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ABSTRACT

Water is a fundamental resource for life and the progression of human civilization.
The escalating global population and its growing demand for clean water are posing
significant challenges to the existing water resources. Regular monitoring of water
bodies and large-scale estimation of Surface Water Quality Parameters (SWQPS) is
crucial; conversely, remote sensing provides extensive spatial and temporal coverage.
This study integrates satellite data, Artificial Neural Networks (ANNs), and ground
truth water quality data for modelling SWQPs. Initially, atmospheric correction
algorithms, including Fast Line of Sight Atmospheric Analysis of Hypercubes
(FLAASH), Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS),

and Atmospheric Correction (ATCOR), have been employed to produce surface
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reflectance values of the water region. Then, a python code was developed to determine
the coefficient of determination (R2) and Root Mean Squared Error (RMSE) values
between each atmospherically corrected algorithm and the Landsat8 reference data.
Secondly, this study compiles the most precise atmospherically corrected algorithm
FLAASH with ANN to construct a Landsat8-based Backpropagation Neural Network
(BPNN) model for modeling Total Organic Carbon (TOC) and Total Dissolved Solids
(TDS). Thirdly, the developed BPNN models were trained with varying epochs (800 to
10,000) to assess their impact on the training process. Adjusting the epochs to 1200
guarantees that the models remain cost-effective and efficient while maintaining
accuracy, thereby minimizing processing time and computational costs for future
initiatives.
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1. Introduction

The growing population’s demand for clean water threatens current supplies [1].
Traditional in-situ water quality assessment techniques, while accurate for specific locations,
are time-consuming, costly, and labor-intensive, failing to provide a comprehensive overview
of entire water bodies. This makes timely reporting and prediction of water quality challenging
over large areas. However, remote sensing has emerged as an accessible and efficient tool for
water quality monitoring. Although its accuracy may not match conventional methods, remote
sensing provides time and cost efficiency over large areas and enables regular monitoring of
remote regions. Consequently, it is increasingly used for monitoring and estimating surface
water pollution [2].

Pre-processing of raw remote sensing data is essential before interpretation or analysis to
correct errors and enhance data processing capabilities. Although data suppliers may perform
some steps, users often need to execute additional pre-processing on the available data [3].
Atmospheric correction methods, including FLAASH, QUAC, DOS, and ATCOR, have been
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implemented to minimize atmospheric interference and align corrected image reflectance with
actual ground conditions

Due to the complex nature of water quality, which often lacks simple linear relationships
with satellite spectral data, mapping SWQPs using ANNs based on remotely sensed imagery is
effective. ANNs model accurate nonlinear relationships, providing a reliable means to estimate
SWQPs [4], whereas conventional regression techniques often prove insufficient.
Consequently, contemporary studies focus on learning-based techniques for more precise
SWQP retrieval. The fundamental ANN, the Multi-Layer Perceptron (MLP), a type of
Feedforward Neural Network (FNN), predicts relationships between SWQP concentrations and
atmospherically corrected satellite data. In FNNSs, information flows unidirectionally from
input nodes to output nodes through hidden nodes, and they are frequently used in classification
and pattern recognition tasks. MLP training employs backpropagation, which adjusts network
weights by efficiently computing the gradient of the loss function with respect to the weights
for individual input-output samples [5].

The primary objectives of this study are to: (1), conduct a comprehensive statistical
analysis comparing Level 2 Landsat8 data with atmospherically corrected images derived
through various techniques, including FLAASH, QUAC, DOS, and ATCOR. (2), develop a
novel MATLAB code crafted specifically within the MATLAB environment. This advanced
code compiles the most accurately atmospherically corrected image data alongside in-situ
measurements to construct Landsat8-based BPNNs for estimating TDS and TOC over the
watersheds within the study area. (3), train the BPNN models using different numbers of epochs
for each SWQP. For each configuration, the processing time required to complete the training
process was precisely recorded, aiming to identify the optimal number of epochs that can
balance model accuracy and processing time. And (4), compile the most efficient Landsat8-
based BPNN for each SWQP, incorporating a water mask to present a spatial distribution map.
This map will illustrate the spatiotemporal variation of each SWQP across each pixel of the

study area
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2. Materials and methods

Fig. 1 Presents a flowchart detailing the extraction of SWQP concentrations using
satellite imagery and a Landsat8-based BPNN. This section examines the New Brunswick
study area and outlines pre-processing steps, including radiometric calibration, geometric
correction, atmospheric corrections to enhance water quality accuracy, in-situ water
measurements, and model performance evaluation.
2.1. Selected study area

