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a b s t r a c t 

A new fractional 6D chaotic model is constructed in this paper. The new fractional 6D chaotic model has 

six positive parameters plus the fractional order with eight nonlinear terms. The complicated chaotic dy- 

namics of the new fractional 6D model is presented and analyzed. The basic properties of this model are 

studied and its chaotic attractors, dissipative feature, symmetry, equilibrium points, Lyapunov Exponents 

are investigated. The new dynamics of the 6D fractional model is numerically simulated using Matlab 

software. In addition, utilizing the graph theory tools certain structural characteristics are calculated. An 

electrical circuit is built to implement the new 5.4 fractional order 6D model. Finally, an active fractional 

order controller is proposed to control the new model at different fractional orders. The chaos of the new 

model is very useful and can be used to produce random keys for data encryption. 

© 2022 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In [1] , the first 3D autonomous chaotic system was found by 

orenz when he investigated atmospheric convection. Lorenz sys- 

em has been taken as a first model for studying chaos. After 

hat, in [2] , R ӧssler built a simpler chaotic 3D system. It is note-

orthy that during the past twenty years, the chaos of techno- 

ogical paradigms, like nonlinear electric circuits, has progressively 

hifted from a pure science to a promising subject that has im- 

ortant applications. It is observed that intentionally generating 

haos is a vital case in several technical implementations. In this 

irection, Chen built a three-dimensional autonomous chaos model 

3 , 4] based on an engineering approach to feedback control, after 

hat Lü has built his system [5] and general model combining all 

ases as a special case has built and named the unified model [6] .

ollowing Vanecek and Celikovsky’s classification of canonical form 

7] , in the 3D autonomous paradigms that have quadratic nonlin- 

arities, considering the linear term ( B = [bi j ] ), the Lorenz model 
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ulfils b12 b21 > 0 , the Chen model fulfils b12 b21 < 0 , and the Lü

odel fulfils b12 b21 = 0 although they aren’t topologically equiv- 

lent. With this direction, they form together a full collection of 

eneral Lorenz dynamical models. From another point of view, the 

 ӧssler system contains a quadratic cross product term and is not 

art of the general family of Lorenz systems mentioned above. Re- 

ently, during the study of a 3D R ӧssler-type autonomous chaotic 

odel with quadratic cross product terms, Liu and Chen [8] con- 

tructed a chaotic model with a quadratic product term in every 

ernel, that could give two attractors at the same time each of 

hich has a double-scroll. 

The concept of fractional calculus has been recognized since the 

volution of the ordinary one, and its origin probably relates to 

 1695 communication of Leibniz and L’ Hospital. They discussed 

he concept of 1.5 order derivative [9] . Despite the long age of 

he fractional derivation, its applications in physics and engineer- 

ng are still recent. Much research has been devoted to the creation 

f chaos using autonomous fractional order nonlinear models. In 

10] , fractional order chaos and hyper chaos were examined for the 

 ӧssler model. In [11] , system synchronization of fractional order 

as performed. Control and stability for a collection of fractional- 

rder nonlinear models have been investigated with Caputo 
access article under the CC BY-NC-ND license 
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Fig. 1. Lyapunov exponents spectrum versus the fractional order v where the model parameters are fixed as a = 30 , b = 10 , c = 1 , d = 10 . 

Fig. 2. Bifurcation map of y1 related to the fractional order v where the model parameters are fixed as a = 30 , b = 10 , c = 1 , d = 10 . 

Fig. 3. Hyperchaotic attractor of the proposed model (18) at fractional order v = 1 and a = 30 , b = 10 , c = 1 , d = 10 . 
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Fig. 4. Hyperchaotic attractor of the proposed model (18) at fractional order v = 0 . 9 and a = 30 , b = 10 , c = 1 , d = 10 . 

