reflectance 

using the following equation (2): 

                                                                   𝜌 =
𝜋∗𝐿∗𝑑2

𝐸𝑠𝑢𝑛∗𝑐𝑜𝑠(𝜃)
                                                     (2) 
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Where ρ is the unitless solar reflectance, L is the spectral radiance (W/m²/sr/µm), d is the 

Earth-Sun distance in astronomical units, Esun is solar atmospheric irradiance, and θ is the solar 

zenith angle in degrees. 

3.3. Atmospheric correction 

Several atmospheric correction techniques were applied to Level 1T images to minimize 

atmospheric effects. The following section examines the employed algorithms in detail, 

highlighting their mechanisms for mitigating atmospheric scattering and absorption to enhance 

the accuracy and reliability of image analysis. Four different atmospheric correction 

algorithms, such as FLAASH, QUAC, DOS, and ATCOR, have been implemented to ensure 

that spectral values accurately represent ground conditions. The discussion covers their 

theoretical foundations, mathematical formulations, and practical implementation, along with 

a comparative analysis of their strengths, limitations, and suitability for different imagery 

datasets. 

3.3.1. Fast Line of Sight Atmospheric Analysis of Hypercubes (FLAASH) 

FLAASH, developed by Spectral Sciences, Inc. (SSI) and the Air Force Research 

Laboratory (AFRL/VS), is an atmospheric correction algorithm designed for hyperspectral and 

multispectral imaging from visible to shortwave infrared wavelengths up to 3 µm [8]. Its main 

objectives include accurate extraction of atmospheric parameters (e.g., aerosol, cloud cover, 

surface pressure, and water vapor) and converting radiance-at-detector data into surface 

reflectance values using a correction matrix [9]. 

A key feature of FLAASH is its user-friendly graphical interface for spectral calculations 

and its data simulation capabilities available in the paid ENVI version. The program estimates 

aerosol content and provides derived data, such as column water vapor, surface altitude, and 

cloud-mask images. It generates atmospherically corrected images, specifically surface spectral 

reflectance, using available Look-Up Tables (LUTs) and includes a "polishing" technique for 

image sharpening and adjacency correction in Multi-Spectral Imaging (MSI) data [10]. 

With little heat emission, FLAASH is intended to process radiance spectral bands from 

mid-infrared to Ultraviolet. Equations (3), and (4) can be used in this context to parameterize 

the spectral radiance (L) at a sensor pixel, where all variables are wavelength-dependent [9], 

[11]. 

                                                    L =  (
𝐴 𝜌 

1− 𝜌𝑒 𝑆
) +(

𝐵 𝜌𝑒

1− 𝜌𝑒 𝑆
) + 𝐿𝑎                                                       (3) 

                                                             𝐿𝑒 ᵙ (
(𝐴+𝐵)𝜌𝑒 

1− 𝜌𝑒 𝑆
) + 𝐿𝑎                                                      (4)   
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Where L: the light received by the sensor for a single pixel, 𝜌: the reflectance of the 

surface of the pixel, S: the process of accounting for the total reflection and scattering of 

sunlight by particles in the atmosphere, 𝜌𝑒: the average reflectance of the surface for the pixel 

and its surroundings, 𝐿𝑎 : the amount of light that is scattered back towards the sensor by 

particles in the atmosphere, 𝐿𝑒: the average spatial radiance image, and A and B:  coefficients 

that are surface-independent and vary with atmospheric and geometric conditions. 

The term (
𝐴 𝜌 

1− 𝜌𝑒 𝑆
)  represents the surface−reflected light intensity (from scattered 

skylight and direct sunlight) reaching the sensor, while(
𝐵 𝜌𝑒

1− 𝜌𝑒 𝑆
) accounts for atmospheric-

reflected light directed back to the sensor [8]. Accurate water vapor estimation relies on the 

ratio of "absorption" radiances (within absorption bands) to "reference" radiances (at band 

edges) linked to the water vapor column. A 3D Look-Up Table (LUT) models water vapor 

across absorption and reference bands. Initially, adjacency effects are ignored, assuming 

uniform 𝜌𝑒 values. Coefficients (A+B, S, La) generate absorption and reference radiances (L) 

for various reflectance values, forming a 2D LUT with water vapor as the dependent variable 

[8]. 