Fig. 2 illustrates the water bodies incorporated in this study, displayed within the study
area boundaries, and overlaid on the mosaic generated from Landsat8 OLI satellite imagery.
New Brunswick, which is located on the Atlantic coast, borders the states of Maine in the
United States to the west, the Bay of Fundy to the southeast, the Gulf of Saint Lawrence to the
northeast, and Quebec to the north. The province's abundant diversity of water bodies is
maintained by precipitation that falls throughout the year. Notably, the main discharge basins
are the Bay of Fundy to the south and the Gulf of Saint Lawrence to the east and north. Within
New Brunswick, numerous lakes dot the landscape, with Grand Lake standing out as the largest
freshwater lake. Additionally, the province features several waterfalls, including the impressive
Grand Falls, which holds the distinction of being the largest waterfall in the region [6]. The

study focuses on assessing the SWQPs in the watersheds located within the province’s borders.
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Figure 1: The proposed methodology flowchart.

2.2. Satellite image data

In this study, two different datasets of images have been employed. Each dataset consists
of seven Landsat8 OLI satellite images, which are freely available on two levels: Level 1T and
Level 2. The Level 1T product, which has been used in this study, is an image that has been
geometrically corrected and rectified to the World Geodetic System 1984 (WGS 84) datum and
the Universal Transverse Mercator (UTM) projection. It is a terrain-corrected image that has
been corrected for sensor orientation and other factors that can affect the quality of the image.

The Level 2 product includes the atmospherically corrected surface reflectance with a thirty

https://iaeme.com/Home/journal/IJCIET @ editor@iaeme.com



Karim M. El Zahar, Hafez A. Afify, Essam Sharaf El Din

meters spatial resolution. In this research work, the Level 2 product served as the study's

reference data in order to identify the most accurate atmospheric correction method.

69°0'0"W 68°0'0"W 67°0'0"'W 66°0'0"W 65°0'0"W 64°0'0"W

Nova Scotia

Figure 2: The selected study area along with waterbodies highlighted in red color.

The images used in the study have been acquired at different dates and different zones,
as depicted in Table 1. The dates for the utilized images were selected with utmost care to
ensure that the cloud cover was minimal. The dates of the image acquisition matched the
available dates of the water sampling process to ensure that the measurements were as accurate

as possible.

3. Processing of landsat8 satellite data

Raw image data requires pre-processing before interpretation or analysis. Although data
providers may perform some steps, users must often complete additional pre-processing. This
section discusses the applied operations, including geometric correction, radiometric

calibration, and atmospheric correction [3], [7].
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Table 1: The World Reference System (WRS), UTM zone, and the dates of the selected

datasets for the study area.

Date

WRS Path- Row UTM zone The 15t dataset The 29 dataset
Path 9 — Row 27 20 13-9-2017 29-10-2022
Path 9 — Row 28 20 21-5-2016 11-9-2022
Path 10 — Row 27 19 25-8-2019 4-10-2022
Path 10 — Row 28 19 25-8-2019 2-9-2022
Path 10 — Row 29 19 8-7-2019 1-6-2023
Path 11 — Row 27 19 14-9-2018 23-5-2023
Path 11 — Row 28 19 14-9-2018 23-5-2023

3.1. Geometric correction

Fourteen Landsat8 OLI processing Level 1T images were used. They have been

geometrically corrected and rectified to the WGS 84 datum and UTM projection.

3.2. Radiometric correction

Radiometric calibration transforms Digital Numbers (DNs) into physical units, such as

radiance (W/mz/sr/um) or Top-Of-Atmosphere (TOA) reflectance, ensuring data accuracy and

consistency. This process corrects systematic errors and temporal variations, enabling reliable

comparisons of images captured at different times. By converting DNs to physical units, it

represents the actual electromagnetic radiation at the sensor's ground-equivalent location

during image capture. Calibration techniques vary depending on the sensor and analysis

requirements

The general equations used in radiometric calibration are as follows:

» Conversion to Radiance: The DNs in an image are first converted to radiance

using the following equation (1):

L=G*DN+B

1)

Where L.: the spectral radiance (W/mz/sr/um), G: the gain or radiance scaling factor, DN:

the digital number of the pixel, and B: the bias or radiance offset.

» Conversion to Reflectance: The radiance is then converted to reflectance

using the following equation (2):

_ mxLxd?

- Esun*cos(0)
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Where p is the unitless solar reflectance, L is the spectral radiance (W/m2/sr/um), d is the
Earth-Sun distance in astronomical units, Esun is solar atmospheric irradiance, and 0 is the solar
zenith angle in degrees.

