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A new fractional 6D chaotic model is constructed in this paper. The new fractional 6D chaotic model has
six positive parameters plus the fractional order with eight nonlinear terms. The complicated chaotic dy-
namics of the new fractional 6D model is presented and analyzed. The basic properties of this model are
studied and its chaotic attractors, dissipative feature, symmetry, equilibrium points, Lyapunov Exponents
are investigated. The new dynamics of the 6D fractional model is numerically simulated using Matlab
software. In addition, utilizing the graph theory tools certain structural characteristics are calculated. An
electrical circuit is built to implement the new 5.4 fractional order 6D model. Finally, an active fractional
order controller is proposed to control the new model at different fractional orders. The chaos of the new
model is very useful and can be used to produce random keys for data encryption.
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1. Introduction

In [1], the first 3D autonomous chaotic system was found by
Lorenz when he investigated atmospheric convection. Lorenz sys-
tem has been taken as a first model for studying chaos. After
that, in [2], Réssler built a simpler chaotic 3D system. It is note-
worthy that during the past twenty years, the chaos of techno-
logical paradigms, like nonlinear electric circuits, has progressively
shifted from a pure science to a promising subject that has im-
portant applications. It is observed that intentionally generating
chaos is a vital case in several technical implementations. In this
direction, Chen built a three-dimensional autonomous chaos model
[3,4] based on an engineering approach to feedback control, after
that Lii has built his system [5] and general model combining all
cases as a special case has built and named the unified model [6].
Following Vanecek and Celikovsky’s classification of canonical form
[7], in the 3D autonomous paradigms that have quadratic nonlin-
earities, considering the linear term (B = [b;;]), the Lorenz model

* Corresponding author.
E-mail addresses: m.higazy@tu.edu.sa (M. Higazy), Norah@tu.edu.sa (N. Almalki),
mshabbir@kku.edu.sa (S. Muhammad), agamdi@kau.edu.sa (A. Al-Ghamdi).

https://doi.org/10.1016/j.joes.2022.04.002

fulfils biyby; > 0, the Chen model fulfils biyby; <0, and the Li
model fulfils by;by; =0 although they aren’t topologically equiv-
alent. With this direction, they form together a full collection of
general Lorenz dynamical models. From another point of view, the
Réssler system contains a quadratic cross product term and is not
part of the general family of Lorenz systems mentioned above. Re-
cently, during the study of a 3D Réssler-type autonomous chaotic
model with quadratic cross product terms, Liu and Chen [8] con-
structed a chaotic model with a quadratic product term in every
kernel, that could give two attractors at the same time each of
which has a double-scroll.

The concept of fractional calculus has been recognized since the
evolution of the ordinary one, and its origin probably relates to
a 1695 communication of Leibniz and L' Hospital. They discussed
the concept of 1.5 order derivative [9]. Despite the long age of
the fractional derivation, its applications in physics and engineer-
ing are still recent. Much research has been devoted to the creation
of chaos using autonomous fractional order nonlinear models. In
[10], fractional order chaos and hyper chaos were examined for the
Réssler model. In [11], system synchronization of fractional order
was performed. Control and stability for a collection of fractional-
order nonlinear models have been investigated with Caputo
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Fig. 1. Lyapunov exponents spectrum versus the fractional order v where the model parameters are fixed as a =30, b=10, c=1, d =10.

Bifurcation diagram for fractional order v
T T

I
.................... y |,ll'll"lll“lﬂﬂ;ﬂlu

-2
0.85

l!’ml“l
0. 95

B;furcatzon parameter v

Fig. 2. Bifurcation map of y; related to the fractional order v where the model parameters are fixed as a=30, b=10, c=1, d =10.
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Fig. 3. Hyperchaotic attractor of the proposed model (18) at fractional order v=1 anda =30, b=10, c=1, d = 10.
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Fig. 4. Hyperchaotic attractor of the proposed model (18) at fractional order v = 0.9 anda =30, b=10, c=1, d =10.
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Fig. 5. Fixed point behavior of the proposed model (18) at fractional order v =0.8 and a =30, b=10, c=1, d = 10.

derivative in [12]. The fractional order derivative provides many
features to the dynamical system. It takes the history of the system
dynamics into account. And the order of the derivative increases
the number of parameters of the chaotic model. So, we can get
new chaotic attractors and increases the dimension of parameters’
space which increase its efficiency in secure communication appli-
cations. Also, in modelling, the fractional order can be used as a
tuner parameter for the response to meet the modelled phenom-
ena. But the classical derivatives and the models based on them do
not consider any memories and hereditary effects. Extra fractional
and integer order chaotic models and applications can be found in
[13-20] and [30-33,39-41].