3.3.2. Quick Atmospheric Correction (QUAC) 

QUAC is a distinctive in-scene atmospheric correction technique developed for 

multispectral and hyperspectral imagery. Its distinctiveness lies in its capacity to ascertain 

atmospheric correction parameters straight from scene data using observed pixel spectra. The 

approach takes its cues from the empirical finding that the average spectrum of various material 

spectra, such as endmember spectra in a picture, tends to differ dramatically between scenes. 

This feature allows QUAC to retrieve reflectance spectra with reasonable accuracy, even in 

situations where the sunlight intensity is unknown, or the sensor is not properly calibrated. 

Understanding these principles is crucial in fields like remote sensing and atmospheric science. 

Notably, QUAC boasts computational speed, making it a potential choice for real-time 

applications [12].  

Unlike physically based approaches, QUAC requires minimal metadata, relying only on 

an approximate characterization of sensor band positions (center wavelengths) and their 

radiometric calibration. While QUAC may sacrifice some precision compared to physically 

based methods, its computational efficiency makes it an attractive option [13]. In Fig. 3, the 

basic mechanics of QUAC are depicted. The total of the three indicated lines is the observed 

spectral radiance, 𝜌𝑜𝑏𝑠, for a pixel with surface reflectance, 𝜌𝑡𝑟𝑢𝑒. Solar photons can follow 
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three different paths, A, B, and C, to reach the observer sensor. 𝜌𝑡𝑟𝑢𝑒 is the observed surface 

pixel's reflectance, Pave is the average reflectance of the pixels nearby, and 𝜌𝑜𝑏𝑠 is the sensor 

radiance that corresponds to the observed surface pixel. Equations (5), and (6) clarify these 

relationships [14]. 

 

                                                       𝜌𝑜𝑏𝑠= (A+C𝜌𝑎𝑣𝑒) + B 𝜌𝑡𝑟𝑢𝑒                                                       (5) 

                                                       𝜌𝑡𝑟𝑢𝑒= Gain (𝐿𝑜𝑏𝑠 – offset)                                                        (6) 

 

Where 𝜌𝑡𝑟𝑢𝑒: the reflectance of the observed surface pixel, 𝜌𝑎𝑣𝑒: the average reflectance 

of the neighboring pixels, 𝜌𝑜𝑏𝑠: the sensor radiance of the observed surface pixel, Offset: the 

minimum pixel value for each band, Gain: 1 / B, and A, B, and C: parameters that are retrieved 

from the in-scene spectral data. 

 

 

Figure 3: The contributions of radiation transfer to the sensed apparent reflectance [15]. 

 

The elements in (A+C 𝜌𝑎𝑣𝑒) are nearly constant across an image, acting as a shared offset 

for all pixels. Surface reflectance can be expressed using the detected signal and atmospheric 

parameters, where the Gain=1/B and the Offset= (A+C 𝜌𝑎𝑣𝑒) [15]. 

In a physically based atmospheric correction, parameters A, B, and C are derived by 

comparing observed spectral features to those predicted by Radiative Transfer (RT) 

calculations. RT models simulate light interaction with the atmosphere and surface, factoring 

in atmospheric composition, aerosols, and surface properties. 

The goal is to determine A, B, and C to align observed spectral data with RT-simulated 

features, ensuring the model accurately reflects physical processes affecting radiance. These 

parameters are then applied to correct radiance values, yielding precise surface reflectance 
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estimates. While rigorous, this approach requires detailed knowledge of atmospheric conditions 

and sensor characteristics [14]. 

3.3.3. Dark Object Subtraction (DOS) 

When processing remotely sensed data, the DOS method can be applied by subtracting a 

constant value, referred to as the DN, from each pixel in the image. This method assumes that 

haze, caused by atmospheric light scattering, is uniform across the image. While this 

assumption may not always hold due to atmospheric variability, a first-order correction via 

DOS is often preferable to no correction. Each spectral band requires unique constants specific 

to the image [16]. 