3.3. Atmospheric correction

Several atmospheric correction techniques were applied to Level 1T images to minimize
atmospheric effects. The following section examines the employed algorithms in detail,
highlighting their mechanisms for mitigating atmospheric scattering and absorption to enhance
the accuracy and reliability of image analysis. Four different atmospheric correction
algorithms, such as FLAASH, QUAC, DOS, and ATCOR, have been implemented to ensure
that spectral values accurately represent ground conditions. The discussion covers their
theoretical foundations, mathematical formulations, and practical implementation, along with
a comparative analysis of their strengths, limitations, and suitability for different imagery
datasets.

3.3.1. Fast Line of Sight Atmospheric Analysis of Hypercubes (FLAASH)

FLAASH, developed by Spectral Sciences, Inc. (SSI) and the Air Force Research
Laboratory (AFRL/VS), is an atmospheric correction algorithm designed for hyperspectral and
multispectral imaging from visible to shortwave infrared wavelengths up to 3 um [8]. Its main
objectives include accurate extraction of atmospheric parameters (e.g., aerosol, cloud cover,
surface pressure, and water vapor) and converting radiance-at-detector data into surface
reflectance values using a correction matrix [9].

A key feature of FLAASH is its user-friendly graphical interface for spectral calculations
and its data simulation capabilities available in the paid ENVI version. The program estimates
aerosol content and provides derived data, such as column water vapor, surface altitude, and
cloud-mask images. It generates atmospherically corrected images, specifically surface spectral
reflectance, using available Look-Up Tables (LUTs) and includes a "polishing" technique for
image sharpening and adjacency correction in Multi-Spectral Imaging (MSI) data [10].

With little heat emission, FLAASH is intended to process radiance spectral bands from
mid-infrared to Ultraviolet. Equations (3), and (4) can be used in this context to parameterize
the spectral radiance (L) at a sensor pixel, where all variables are wavelength-dependent [9],
[11].

Ap B pe

L= (Z2) () +La 3)
A+B
Le> (2252 + L @)
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Where L: the light received by the sensor for a single pixel, p: the reflectance of the
surface of the pixel, S: the process of accounting for the total reflection and scattering of
sunlight by particles in the atmosphere, pe: the average reflectance of the surface for the pixel
and its surroundings, L,: the amount of light that is scattered back towards the sensor by
particles in the atmosphere, L,: the average spatial radiance image, and A and B: coefficients

that are surface-independent and vary with atmospheric and geometric conditions.

1:456 s) represents the surface-reflected light intensity (from scattered

The term (

skylight and direct sunlight) reaching the sensor, While(ll_’;ﬁ:s) accounts for atmospheric-

reflected light directed back to the sensor [8]. Accurate water vapor estimation relies on the
ratio of "absorption” radiances (within absorption bands) to "reference” radiances (at band
edges) linked to the water vapor column. A 3D Look-Up Table (LUT) models water vapor
across absorption and reference bands. Initially, adjacency effects are ignored, assuming
uniform pe values. Coefficients (A+B, S, La) generate absorption and reference radiances (L)
for various reflectance values, forming a 2D LUT with water vapor as the dependent variable
[8].

3.3.2. Quick Atmospheric Correction (QUAC)

QUAC is a distinctive in-scene atmospheric correction technique developed for
multispectral and hyperspectral imagery. Its distinctiveness lies in its capacity to ascertain
atmospheric correction parameters straight from scene data using observed pixel spectra. The
approach takes its cues from the empirical finding that the average spectrum of various material
spectra, such as endmember spectra in a picture, tends to differ dramatically between scenes.
This feature allows QUAC to retrieve reflectance spectra with reasonable accuracy, even in
situations where the sunlight intensity is unknown, or the sensor is not properly calibrated.
Understanding these principles is crucial in fields like remote sensing and atmospheric science.
Notably, QUAC boasts computational speed, making it a potential choice for real-time
applications [12].

Unlike physically based approaches, QUAC requires minimal metadata, relying only on
an approximate characterization of sensor band positions (center wavelengths) and their
radiometric calibration. While QUAC may sacrifice some precision compared to physically
based methods, its computational efficiency makes it an attractive option [13]. In Fig. 3, the
basic mechanics of QUAC are depicted. The total of the three indicated lines is the observed

spectral radiance, p,,s, for a pixel with surface reflectance, ps,.. Solar photons can follow
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three different paths, A, B, and C, to reach the observer sensor. p;. IS the observed surface
pixel's reflectance, Pave is the average reflectance of the pixels nearby, and p,, is the sensor
radiance that corresponds to the observed surface pixel. Equations (5), and (6) clarify these

relationships [14].