Fig. 5. Fixed point behavior of the proposed model (18) at fractional order v = 0 . 8 and a = 30 , b = 10 , c = 1 , d = 10 . 
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erivative in [12] . The fractional order derivative provides many 

eatures to the dynamical system. It takes the history of the system 

ynamics into account. And the order of the derivative increases 

he number of parameters of the chaotic model. So, we can get 

ew chaotic attractors and increases the dimension of parameters’ 

pace which increase its efficiency in secure communication appli- 

ations. Also, in modelling, the fractional order can be used as a 

uner parameter for the response to meet the modelled phenom- 

na. But the classical derivatives and the models based on them do 

ot consider any memories and hereditary effects. Extra fractional 

nd integer order chaotic models and applications can be found in 

13–20] and [30–33,39–41] . 

Dynamical systems, especially the chaotic ones are widely uti- 

ized to model Ocean and atmospheric dynamics. Ocean engineer- 

ng is interested with large scale wave motions in the Ocean (for 

xample, wind waves, tsunami waves) and air along with the tem- 
114 
erature and density of water in the Ocean. Ocean and atmo- 

phere are equally significant in transferring energy between po- 

itions in the form of wave propagation. Dynamical systems, es- 

ecially the chaotic ones help to model various phenomena in 

ceans. Several research works have highlighted the values of ed- 

ies and chaos inside the Ocean in controlling the response to forc- 

ng from climate change. Certain physical processes in the Ocean 

roduce highly non-linear or chaotic fluctuations. In [34] , Jianmin 

ang and Wenyue Lu numerically studied the generation and evo- 

ution of the super-rogue waves. In [35] , the reader can see the im- 

ortance of dynamical systems in modelling and evaluation of dy- 

amics of jack-up platform system under wave, wind, earthquake, 

nd tsunami loads. More numerical and computational studies of 

ynamical systems can be found in [36–38] . 

Encouraged by the previous studies, a new fractional chaotic 6D 

odel is constructed which can be used to model may Oceanic 
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Fig. 6. Lyapunov exponents spectrum versus the parameter a where other parameters are fixed as b = 10 , c = 1 , d = 10 at different fractional orders v = 1 , 0 . 9 , 0 . 8 , 0 . 7 . 

Fig. 7. Bifurcation maps of y1 related to parameter a where other parameters are selected as b = 10 , c = 1 , d = 10 at different fractional orders v = 1 , 0 . 95 , 0 . 9 , 0 . 88 . 
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henomena. We proved the chaos nature of the proposed new 

ractional 6D model numerically by displaying its dynamics related 

o the order of the fractional differentiation. The Lyapunov expo- 

ents and bifurcation maps of the proposed model is presented. 

he impact of the order of the fractional differentiation on the 

yapunov exponent are presented. The structural properties of the 

roposed 6D model are studied via certain graph theory tools. In 
115 
ddition, the proposed 6D 5.4-fractional order chaotic model is re- 

lized by constructing an electronic circuit and we present its re- 

ponse. Also, an active fractional controller is produced to control 

he presented 6D fractional chaotic model. 

The remaining of the manuscript is arranged as: the prelimi- 

aries and basic definitions of fractional differentiation are given 

n Section 2 . The 6D chaotic model is constructed and its basic 
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Fig. 8. The digraph D of the studied chaotic model. 

Fig. 9. The underlying graph G of the model graph D . 
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haracteristics are given in Section 3 . The new attractors are dis- 

layed in Section 4 . Certain structural features of the proposed 6D 

haotic model are presented using graph theory tools in Section 5 . 

ection 6 contains the electronic circuit realization of the proposed 

ractional 6D chaotic model. An active fractional controller is de- 

igned and applied for the studied chaotic model in Section 7 . The 

onclusions of our study are put in Section 8 . 