The DOS approach assumes that some pixels in the image represent completely black 

areas with 0% reflectance. However, due to atmospheric scattering, shadowed pixels may have 

non-zero DN values. To correct for first-order scattering, the DN value of each spectral band 

must be subtracted. This value can be identified using various techniques, including histogram 

analysis [17]. 

In histogram analysis, the DN frequency histogram of the image is examined to identify 

the ideal DN value. For visible spectrum bands, haze causes histogram shifts toward higher DN 

values. These histograms often display a sharp increase in pixel counts at non-zero DN levels, 

representing haze in the band. To ensure accuracy, the histogram should be constructed from 

the entire image or a significant portion. Using histograms from localized areas may lead to 

overcorrection and failure to detect true minima or dark objects [13]. 

3.3.4. Atmospheric Correction (ATCOR) 

ATCOR, integrated into PCI Geomatica, offers workflows for atmospheric correction, 

including (1) Top-of-the-Atmosphere Reflectance, converting pixel values to reflectance above 

the atmosphere by normalizing radiance values with minimal data; (2) Haze Removal and 

Cloud Masking, generating masks for clouds and water, removing haze, and preparing images 

for correction or mosaicking, producing adjusted images with raw DN values and pre-

classification masks; and (3) Ground Reflectance Atmospheric Correction, calculating ground-

level reflectance by eliminating atmospheric effects, accounting for topography, water vapor, 

and aerosols for accurate analysis under diverse atmospheric conditions [18]. 

The information provided is subject to updates in PCI Geomatica software. Atmospheric 

impacts can be mitigated by computing ground-level reflectance values using the PCI 

Geomatics ATCOR Ground Reflectance procedure, which automatically utilizes metadata from 

the input scene. 
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ATCOR employs MODerate resolution atmospheric TRANsmission-5 (MODTRAN-5), 

while FLAASH uses MODTRAN-4, both widely used for simulating electromagnetic radiation 

propagation in the 0.2–100 µm spectral range. These Radiative Transfer Models (RTMs) 

enhance understanding of atmospheric radiative processes critical to remote sensing. 

Comparative studies of RTMs, including 6SV v2.1, libRadtran v2.0.2, and MODTRAN (v5 

and v6) evaluate their performance and identify model-specific variations. While explicit 

equations are not detailed, these methods involve complex computations related to sensor 

design, sensitivity analysis, energy balance models, atmospheric correction, aerosol and gas 

retrieval, and scene modeling [19], [20]. 

Atmospheric correction algorithms, including FLAASH, QUAC, and ATCOR, are 

applied individually to each image before mosaicking. This is because variations in sun azimuth 

and elevation arise from differences in satellite and sun viewing angles during scene 

acquisition. These angles are influenced by time-dependent factors such as the Landsat8 

satellite orbit, Earth's rotation, and its orbit around the sun. Such variations impact sun and 

sensor viewing angles, necessitating correction on a per-image basis to ensure accuracy. 

 

3.5. Water Masking 

A water mask, a binary image, distinguishes water bodies from land in satellite imagery, 

with water pixels labeled as '1' (white) and non-water pixels as '0' (black). It isolates water 

bodies to prevent their impact on reflectance values. The mask is created by applying a 

threshold based on water's spectral properties, forming a binary image that excludes non-water 

pixels. This process is essential for accurately mapping SWQP concentrations, improving data 

quality, ensuring reliability, and streamlining model processing by focusing solely on water 

pixels. 

 

4. Field measurements  

In this study, two sets of water sampling points, comprising ninety-six samples, were 

selected to maximize spatio-temporal variation across the study area and capture the widest 

range of SWQP concentrations. Fig.4 and 5 visually depict the sampling sites overlaid on the 

two generated water masks. Sampling was conducted in alignment with image acquisition, and 

TOC and TDS were measured at each station. These analyses adhered to the laboratory 

standards for water and wastewater established by the American Public Health Association 

[21]. TOC measurements were taken at Eighty-five locations, with some sites lacking TOC 

data. 
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5. Mapping SWQPs concentrations using the BBNN algorithm 

5.1. Multi-Layer Perceptron (MLP) 

An example of FNN is MLP: one input layer, one or more hidden layers, and one final 

output layer make up an MLP. Neurons in the input layer are matched to the input data's feature 

set. The computational nodes in the hidden layers use a nonlinear activation function, which 

helps the network learn from the error during the training phase. The output layer receives 

connections from the last hidden layer. The computation of a neuron in MLP is the same as the 

computation of a neuron in a simple ANN. MLPs are trained using backpropagation. 