Pobs= (ATCpaye) + B prrye )

Perue= Gain (Lops — offset) (6)

Where p:.e: the reflectance of the observed surface pixel, p,.: the average reflectance
of the neighboring pixels, p,ps: the sensor radiance of the observed surface pixel, Offset: the
minimum pixel value for each band, Gain: 1/ B, and A, B, and C: parameters that are retrieved

from the in-scene spectral data.

Ptrue  Pave

Figure 3: The contributions of radiation transfer to the sensed apparent reflectance [15].

The elements in (A+C p,,,.) are nearly constant across an image, acting as a shared offset
for all pixels. Surface reflectance can be expressed using the detected signal and atmospheric
parameters, where the Gain=1/B and the Offset= (A+C pgye) [15].

In a physically based atmospheric correction, parameters A, B, and C are derived by
comparing observed spectral features to those predicted by Radiative Transfer (RT)
calculations. RT models simulate light interaction with the atmosphere and surface, factoring
in atmospheric composition, aerosols, and surface properties.

The goal is to determine A, B, and C to align observed spectral data with RT-simulated
features, ensuring the model accurately reflects physical processes affecting radiance. These

parameters are then applied to correct radiance values, yielding precise surface reflectance

https://iaeme.com/Home/journal/IJCIET editor@iaeme.com



Satellite-Driven Assessment of Total Organic Carbon and Dissolved Solids using Artificial Intelligence: Code
Development and Implementation

estimates. While rigorous, this approach requires detailed knowledge of atmospheric conditions
and sensor characteristics [14].
3.3.3. Dark Object Subtraction (DOS)

When processing remotely sensed data, the DOS method can be applied by subtracting a
constant value, referred to as the DN, from each pixel in the image. This method assumes that
haze, caused by atmospheric light scattering, is uniform across the image. While this
assumption may not always hold due to atmospheric variability, a first-order correction via
DOS is often preferable to no correction. Each spectral band requires unique constants specific
to the image [16].

The DOS approach assumes that some pixels in the image represent completely black
areas with 0% reflectance. However, due to atmospheric scattering, shadowed pixels may have
non-zero DN values. To correct for first-order scattering, the DN value of each spectral band
must be subtracted. This value can be identified using various techniques, including histogram
analysis [17].

In histogram analysis, the DN frequency histogram of the image is examined to identify
the ideal DN value. For visible spectrum bands, haze causes histogram shifts toward higher DN
values. These histograms often display a sharp increase in pixel counts at non-zero DN levels,
representing haze in the band. To ensure accuracy, the histogram should be constructed from
the entire image or a significant portion. Using histograms from localized areas may lead to
overcorrection and failure to detect true minima or dark objects [13].

3.3.4. Atmospheric Correction (ATCOR)

ATCOR, integrated into PCI Geomatica, offers workflows for atmospheric correction,
including (1) Top-of-the-Atmosphere Reflectance, converting pixel values to reflectance above
the atmosphere by normalizing radiance values with minimal data; (2) Haze Removal and
Cloud Masking, generating masks for clouds and water, removing haze, and preparing images
for correction or mosaicking, producing adjusted images with raw DN values and pre-
classification masks; and (3) Ground Reflectance Atmospheric Correction, calculating ground-
level reflectance by eliminating atmospheric effects, accounting for topography, water vapor,
and aerosols for accurate analysis under diverse atmospheric conditions [18].

The information provided is subject to updates in PCI Geomatica software. Atmospheric
impacts can be mitigated by computing ground-level reflectance values using the PCI
Geomatics ATCOR Ground Reflectance procedure, which automatically utilizes metadata from

the input scene.
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ATCOR employs MODerate resolution atmospheric TRANsmission-5 (MODTRAN-5),
while FLAASH uses MODTRAN-4, both widely used for simulating electromagnetic radiation
propagation in the 0.2-100 pm spectral range. These Radiative Transfer Models (RTMs)
enhance understanding of atmospheric radiative processes critical to remote sensing.
Comparative studies of RTMs, including 6SV v2.1, libRadtran v2.0.2, and MODTRAN (v5
and v6) evaluate their performance and identify model-specific variations. While explicit
equations are not detailed, these methods involve complex computations related to sensor
design, sensitivity analysis, energy balance models, atmospheric correction, aerosol and gas
retrieval, and scene modeling [19], [20].