. Fractional derivative and its preliminaries and basic 

efinitions 

This section briefly describes the fractional derivative and its 

orresponding fractional integral. Several notations were used in 

he new definition of fractional derivative. Through this article, we 

se l D
v 
t Y (t) and l I

v 
t Y (t) respectively for the fractional differentia- 

ion and its corresponding integration, where l signifies the inte- 

ration lower limit and v is the order of the fractional derivative or 

ractional integral. For each v ∈ C , and for any function Y : C → C ,

 

Dv 
t Y (t) and l I

v 
t Y (t) should meet the following criteria [21] : 

• If Y (. ) is analytic function, then the operator l D
v 
t Y (t) and l I

v 
t Y (t)

are analytic w.r.t. v and t . 
116 
• The fractional differentiation operators satisfy the following lin- 

earity rules: 

l D
v 
t ( c1 Y1 (t) + c2 Y2 (t) ) = c1 l D

v 
t Y1 (t) + c2 l D

v 
t Y2 (t) (1) 

l I
v 
t ( c1 Y1 (t) + c2 Y2 (t) ) = c1 l I

v 
t Y1 (t) + c2 l I

v 
t Y2 (t) (2) 

• The fractional operators with zero order must have no effect on 

Y (t) , i.e., 

l D
0 
t Y (t)=l I

0 
t Y (t) = Y (t) . (3) 

• If v is a positive integer, the fractional operator should give the 

same result as a normal derivative or integral. 

In the coming parts, the Caputo fractional operators of differen- 

iation and integration are introduced in its common sense which 

efined as following [22] and shall be used to construct the pro- 

osed new chaotic model. 

 

 

Dv 
t Y (t) = 1 

�(n − v ) 

∫ t 

l 

Y (n ) ( θ )( t − θ )n −v −1 dθ, (4) 

 

 

Iv t Y (t) = 1 

�(v ) 

∫ t 

Y (θ )(t − θ )v −1 dθ . (5) 

l 
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Fig. 10. Electronic circuit implementing the 5.4-fractional-order 6D new chaotic model (18). 

117 
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Fig. 11. y4 -y1 phase plane from the electronic circuit of the 5.4-fractional-order 6D new chaotic model (18). 

Fig. 12. y4 -y2 phase plane from the electronic circuit of the 5.4-fractional-order 6D new chaotic model (18). 
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For more details and other definitions as Atangana-Baleanu 

erivative and Caputo-Fabrizio derivative with its possible appli- 

ations can be found in [23] . 

efinition 1. The following formula represents the Laplace transfor- 

ation of Caputo fractional order operator 
118 
{
D(ε) f (t) 

}
= sε F (s ) −

k −1 ∑ 

i =0 

sε−i −1 f (i ) (0) ;

 − 1 < ε < k, k ∈ N; F (s ) = L{ f (t) } . 
efinition 2. For the graph G , define the matrix A = A (G ) = [ai j ] ,

uch that ai j = 1 if ui is adjacent to u j in G and ai j = 0 otherwise. A
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Fig. 13. Dynamics of the new fractional 6D chaotic model before and after control at fractional order v = 1 , with all gains Gi = −1 . 

Fig. 14. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0 . 95 , with all gains Gi = −1 . 

i

D

H

f

3

t

D
D
D
D
D
D

w  
s called adjacency matrix of G. 

efinition 3. The Hermitian matrix of a digraph D is defined as: 

u v ( D) = {
1 i f ( u, v ) and ( v , u ) are edges in D ;

i i f ( u, v ) is an edge in D but ( v , u ) is not;
−i i f ( v , u ) is an edge in D but ( u, v ) is not;

0 otherwise. 

The basics of the graph theory and its applications can be found 

or example in [24] 
119 
. The novel 6D chaotic model and its basic characteristics 

In the following, let us write C 
0 
Dt 

υas Dυ . The 6D nonlinear frac- 

ional autonomous novel system is described by 

υy1 = α1 (y2 − y1 ) + y2 y3 y4 , 
υy2 = β1 (y2 + y1 ) − y1 y3 y4 , 
υy3 = −γ y3 + y1 y2 y4 + y5 y6 y4 , 
υy4 = −δy4 + y1 y2 y3 + y5 y6 y3 , 
υy5 = α2 (y6 − y5 ) + y6 y3 y4 , 
υy6 = β2 (y6 + y5 ) − y5 y3 y4 . 