Backpropagation in MLPs computes the error at the output and propagates it back across the 

network layers [22]. 

 

 

 

Figure 4: The 1st dataset of water sampling locations. 
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Figure 5: The 2nd dataset of water sampling locations. 

 

One of the most popular learning algorithms in digital image processing is back 

propagation. It forwards input values through ANN layers, with hidden and output nodes 

weighted by connections [23]. The error signal, calculated as the difference between desired 

and actual outputs, as shown in equation (7), is minimized using gradient descent, often paired 

with backpropagation, to find global error minimal. The learning rate is applied in gradient 

descent at the hidden layer, where errors propagate from the output to the input layer. The 

network is trained to determine the optimal weight combination that, in theory, yields precise 

outputs that match the inputs. 

 

                      𝐿 =
1

2
(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡) 2                                  (7) 

 

5.2. Data division 

The data was divided into calibration (training and validation) and testing sets. The 

training set trained the model by adjusting weights and biases, while the validation set tuned 

the learning rate, monitored overfitting, enabled early stopping, and selected the best model. It 
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ensured the model generalized rather than memorized the training data. The testing set provided 

a final, unbiased evaluation of the model's performance on unseen data [24]. 

5.3. characteristics of the selected ANN used in this research study 

The BPNN code was developed in MATLAB R2021a, carefully considering the required 

architectural and structural design. The study utilized a four-layer FNN-MLP architecture 

consisting of an input layer, two hidden layers, and an output layer (Fig. 6). The input layer 

included seven neurons: Coastal Blue, Blue, Green, Red, NIR, SWIR 1, and SWIR 2, while the 

output layer handled one SWQP at a time to simplify the ANN and accelerate computations. 

The network employed a linear aggregation function with varying activation functions 

across layers. The first hidden layer and output layer used the hyperbolic tangent (tanh) 

function, while the second hidden layer employed the sigmoid (logistic) function. Input neurons 

transmit weighted inputs to hidden and output layers; this basic operation is crucial for the 

execution of the network. The combination of sigmoid and tanh activation functions enhanced 

the model's ability to capture complex input-output relationships. This methodology effectively 

established strong correlations between SWQPs and satellite reflectance data. 

The structure of a neural network, along with its architecture, delineates the functional 

form of the relationship between inputs and outputs. Optimizing the network structure involves 

selecting the number of hidden neurons and transferring functions to balance generalization, 

speed, and complexity. In this study, a trial-and-error approach was adopted, starting with two 

hidden neurons and incrementally increasing to thirty. Networks with fewer than fifteen 

neurons underfit the data, failing to learn patterns, while those with more than twenty-five 

neurons overfit and exhibited slower learning. was observed that employing fewer than fifteen 

neurons led to an underfitting issue, which essentially means the network was unable to learn 

the desired patterns from the data. Conversely, utilizing more than twenty-five neurons resulted 

in slower learning and overfitting problems, where the model becomes overly complex and 

performs poorly on unseen data. Thus, a balance was sought to optimize the learning process 

and model performance.  
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Figure 6: The architectural design of the nominated ANN. 

 

For TOC, the first and second hidden layers used twenty and fifteen neurons, 

respectively, while TDS employed fifteen neurons for both layers. Cross-validation was 

employed to prevent overfitting during training, and a learning rate of 0.01 was chosen to ensure 

convergence to the global minimum. Learning rates below 0.001 reduced computational speed, 

while values above 0.10 impaired performance and generalization. This fine-tuned calibration 

of hidden neurons and learning rate was essential to optimizing the ANN's performance. 