Atmospheric correction algorithms, including FLAASH, QUAC, and ATCOR, are
applied individually to each image before mosaicking. This is because variations in sun azimuth
and elevation arise from differences in satellite and sun viewing angles during scene
acquisition. These angles are influenced by time-dependent factors such as the Landsat8
satellite orbit, Earth's rotation, and its orbit around the sun. Such variations impact sun and

sensor viewing angles, necessitating correction on a per-image basis to ensure accuracy.

3.5. Water Masking

A water mask, a binary image, distinguishes water bodies from land in satellite imagery,
with water pixels labeled as '1' (white) and non-water pixels as '0' (black). It isolates water
bodies to prevent their impact on reflectance values. The mask is created by applying a
threshold based on water's spectral properties, forming a binary image that excludes non-water
pixels. This process is essential for accurately mapping SWQP concentrations, improving data
quality, ensuring reliability, and streamlining model processing by focusing solely on water
pixels.

4. Field measurements

In this study, two sets of water sampling points, comprising ninety-six samples, were
selected to maximize spatio-temporal variation across the study area and capture the widest
range of SWQP concentrations. Fig.4 and 5 visually depict the sampling sites overlaid on the
two generated water masks. Sampling was conducted in alignment with image acquisition, and
TOC and TDS were measured at each station. These analyses adhered to the laboratory
standards for water and wastewater established by the American Public Health Association
[21]. TOC measurements were taken at Eighty-five locations, with some sites lacking TOC
data.
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5. Mapping SWQPs concentrations using the BBNN algorithm
5.1. Multi-Layer Perceptron (MLP)

An example of FNN is MLP: one input layer, one or more hidden layers, and one final
output layer make up an MLP. Neurons in the input layer are matched to the input data's feature
set. The computational nodes in the hidden layers use a nonlinear activation function, which
helps the network learn from the error during the training phase. The output layer receives
connections from the last hidden layer. The computation of a neuron in MLP is the same as the
computation of a neuron in a simple ANN. MLPs are trained using backpropagation.
Backpropagation in MLPs computes the error at the output and propagates it back across the

network layers [22].
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Figure 4: The 1% dataset of water sampling locations.
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Figure 5: The 2" dataset of water sampling locations.

One of the most popular learning algorithms in digital image processing is back
propagation. It forwards input values through ANN layers, with hidden and output nodes
weighted by connections [23]. The error signal, calculated as the difference between desired
and actual outputs, as shown in equation (7), is minimized using gradient descent, often paired
with backpropagation, to find global error minimal. The learning rate is applied in gradient
descent at the hidden layer, where errors propagate from the output to the input layer. The
network is trained to determine the optimal weight combination that, in theory, yields precise

outputs that match the inputs.
L= %(Desired output — Predicted output) * (7

5.2. Data division
The data was divided into calibration (training and validation) and testing sets. The
training set trained the model by adjusting weights and biases, while the validation set tuned

the learning rate, monitored overfitting, enabled early stopping, and selected the best model. It
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ensured the model generalized rather than memorized the training data. The testing set provided
a final, unbiased evaluation of the model's performance on unseen data [24].
5.3. characteristics of the selected ANN used in this research study

The BPNN code was developed in MATLAB R20214a, carefully considering the required
architectural and structural design. The study utilized a four-layer FNN-MLP architecture
consisting of an input layer, two hidden layers, and an output layer (Fig. 6). The input layer
included seven neurons: Coastal Blue, Blue, Green, Red, NIR, SWIR 1, and SWIR 2, while the
output layer handled one SWQP at a time to simplify the ANN and accelerate computations.

The network employed a linear aggregation function with varying activation functions
across layers. The first hidden layer and output layer used the hyperbolic tangent (tanh)
function, while the second hidden layer employed the sigmoid (logistic) function. Input neurons
transmit weighted inputs to hidden and output layers; this basic operation is crucial for the
execution of the network. The combination of sigmoid and tanh activation functions enhanced
the model's ability to capture complex input-output relationships. This methodology effectively
established strong correlations between SWQPs and satellite reflectance data.

The structure of a neural network, along with its architecture, delineates the functional
form of the relationship between inputs and outputs. Optimizing the network structure involves
selecting the number of hidden neurons and transferring functions to balance generalization,
speed, and complexity. In this study, a trial-and-error approach was adopted, starting with two
hidden neurons and incrementally increasing to thirty. Networks with fewer than fifteen
neurons underfit the data, failing to learn patterns, while those with more than twenty-five
neurons overfit and exhibited slower learning. was observed that employing fewer than fifteen
neurons led to an underfitting issue, which essentially means the network was unable to learn
the desired patterns from the data. Conversely, utilizing more than twenty-five neurons resulted
in slower learning and overfitting problems, where the model becomes overly complex and
performs poorly on unseen data. Thus, a balance was sought to optimize the learning process

and model performance.
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Figure 6: The architectural design of the nominated ANN.