(6) 

here yi ( i = 1 , 2 , 3 , . . . , 6 ) are the state variables of the proposed
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Fig. 15. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0 . 9 , with all gains Gi = −1 . 

Fig. 16. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 1 , with all gains Gi = −5 . 

Table 1 

Lyapunov exponents of the proposed system (18) for various values of fractional order v . 

Fractional order v LE1 LE2 LE3 LE4 LE5 LE6 

0.8515 5.9389 0.0031 -0.1850 -8.7262 -40.1658 -57.4287 

0.9010 4.9808 0.0362 -0.0060 -6.9942 -32.1153 -46.8727 

0.9505 3.6936 0.0006 -0.0006 -5.3108 -25.4198 -37.3238 

1 0.3514 0.0007 -0.0068 -3.8473 -19.9668 -27.2099 

120 



M. Higazy, N. Almalki, S. Muhammad et al. Journal of Ocean Engineering and Science 9 (2024) 112–125 

Fig. 17. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0 . 95 , with all gains Gi = −5 . 

Fig. 18. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0 . 9 , with all gains Gi = −5 . 

Table 2 

The tree shape 1 /s0 . 9 (2dB) integrator: val- 

ues of resistors (c.f. [27] ). 

v Ra Rb Rc 

0.9 1 . 55 M
 61 . 54 M
 2 . 5 K


Table 3 

The tree shape 1 /s0 . 9 (2dB) integrator: 

values of capacitors (c.f. [27] ). 

v Ca Cb Cc 

0.9 0 . 73 μF 0 . 52 μF 1 . 1 μF 

m

a

p

Table 4 

The used voltage summing devices’: gains for inputs 

(A, B, C) and output O. 

summer symbol A B C O 

S1 -30 -1 30 0.28 

S2 -10 1 10 0.28 

S3 -1 -1 1 0.015 

S4 -1 -1 10 0.015 

S5 -1 -30 30 0.28 

S6 -10 1 -10 0.28 

s

a

t

fi

odel, and α1 , α2 , β1 , β2 , γ , δ are the model parameters and 

ll of them are positive real constants. 

Constructing this model and determining the values of its 

arameters such that the model has chaotic dynamic follow 
121 
ome common concepts of chaotification [25 , 26] , to build an 

utonomous chaotic paradigm or to chaotic a non-chaotic au- 

onomous paradigm, the coming framework rules need to be satis- 

ed: 
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i) Dissipative of the model, in other words, the energy of the 

model is diminishing (except if Hamiltonian models are taken 

into consideration). 

ii) The model has an unstable equilibrium. In other words, the 

equilibrium-evaluated Jacobian value has unstable eigenvalues. 

ii) The model consists of one cross product term at least. That is, 

the dynamic effects between different variables can be consid- 

ered. 

v) All system trajectories are bounded. In other words, dynamic 

equilibrium is maintained by increasing and decreasing system 

energy. 

The method of chaotifying the discrete models have some sys- 

ematic steps [25] , but there are no general techniques for non- 

iscrete cases. In the latter case, the above analytical conditions 

sually need to be combined with trial-and-error computer exper- 

ments to accomplish the needed chaotic job. System (6) is also 

as such a shape. Now, some basic features of (6) are examined. 

In the following subsections, some basic characteristics of the 

roposed system (6) are examined. 

.1. Dissipative feature for the proposed model (6) 

The 6D nonlinear fractional autonomous novel system is de- 

cribed by 

υy1 = α1 (y2 − y1 ) + y2 y3 y4 = v1 , 
υy2 = β1 (y2 + y1 ) − y1 y3 y4 = v2 , 
υy3 = −γ y3 + y1 y2 y4 + y5 y6 y4 = v3 , 
υy4 = −δy4 + y1 y2 y3 + y5 y6 y3 = v4 , 
υy5 = α2 (y6 − y5 ) + y6 y3 y4 = v5 , 
υy6 = β2 (y6 + y5 ) − y5 y3 y4 = v6 . 