To evaluate the impact of the training process on model performance, processing time, 

and computational efficiency, trials were conducted with varying epochs, representing the 

number of full passes through the training dataset. Models were trained with 800, 1000, 1200, 

1500, 2000, 3000, 4000, 5000, and 10,000 epochs for each SWQP, and the processing time for 

each configuration was recorded. This analysis aimed to determine the optimal number of 

epochs to balance accuracy and processing efficiency. 

 

6. Results and discussion 

6.1. SWQPs measurements 

The concentrations of SWQPs have been examined to remove outliers. Based on a 95% 

confidence level, a Z critical value of 1.96 was chosen. Any data with Z values greater than 

1.96 or less than -1.96 are considered outliers and removed [25]. Table 2 shows comprehensive 

descriptive statistics of the selected SWQPs. Concentrations ranged from 1.10 to 11.0 mg/L 

with a mean value of 5.316 mg/L for TOC and from 11.0 to 144.0 mg/L with a mean value of 

56.3198 mg/L for TDS. 
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Table 2: Descriptive statistics of SWQPs. 

 

SWQPs TOC (mg/l) TDS (mg/l) 

No. of samples  85 96 

Minimum 1.1 11.0 

Maximum 11 144 

Range 9.9 133 

Mean (μ) 5.316 56.3198 

Standard deviation  2.5977 30.5796 

 

The dataset for the selected SWQPs was divided into 70% for training, 15% for testing, 

and 15% for validation, ensuring robust model evaluation. Table 3 provides detailed 

information on this division and the number of stations for each parameter. 

6.2. Comparing different implemented atmospheric correction algorithms  

A comparative analysis of mosaic images from different atmospheric correction methods 

was conducted using reference data. Two statistical measures, R² and RMSE, were computed 

pixel by pixel across all seven mosaic bands. Python 3.11, with its extensive libraries and ease 

of use, was employed for these calculations, alongside Microsoft Visual Studio 2015 for code 

editing, debugging, and version control. A code has been built to calculate the R² and RMSE 

values. The analysis allowed for a quantitative assessment of each correction method's 

performance, identifying the method producing images closest to the reference and the 

associated errors. 

 

Table 3: Data for ANN training, validation, and testing. 

 

Developed models TOC BPNN model TDS BPNN model 

Total No. of samples 85 96 

No. of training samples 59 68 

No. of validation samples 13 14 

No. of testing samples 13 14 

 

Table 4 displays the R² and RMSE values for images corrected using different 

atmospheric correction methods compared to reference data. This tabular format simplifies the 

assessment of each method’s performance, providing clear insights into the precision and 

reliability of various techniques when applied to satellite imagery. 
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Table 4: R2 and RMSE for the different atmospherically corrected images. 

 

Image bands 

in 

micrometer 

FLAASH 

method 
QUAC method DOS method ATCOR method 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Coastal 

aerosol 
0.7731 0.01082 0.3878 0.01731 0.6258 0.03871 0.4732 0.03128 

Blue 0.8283 0.00945 0.6909 0.01289 0.06556 0.02391 0.4624 0.01168 

Green 0.8343 0.01092 0.8211 0.01051 0.5855 0.01232 0.1224 0.02913 

Red 0.8334 0.00753 0.6944 0.01252 0.2884 0.01214 0.1161 0.01106 

NIR 0.8582 0.04882 0.5285 0.07972 0.1441 0.09642 0.4829 0.12217 

SWIR1 0.8112 0.01287 0.6343 0.02691 0.2337 0.06165 0.6242 0.01093 

SWIR 2 0.6541 0.02070 0.5283 0.05087 0.2804 0.03334 0.6911 0.03704 

 

The results reveal FLAASH as the most accurate method for atmospheric correction, with 

mean values of (0.7989 and 0.0173) for R² and RMSE, respectively. ATCOR follows with 

(0.6122, 0.0301), DOS yields (0.3175, 0.0398), and QUAC produces (0.4246, 0.0362). These 

findings align with prior research [26], highlighting FLAASH's superior accuracy. Despite the 

demonstrated accuracy of the FLAASH and ATCOR methods, it is noteworthy that the DOS 

and QUAC methods offer a more straightforward implementation and do not necessitate the 

input of intricate parameters. FLAASH and ATCOR generally have higher accuracy, but poor 

utility compared to QUAC and DOS methods since acquiring real-time parameters in the model 

is complex in practical operation. 