For TOC, the first and second hidden layers used twenty and fifteen neurons,
respectively, while TDS employed fifteen neurons for both layers. Cross-validation was
employed to prevent overfitting during training, and a learning rate of 0.01 was chosen to ensure
convergence to the global minimum. Learning rates below 0.001 reduced computational speed,
while values above 0.10 impaired performance and generalization. This fine-tuned calibration
of hidden neurons and learning rate was essential to optimizing the ANN's performance.

To evaluate the impact of the training process on model performance, processing time,
and computational efficiency, trials were conducted with varying epochs, representing the
number of full passes through the training dataset. Models were trained with 800, 1000, 1200,
1500, 2000, 3000, 4000, 5000, and 10,000 epochs for each SWQP, and the processing time for
each configuration was recorded. This analysis aimed to determine the optimal number of

epochs to balance accuracy and processing efficiency.

6. Results and discussion
6.1. SWQPs measurements

The concentrations of SWQPs have been examined to remove outliers. Based on a 95%
confidence level, a Z critical value of 1.96 was chosen. Any data with Z values greater than
1.96 or less than -1.96 are considered outliers and removed [25]. Table 2 shows comprehensive
descriptive statistics of the selected SWQPs. Concentrations ranged from 1.10 to 11.0 mg/L
with a mean value of 5.316 mg/L for TOC and from 11.0 to 144.0 mg/L with a mean value of
56.3198 mg/L for TDS.
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Table 2: Descriptive statistics of SWQPs.

SWQPs TOC (mg/l) TDS (mg/l)
No. of samples 85 96
Minimum 1.1 11.0
Maximum 11 144
Range 9.9 133
Mean (p) 5.316 56.3198
Standard deviation 2.5977 30.5796

The dataset for the selected SWQPs was divided into 70% for training, 15% for testing,
and 15% for validation, ensuring robust model evaluation. Table 3 provides detailed
information on this division and the number of stations for each parameter.

6.2. Comparing different implemented atmospheric correction algorithms

A comparative analysis of mosaic images from different atmospheric correction methods
was conducted using reference data. Two statistical measures, R?2 and RMSE, were computed
pixel by pixel across all seven mosaic bands. Python 3.11, with its extensive libraries and ease
of use, was employed for these calculations, alongside Microsoft Visual Studio 2015 for code
editing, debugging, and version control. A code has been built to calculate the R2 and RMSE
values. The analysis allowed for a quantitative assessment of each correction method's
performance, identifying the method producing images closest to the reference and the

associated errors.

Table 3: Data for ANN training, validation, and testing.

Developed models TOC BPNN model TDS BPNN model
Total No. of samples 85 96
No. of training samples 59 68
No. of validation samples 13 14
No. of testing samples 13 14

Table 4 displays the R? and RMSE values for images corrected using different
atmospheric correction methods compared to reference data. This tabular format simplifies the
assessment of each method’s performance, providing clear insights into the precision and

reliability of various techniques when applied to satellite imagery.
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Table 4: R? and RMSE for the different atmospherically corrected images.

Imag(_a bands FLAASH QUAC method DOS method ATCOR method
in method

micrometer R? RMSE R? RMSE R? RMSE R? RMSE
g;ii[g: 0.7731 | 0.01082 | 0.3878 | 0.01731 | 0.6258 | 0.03871 | 0.4732 | 0.03128
Blue 0.8283 | 0.00945 | 0.6909 | 0.01289 | 0.06556 | 0.02391 | 0.4624 | 0.01168
Green 0.8343 | 0.01092 | 0.8211 | 0.01051 | 0.5855 | 0.01232 | 0.1224 | 0.02913
Red 0.8334 | 0.00753 | 0.6944 | 0.01252 | 0.2884 | 0.01214 | 0.1161 | 0.01106
NIR 0.8582 | 0.04882 | 0.5285 | 0.07972 | 0.1441 | 0.09642 | 0.4829 | 0.12217
SWIR1 0.8112 | 0.01287 | 0.6343 | 0.02691 | 0.2337 | 0.06165 | 0.6242 | 0.01093