(7) 

For this model (7), let V = [v1 , v2 , ..., v6 ]
T , we have 

 · V =
6 ∑ 

i =1 

∂ 

∂yi 
( Dυyi ) = (β1 + β2 ) − (α1 + α2 + δ + γ ) = D. (8) 

Then, system (7) is dissipative, if 

β1 + β2 ) − (α1 + α2 + δ + γ ) < 0 (9) 

Suppose that �(t) is a suitable region in R6 which has a smooth 

oundary and let �(t) ∈ 
(t ) such that 
(t ) is the flow of the vec-

or field V (t) . Plus, let that the volume of �(t) is V (t) . Referring

o Liouville’s theorem as in [13] , we get 

˙
 (t) =

∫ 

�(t) 

(∇ · V ) 
6 ∏ 

k =1 

dvk (10) 

Then from (7) and (9), we have 

˙
 (t) =

∫ 

�(t) 

(D ) 
6 ∏ 

k =1 

dvk = DV (t) (11) 

Integrating (11), then 

( t) = V ( 0) eDt (12) 

rom (12), we conclude that the orbit of this dynamic model (6) 

orces all contained volumes to be reduced to zero. Therefore, there 

re attractors that attract all the orbits of the new model. From 

his, we can show that the newly proposed chaos model (6) is dis- 

ipative in the following condition is met: 
 

β1 + β2 ) − ( α1 + α2 + δ + γ ) < 0 (13) b

122 
.2. Model (6) equilibrium points 

The equilibrium points of the proposed model (6) can be found 

y simultaneously solving the next equations: 

1 (y2 − y1 ) + y2 y3 y4 = 0 , β1 (y2 + y1 ) − y1 y3 y4 

= 0 , −γ y3 + y1 y2 y4 + y5 y6 y4 = 0 , −δy4 + y1 y2 y3 + y5 y6 y3 

= 0 , α2 (y6 − y5 ) + y6 y3 y4 = 0 , β2 (y6 + y5 ) − y5 y3 y4 = 0 . (14) 

Clearly, P0 = (0 , 0 , 0 , 0 , 0 , 0 ) is one of the equilibrium points. 

he system is very complex and has many other equilibrium points 

hat can be calculated using Matlab. Here, the stability of the zero 

quilibrium P0 is examined only. The Jaccobian can be obtained by 

inearizing system (6) at P0 as: 

 =

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−α1 α1 0 0 0 0 

β1 β1 0 0 0 0 

0 0 −γ 0 0 0 

0 0 0 −δ 0 0 

0 0 0 0 −α2 α2 

0 0 0 0 β2 β2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(15) 

That has the following eigenvalues: 

1 , 2 = 1 

2 

β1 − 1 

2 

α1 ± 1 

2 

√ 

α2 
1 

+ 6α1 β1 + β2 
1 
, (16) 

λ3 = −δ, λ4 = −γ , 

5 , 6 = 1 

2 

β2 − 1 

2 

α2 ± 1 

2 

√ 

α2 
2 

+ 6α2 β2 + β2 
2 
. (17) 

Since all model parameters are positive real numbers, it is easy 

o find that λ2 , λ6 > 0 , proving the instability of the equilibrium 

0 . The other nonzero equilibria, it is still possible to numerically 

valuate their stabilities. Since two unstable equilibriums has been 

ot at P0 , this long numerical calculation becomes not needed then 

t is not examined further here. 

. Displaying of new chaotic attractors 

In the following, to simplifying the study, the produced model 

arameters are taken as: α1 = α2 = a ,β1 = β2 = b, γ = c and δ = d. 

hen proposed model is rewritten as follows. 