6.3. The insights of BPNN models 

The MATLAB code was developed to train the ANN based on the specified parameters 

outlined earlier, optimizing the network for the intended application. Fig. 7 shows a portion of 

the code for the TOC parameter, demonstrating the training process structure. To balance model 

accuracy and processing time, it was found that more epochs improved R² values and reliability 

but also increased processing time and cost. The BBNN models were trained under consistent 

conditions, including the same learning rate and number of stations for training, validation, and 

testing. The development was carried out on a machine with an Intel Core i7-7820HQ CPU at 

2.90 GHz, 8 cores, and 32 GB of RAM. 

The number of epochs was varied to assess its impact on the training process. Models 

were trained with different epoch counts for each SWQP, and processing time, R², and RMSE 

values were recorded for each configuration. Results were presented in charts (Fig. 8 and 9) to 
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illustrate the relationship between processing time and R² values for each SWQP, simplifying 

trend identification and conclusions about the optimal number of epochs. 

The results showed that as the number of epochs increased, R² improved, and RMSE 

decreased. However, this performance improvement came with higher processing time and 

cost. The literature review suggested that ANN models for SWQPs are reliable when R² values 

are around 0.90. In this study, models exceeded an R² of 0.90 at 1200 epochs, reaching 0.9134 

during testing. The average processing time for all SWQPs was approximately 90 minutes. At 

1500 epochs, R² increased to 0.9268, with a processing time of 110 minutes. The R² difference 

between the two models was 0.0152, while processing time differed by about 20 minutes. 

 

 

 

Figure 7: Segment of the developed MATLAB code for training the TOC ANN model. 

 

The results showed an R² value of 0.9384 for 2000 epochs, with an average processing 

time of 2 hours and 5 minutes. This improved to 0.9459 at 3000 epochs, with a processing time 

of 3 hours and 20 minutes. The R² difference was minimal (0.0075), but processing time 

increased significantly by 1 hour and 26 minutes, nearly doubling between the two models, 

requiring greater labor and more advanced machine capabilities. 

For models trained with 4000, 5000, and 10000 epochs, R² values were 0.9496, 0.9504, 

and 0.9559, respectively, with processing times of 4 hours 30 minutes, 5 hours 7 minutes, and 

8 hours 19 minutes. As epochs increased, processing time rose significantly, correlating with 

higher computational costs. Despite the increased resources, the R² improvements were 

minimal. The extended processing time requires more labor and advanced machine capabilities, 
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resulting in higher operational costs, both in terms of human labor and the quality of machinery 

needed to support the intensive computational tasks. 

 

 

Figure 8: Graphical results for the developed TOC models showing processing time and R² 

for training, validation, and testing datasets at each epoch. 

 

 

 

Figure 9: Graphical results for the developed TDS models showing processing time and R² 

for training, validation, and testing datasets at each epoch. 

 

The results indicate that training models beyond 1200 epochs significantly increase 

processing time and computational costs without substantial gains in R² values. This conclusion 

stems from evaluating the resources required, including labor intensity and machine 

capabilities. Limiting epochs to 1200 ensures cost-effective, efficient models without 

sacrificing accuracy, minimizing processing time and overall costs. Models trained with 1200 
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epochs will be used for generating spatial maps for each SWQP. For the BPNN algorithm with 

1200 epochs, the RMSE values for TOC were 0.4417, 0.5490, and 0.5735 mg/L for training, 

validation, and testing, respectively. For TDS, the RMSEs were 8.8243, 6.7279, and 8.8495 

mg/L. The Landsat8-based BPNN showed significant efficiency in estimating SWQP 

concentrations, with R² values for TOC at 0.9768, 0.9515, and 0.9199 for training, validation, 

and testing, respectively. For TDS, the R² values were 0.9219, 0.9210, and 0.9176. These 

results are summarized in Table 5 and Fig. 10. 