SWIR 2 0.6541 | 0.02070 | 0.5283 | 0.05087 | 0.2804 | 0.03334 | 0.6911 | 0.03704

The results reveal FLAASH as the most accurate method for atmospheric correction, with
mean values of (0.7989 and 0.0173) for Rz and RMSE, respectively. ATCOR follows with
(0.6122, 0.0301), DOS yields (0.3175, 0.0398), and QUAC produces (0.4246, 0.0362). These
findings align with prior research [26], highlighting FLAASH's superior accuracy. Despite the
demonstrated accuracy of the FLAASH and ATCOR methods, it is noteworthy that the DOS
and QUAC methods offer a more straightforward implementation and do not necessitate the
input of intricate parameters. FLAASH and ATCOR generally have higher accuracy, but poor
utility compared to QUAC and DOS methods since acquiring real-time parameters in the model
is complex in practical operation.

6.3. The insights of BPNN models

The MATLAB code was developed to train the ANN based on the specified parameters
outlined earlier, optimizing the network for the intended application. Fig. 7 shows a portion of
the code for the TOC parameter, demonstrating the training process structure. To balance model
accuracy and processing time, it was found that more epochs improved R2 values and reliability
but also increased processing time and cost. The BBNN models were trained under consistent
conditions, including the same learning rate and number of stations for training, validation, and
testing. The development was carried out on a machine with an Intel Core i7-7820HQ CPU at
2.90 GHz, 8 cores, and 32 GB of RAM.

The number of epochs was varied to assess its impact on the training process. Models
were trained with different epoch counts for each SWQP, and processing time, R2, and RMSE
values were recorded for each configuration. Results were presented in charts (Fig. 8 and 9) to
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illustrate the relationship between processing time and R2 values for each SWQP, simplifying
trend identification and conclusions about the optimal number of epochs.

The results showed that as the number of epochs increased, R? improved, and RMSE
decreased. However, this performance improvement came with higher processing time and
cost. The literature review suggested that ANN models for SWQPs are reliable when R2 values
are around 0.90. In this study, models exceeded an R2 of 0.90 at 1200 epochs, reaching 0.9134
during testing. The average processing time for all SWQPs was approximately 90 minutes. At
1500 epochs, R? increased to 0.9268, with a processing time of 110 minutes. The R2 difference

between the two models was 0.0152, while processing time differed by about 20 minutes.

1 % Load your input and target data
= inputs = IN; % Your input data matrix
3|= targets = OUT; % Your target data matrix
4
5 % Create a feedforward neural network
&= hiddenLayerSizes = [20, 15];
7= net = patternnet (hiddenLayerSizes);
g
9 % Set actiwvation functions for each layer
1g|= net.layers{l}.transferFcn = 'tansig'; % tansigmoid for the first hidden layer
il |= net.layers{2}.transferFcn = 'logsig'; % logsigmoid for the second hidden layer
12 — net.layers{end}.transferFcn = 'tansig'; % tansigmoid for the output layer
13 % Randomly divide the data
14 — net.divideFcn = 'dividerand';
i5|= net.divideParam.trainRatio = 70/100; % Ratio for training set
16 — net.divideParam.valRatio = 15/100; % Ratio for wvalidation set
17 — net.divideParam.testRatio = 15/100; % Ratio for testing set
18
19 % Use Bayesian Regularization backpropagation
20 - net.trainFen = 'trainlm';

Figure 7: Segment of the developed MATLAB code for training the TOC ANN model.

The results showed an R2 value of 0.9384 for 2000 epochs, with an average processing
time of 2 hours and 5 minutes. This improved to 0.9459 at 3000 epochs, with a processing time
of 3 hours and 20 minutes. The R? difference was minimal (0.0075), but processing time
increased significantly by 1 hour and 26 minutes, nearly doubling between the two models,
requiring greater labor and more advanced machine capabilities.

For models trained with 4000, 5000, and 10000 epochs, R? values were 0.9496, 0.9504,
and 0.9559, respectively, with processing times of 4 hours 30 minutes, 5 hours 7 minutes, and
8 hours 19 minutes. As epochs increased, processing time rose significantly, correlating with
higher computational costs. Despite the increased resources, the R2 improvements were

minimal. The extended processing time requires more labor and advanced machine capabilities,
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resulting in higher operational costs, both in terms of human labor and the quality of machinery

needed to support the intensive computational tasks.
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Figure 8: Graphical results for the developed TOC models showing processing time and R?

for training, validation, and testing datasets at each epoch.
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Figure 9: Graphical results for the developed TDS models showing processing time and R?

for training, validation, and testing datasets at each epoch.