υy1 = a (y2 − y1 ) + y2 y3 y4 , 
υy2 = b(y2 + y1 ) − y1 y3 y4 , 
υy3 = −cy3 + y1 y2 y4 + y5 y6 y4 , 
υy4 = −dy4 + y1 y2 y3 + y5 y6 y3 , 
υy5 = a (y6 − y5 ) + y6 y3 y4 , 
υy6 = b(y6 + y5 ) − y5 y3 y4 . 

(18) 

Considering condition (12), with initial conditions 

 (0) = (1. 77 , 1. 66 , 7. 2 , 1. 5 , 1. 77 , 1. 66) and fractional order 

 = 0 . 8515 , 0 . 9010 , 0 . 9505 , 1 , many numerical experiments have

een executed, certain discoveries recorded as follows. 

.1. Varying the fractional order with a = 30 , b = 10 , c = 1 , d = 10 

Fig. 1 displays the spectrum of Lyapunov exponents versus the 

rder v of fractional derivative and parameters are chosen as a = 

0 , b = 10 , c = 1 , d = 10 . From which one can note that LE1 and

E2 are positive for fractional order v ∈ [0 . 8515 , 1] . In Table 1 ,

ome values of Lyapunov exponents are recoded against different 

alues of v . The proposed system (18) has a hyperchaotic behavior 

or the fractional order v ∈ [0 . 8515 , 1] . Fig. 2 shows the bifurcation

ap of y1 related to the fractional order v where parameters are 

hosen as a = 30 , b = 10 , c = 1 , d = 10 . Figs. 3, 4 , show two hy-

erchaotic attractors at fractional orders 0.9 and 1 respectively. For 

 outside this period v ∈ [0 . 8515 , 1] , the system has fixed point

ehavior as shown in Fig. 5 . 
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From above experiments, the proposed system is hyperchaotic 

or fractional order v ∈ [0 . 8515 , 1] where model parameters are se-

ected as a = 30 , b = 10 , c = 1 , d = 10 . 

.2. Vary the parameter a and fix b = 10 , c = 1 , d = 10 

As clear from Fig. 6 , the spectrum of Lyapunov-exponents show 

hat the proposed model (18) is hyperchaotic for a wide range 

f the parameter a for fractional order v ∈ [0 . 8515 , 1] and the

ystem lose its chaotic dynamical behavior outside this period. 

ig. 7 displays the bifurcation maps of y1 related to parameter a 

here other parameters are selected as b = 10 , c = 1 , d = 10 at

ifferent fractional orders. 

. Structural characteristic of proposed model (18) 

In this section, we display the relations between the different 

erms of the proposed model via drawing its graph. The proposed 

odel consists of pure state variables and nonlinear product terms. 

e draw the suggested graph as follows. The graph vertices are 

he six pure state variables plus the eight nonlinear product terms. 

here will be a directed edge between two vertices if the corre- 

ponding terms affect the other. For example, there will be a di- 

ected edge from the vertex corresponds to the termy2 y3 y4 to the 

ertex corresponds to the term y1 , but there no edge from the 

ertex corresponds to y1 towards that corresponds to y2 y3 y4 , so 

odel (18) can be displayed by the digraph D given in Fig. 8 . Many

tructural characteristics of the model can be calculated from the 

djacency and Hermitian matrices. 

The underlying graph G (shown in Fig. 9 ) of a digraph D is con-

tructed by neglecting the direction of the edges and the loops 

edges with same ends). Following Definitions 2 , 3 , respectively, 

he adjacency matrix A (G ) for the underlying graph of D and the 

ermitian matrix H(D ) for the model digraph D are constructed as 

ollows in (19) and (20). 