 

Table 5: Statistical measures between the actual and modeled concentrations of SWQPs 

using the developed Landsat8-based-BPNN at 1200 epoch. 

 

1200 Epochs ANN models result 

SWQPs 
Training Validation Testing Approximate  

processing 

time R2 RMSE R2 RMSE R2 RMSE 

TOC 0.9768 0.4417 mg/L 0.9515 0.5490 mg/L 0.9199 0.5735 mg/L 1 Hr 33 Min 

TDS 0.9219 8.8243 mg/L 0.9210 6.7279 mg/L 0.9176 8.8495 mg/L 1 Hr 24 Min 

 

6.4. The Landsat8-based-BPNN spatial concentration maps  

After successfully executing the Landsat8-based BPNN model for each SWQP, a 

MATLAB code was used to apply these models to the final Landsat8 OLI image. The image, 

exported as a TIFF file from PCI Geomatica, was processed pixel by pixel. Each pixel was 

input into the developed Landsat8-based BPNN model within the MATLAB environment. The 

goal was to generate spatial concentration maps for each SWQP, including TOC and TDS, 

which are visually presented in Fig. 11 to Fig. 14 for both image datasets. 

Spatial distribution maps reveal that TOC concentrations vary between 1.0 and 11.0 

mg/L. Lower TOC concentrations were identified in the Canaan River, Digdeguash River, 

Magaguadavic River, and St. Croix River, likely due to lower concentrations of organic matter 

input and reduced human activities in these areas. Conversely, higher TOC concentrations were 

found in the Hammond River, Kennebecasis River, and across significant portions of Grand 

Lake, which may be attributed to higher levels of organic matter runoff from surrounding 

agricultural and urban areas. 
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(a-1) 

 

(a-2) 

 

(a-3) 

 

(b-1) 

 

(b-2) 

 

(b-3) 

 

Figure 10: Graphical fit results of TOC (a-1), (a-2), and (a-3)), and TDS ((b-1), (b-2), and (b-

3)), for training, validation, and testing of the developed Landsat8-based-BPNN at 1200 

epochs. 

 

The monitoring results indicate variability in TDS concentrations across different watersheds, 

ranging between 10.0 and 144.0 mg/L. Lower TDS concentrations were identified in the Saint 

John River and across significant portions of Grand Lake, likely due to limited industrial 

activities, lower levels of agricultural runoff, and better management practices that reduce the 

inflow of dissolved solids. Conversely, higher TDS concentrations were found in the Canaan 

River, Hammond River, Digdeguash River, and Magaguadavic River, which may be attributed 

to higher levels of agricultural runoff, industrial discharges, and increased urbanization 

contributing to greater amounts of dissolved solids entering these water bodies 
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Figure 11: A spatial distribution map for TOC using the developed Landsat8-based-BPNN 

for the 1st dataset of images. 

 

 

 

Figure 12: A spatial distribution map for TOC using the developed Landsat8-based-BPNN 

for the 2nd dataset of images. 
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Figure 13: A spatial distribution map for TDS using the developed Landsat8-based-BPNN 

for the 1st dataset of images. 

 

 

 

Figure 14: A spatial distribution map for TDS using the developed Landsat8-based-BPNN 

for the 2nd dataset of images. 
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7. Conclusion 

This study integrated remote sensing imagery with machine learning algorithms to 

develop a Landsat8-based BPNN for accurately mapping SWQPs, including TOC and TDS, in 

New Brunswick, Canada. The methodology achieved strong correlations across watersheds in 

the study area. Identifying the optimal number of epochs revealed that while increased epochs 

improved R² values and reliability, they also resulted in longer processing times and higher 

computational costs. However, the Landsat8-based BPNN models are not universally 

applicable to other water bodies without adaptation. Each water surface has distinct 

environmental, climatic, and geographical characteristics. For instance, proximity to industrial 

or agricultural drainage systems or differences in rainfall patterns necessitate modifications to 

the model architecture and design to ensure accuracy and contextual relevance. 
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