The results indicate that training models beyond 1200 epochs significantly increase
processing time and computational costs without substantial gains in RZ values. This conclusion
stems from evaluating the resources required, including labor intensity and machine
capabilities. Limiting epochs to 1200 ensures cost-effective, efficient models without

sacrificing accuracy, minimizing processing time and overall costs. Models trained with 1200
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epochs will be used for generating spatial maps for each SWQP. For the BPNN algorithm with
1200 epochs, the RMSE values for TOC were 0.4417, 0.5490, and 0.5735 mg/L for training,
validation, and testing, respectively. For TDS, the RMSEs were 8.8243, 6.7279, and 8.8495
mg/L. The Landsat8-based BPNN showed significant efficiency in estimating SWQP
concentrations, with R2 values for TOC at 0.9768, 0.9515, and 0.9199 for training, validation,
and testing, respectively. For TDS, the RZ values were 0.9219, 0.9210, and 0.9176. These

results are summarized in Table 5 and Fig. 10.

Table 5: Statistical measures between the actual and modeled concentrations of SWQPs
using the developed Landsat8-based-BPNN at 1200 epoch.

1200 Epochs ANN models result

Training Validation Testing Approximate
SWQPs processing
R? RMSE R? RMSE R? RMSE time

TOC 0.9768 | 0.4417 mg/L | 0.9515 | 0.5490 mg/L | 0.9199 | 0.5735mg/L | 1 Hr 33 Min

TDS 0.9219 | 8.8243 mg/L | 0.9210 | 6.7279 mg/L | 0.9176 | 8.8495mg/L | 1 Hr 24 Min

6.4. The Landsat8-based-BPNN spatial concentration maps

After successfully executing the Landsat8-based BPNN model for each SWQP, a
MATLAB code was used to apply these models to the final Landsat8 OLI image. The image,
exported as a TIFF file from PCI Geomatica, was processed pixel by pixel. Each pixel was
input into the developed Landsat8-based BPNN model within the MATLAB environment. The
goal was to generate spatial concentration maps for each SWQP, including TOC and TDS,
which are visually presented in Fig. 11 to Fig. 14 for both image datasets.

Spatial distribution maps reveal that TOC concentrations vary between 1.0 and 11.0
mg/L. Lower TOC concentrations were identified in the Canaan River, Digdeguash River,
Magaguadavic River, and St. Croix River, likely due to lower concentrations of organic matter
input and reduced human activities in these areas. Conversely, higher TOC concentrations were
found in the Hammond River, Kennebecasis River, and across significant portions of Grand
Lake, which may be attributed to higher levels of organic matter runoff from surrounding

agricultural and urban areas.
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Figure 10: Graphical fit results of TOC (a-1), (a-2), and (a-3)), and TDS ((b-1), (b-2), and (b-
3)), for training, validation, and testing of the developed Landsat8-based-BPNN at 1200

epochs.

The monitoring results indicate variability in TDS concentrations across different watersheds,
ranging between 10.0 and 144.0 mg/L. Lower TDS concentrations were identified in the Saint
John River and across significant portions of Grand Lake, likely due to limited industrial
activities, lower levels of agricultural runoff, and better management practices that reduce the
inflow of dissolved solids. Conversely, higher TDS concentrations were found in the Canaan
River, Hammond River, Digdeguash River, and Magaguadavic River, which may be attributed
to higher levels of agricultural runoff, industrial discharges, and increased urbanization

contributing to greater amounts of dissolved solids entering these water bodies
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Figure 11: A spatial distribution map for TOC using the developed Landsat8-based-BPNN
for the 1% dataset of images.
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Figure 12: A spatial distribution map for TOC using the developed Landsat8-based-BPNN
for the 2" dataset of images.
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Figure 13: A spatial distribution map for TDS using the developed Landsat8-based-BPNN
for the 1% dataset of images.
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Figure 14: A spatial distribution map for TDS using the developed Landsat8-based-BPNN

for the 2" dataset of images.
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7. Conclusion

This study integrated remote sensing imagery with machine learning algorithms to
develop a Landsat8-based BPNN for accurately mapping SWQPs, including TOC and TDS, in
New Brunswick, Canada. The methodology achieved strong correlations across watersheds in
the study area. Identifying the optimal number of epochs revealed that while increased epochs
improved R2 values and reliability, they also resulted in longer processing times and higher
computational costs. However, the Landsat8-based BPNN models are not universally
applicable to other water bodies without adaptation. Each water surface has distinct
environmental, climatic, and geographical characteristics. For instance, proximity to industrial
or agricultural drainage systems or differences in rainfall patterns necessitate modifications to

the model architecture and design to ensure accuracy and contextual relevance.
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