 (G ) =

y1 

y2 

y3 

y4 

y5 

y6 

y2 y3 y4 

y1 y3 y4 

y1 y2 y4 

y4 y5 y6 

y1 y2 y3 

y3 y5 y6 

y3 y4 y6 

y3 y4 y5 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 0 1 1 1 0 1 0
1 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0

(D ) =

y1 

y2 

y3 

y4 

y5 

y6 

y2 y3 y4 

y1 y3 y4 

y1 y2 y4 

y4 y5 y6 

y1 y2 y3 

y3 y5 y6 

y3 y4 y6 

y3 y4 y5 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 0 0 0 0 −i i i 
1 1 0 0 0 0 i −i i 
0 0 1 0 0 0 i i −i 
0 0 0 1 0 0 i i i 
0 0 0 0 1 1 0 0 0 

0 0 0 0 1 1 0 0 0 

i −i −i −i 0 0 0 0 0 

−i i −i −i 0 0 0 0 0 

−i −i i −i 0 0 0 0 0 

0 0 i −i −i −i 0 0 0 

−i −i −i i 0 0 0 0 0 

0 0 −i i −i −i 0 0 0 

0 0 −i −i i −i 0 0 0 

0 0 −i −i −i i 0 0 0 

The eigenvalues of A (G ) are: 
123 
 0 

 0 

 1 

 1 

 1 

 1 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(19) 

i 0 0 0 

i 0 0 0 

i i i i 
−i −i i i 
0 i −i i 
0 i i −i 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(20) 

{−4 . 755 , −2 . 3723 , −1 , −1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 6605 , 

 . 3723 , 5 . 0945 } . And the eigenvalues of H(D) are: { 3 . 2361 , 2 ,

2 , −1 . 2361 , 3 . 3723 , 3 , 2 , −2 . 3723 , −2 , 2 , 3 . 2361 , 0 , 0 , −1 . 2361 } . 
The energy of the graph G is defined as E(G ) =

14 ∑ 

i =1 

|λi | = 

8 . 2546 , where 14 is the order of G and λ’s are the eigenvalues

f its adjacency matrix. This idea was presented by I. Gutman in 

24] and has several applications and it can be utilized to estimate 

he whole energy of graphs. The Hermitian energy is defined as 

H(D ) =
14 ∑ 

i =1 

|μi | = 27 . 689 , where 14 is the order of D and μ’s are

he eigenvalues of its Hermitian matrix. 

. Electric circuit realization of the studied fractional chaotic 

ystem 

In this section, we show that the proposed chaotic model is 

pplicable by constructing its electric circuit. By constructing an 

lectric circuit for the proposed model, we prove its ability to be 

pplicable in real world applications. Here, we consider the sug- 

ested 6D fractional order chaotic paradigm (18). First, we fix the 

ractional order v = 0 . 9 to design circuit to realize model (18). 

e follow the method published in [27] to realize 1 /s0 . 9 . With aid 

f NI Multisim 14.0 package, the electric circuit given in Fig. 10 is 

esigned, where S1, S2, ..., S6 are six summers all of them has 3 

nputs and single output; M1, M2, …, M11 are AD633 voltage mul- 

iplier with 2 inputs and single output all of them are adjusted 

ith identity gain; six LM741 op. amp’s are utilized to simulate the 

ix 0.9-fractional-order voltage integrators with outputs equal the 

tates of the system y1 to y6 ; R1, R2, R3, R4, R5, R15 are 100K 


esistances and R6, R7, R8, R9 are 10K 
 resistances plus a cou- 

le of LM741 op. amps. are used to construct two voltage invert- 

rs. The designed values of resistors and capacitors are given in 

ables 2 and 3 . In Table 4 , we record input/output gain’s utilized
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n voltage summers. The electronic circuit implementing the new 

haotic 6D model (18) is shown in Fig. 10 . Figs. 11 and 12 display

he response of 5.4-fractional-order chaotic 6D new model. 

. Design of fractional order active controller for the proposed 

haotic model (18) 

In this section, we propose an active control strategy to control 

he model states and convert it to a fixed point. 

For the proposed system (18), the control rule is designed as 

ollows: 

1 = G1 y1 − ( a (y2 − y1 ) + y2 y3 y4 ) , 

2 = G2 y2 − b(y2 + y1 ) + y1 y3 y4 , 

3 = G3 y3 − cy3 − y1 y2 y4 − y4 y5 y6 , 

4 = G4 y4 − dy4 − y1 y2 y3 − y3 y5 y6 , 

5 = G5 y5 − a (y6 − y5 ) − y3 y4 y6 , 

6 = G6 y6 − b(y6 + y5 ) + y3 y4 y5 . 

(21) 

here Gi ’s are control gains. The controlled model becomes: 

υy1 = a (y2 − y1 ) + y2 y3 y4 + C1 , 
υy2 = b(y2 + y1 ) − y1 y3 y4 + C2 , 
υy3 = −cy3 + y1 y2 y4 + y5 y6 y4 + C3 , 
υy4 = −dy4 + y1 y2 y3 + y5 y6 y3 + C4 , 
υy5 = a (y6 − y5 ) + y6 y3 y4 + C5 , 
υy6 = b(y6 + y5 ) − y5 y3 y4 + C6 . 

(22) 

Substituting (21) into (22), the dynamics of the controlled 

odel becomes: 
υy1 = G1 y1 , 
υy2 = G2 y2 , 
υy3 = G3 y3 , 
υy4 = G4 y4 , 
υy5 = G5 y5 , 
υy6 = G6 y6 , 

(23) 

It is obvious that the controlled system (23) has ˆ E0 = 

0 , 0 , 0 , 0 , 0 , 0) as an equilibrium point. The following theorem can

e proved for the controlled fractional order model (23). 

heorem 1. If all controller gains Gi ’s in the controlled model (23) 

re chosen to be negative values, then 

ˆ E0 = (0 , 0 , 0 , 0 , 0 , 0) of the

ontrolled model (23) is fixed point. 

roof. Taking Laplace transformation for the controlled model 

23), then 

then 

v Yi ( s) − sv −1 yi ( 0) = Gi Yi ( s) , 

here Yi (s ) is the Laplace transformation of yi (t) , so 

i ( s) =
sv −1 yi ( 0) 

sv − Gi 

(24) 

pplying inverse taransformation of Laplace for (24), we get 

i ( t) = yi ( 0) Mv 
(
Gi t

v 
)
, (25) 

uch that Mε (. ) is the common function of Mittag-Leffler. Because 

 < v ≤ 1 , so Mv (Gi t
v ) =

∞ ∑ 

h =0 

(Gi t
v ) h 

�(h v +1 ) 
approaches zero for all val- 

es of Gi t
ε if all Gi ’s are negatives, the reader can consult [28–29] 

nd its cited references for more about function of Mittag-Leffler. 

hen, the states yi (t) of the model are all stable asymptotically. 

igs. 13 , 14 and 15 show the time response of the new frac-

ional 6D chaotic model before and after control at fractional order 

 = 1 , 0 . 95 and 0 . 9 respectivily with all gains Gi = −1 . The con-

roller is applied after 30 secs. We can see that the model takes a 

ransient time to reach its final state. Changing the controller gains 

o be Gi = −5 , the transient time is approaches zero as shown in

igs. 16 , 17 and 18 . 
124 
. Conclusions 

The new fractional 6D chaotic model presented above has com- 

licated behaviors and all characteristics of the chaotic system. The 

roposed fractional 6D chaotic system with different topology and 

tructure than the existing 6D systems is constructed in this work. 

he basic features and dynamical response of the new model have 

een investigated to prove it’s chaotic. Certain graph theory tools 

ave been utilized to display some hidden properties of the pro- 

osed model. In addition, an electronic circuit realizing the pro- 

osed model has been designed. Also, an active fractional con- 

roller is proposed to control the proposed model. In the future 

ork, we suggest utilizing this fractional 6D model to produce ran- 

om keys for data encryption and in secure communication appli- 

ations. 
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