Dynamical systems, especially the chaotic ones are widely uti-
lized to model Ocean and atmospheric dynamics. Ocean engineer-
ing is interested with large scale wave motions in the Ocean (for
example, wind waves, tsunami waves) and air along with the tem-
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perature and density of water in the Ocean. Ocean and atmo-
sphere are equally significant in transferring energy between po-
sitions in the form of wave propagation. Dynamical systems, es-
pecially the chaotic ones help to model various phenomena in
Oceans. Several research works have highlighted the values of ed-
dies and chaos inside the Ocean in controlling the response to forc-
ing from climate change. Certain physical processes in the Ocean
produce highly non-linear or chaotic fluctuations. In [34], Jianmin
Yang and Wenyue Lu numerically studied the generation and evo-
lution of the super-rogue waves. In [35], the reader can see the im-
portance of dynamical systems in modelling and evaluation of dy-
namics of jack-up platform system under wave, wind, earthquake,
and tsunami loads. More numerical and computational studies of
dynamical systems can be found in [36-38].

Encouraged by the previous studies, a new fractional chaotic 6D
model is constructed which can be used to model may Oceanic
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Lyapunov exponents spectrum versus the parameter a where other parameters are fixed as b= 10, ¢ =1, d = 10 at different fractional orders v =1, 0.9, 0.8, 0.7.
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Fig. 7. Bifurcation maps of y; related to parameter a where other parameters are selected as b =10, c =1, d = 10 at different fractional orders v =1, 0.95, 0.9, 0.88.

phenomena. We proved the chaos nature of the proposed new
fractional 6D model numerically by displaying its dynamics related
to the order of the fractional differentiation. The Lyapunov expo-
nents and bifurcation maps of the proposed model is presented.
The impact of the order of the fractional differentiation on the
Lyapunov exponent are presented. The structural properties of the
proposed 6D model are studied via certain graph theory tools. In
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addition, the proposed 6D 5.4-fractional order chaotic model is re-
alized by constructing an electronic circuit and we present its re-
sponse. Also, an active fractional controller is produced to control
the presented 6D fractional chaotic model.

The remaining of the manuscript is arranged as: the prelimi-
naries and basic definitions of fractional differentiation are given
in Section 2. The 6D chaotic model is constructed and its basic
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Fig. 8. The digraph D of the studied chaotic model.
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Fig. 9. The underlying graph G of the model graph D.

characteristics are given in Section 3. The new attractors are dis-
played in Section 4. Certain structural features of the proposed 6D
chaotic model are presented using graph theory tools in Section 5.
Section 6 contains the electronic circuit realization of the proposed
fractional 6D chaotic model. An active fractional controller is de-
signed and applied for the studied chaotic model in Section 7. The
conclusions of our study are put in Section 8.

2. Fractional derivative and its preliminaries and basic
definitions

This section briefly describes the fractional derivative and its
corresponding fractional integral. Several notations were used in
the new definition of fractional derivative. Through this article, we
use ;DY (t) and ;I’Y(t) respectively for the fractional differentia-
tion and its corresponding integration, where [ signifies the inte-
gration lower limit and v is the order of the fractional derivative or
fractional integral. For each v € C, and for any function Y : C — C,
iDyY (t)and |ITY (t)should meet the following criteria [21]:

e If Y(.) is analytic function, then the operator ;|D}Y (t)and |I'Y (t)
are analytic w.r.t. v and t.
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o The fractional differentiation operators satisfy the following lin-
earity rules:

DY (c1Y1(E) + c2Ya(t)) = c1yDyY: (t) + ¢ DYYa () (1)

(Y1 (8) + Yo (1)) = ey lfYq (£) + eI Yo (£) (2)

The fractional operators with zero order must have no effect on
Y(t), ie.,

DY (O=I7Y (6) =Y ().

3)

If v is a positive integer, the fractional operator should give the
same result as a normal derivative or integral.

In the coming parts, the Caputo fractional operators of differen-
tiation and integration are introduced in its common sense which
defined as following [22] and shall be used to construct the pro-
posed new chaotic model.

DY (t) = ﬁ /I YO @)(t — 6)-1-1d0, 4)
Py (t) = %/I Y(6)(t—6)"-1d6. (5)
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Fig. 11. y4-y; phase plane from the electronic circuit of the 5.4-fractional-order 6D new chaotic model (18).
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Fig. 12. y,-y, phase plane from the electronic circuit of the 5.4-fractional-order 6D new chaotic model (18).

For more details and other definitions as Atangana-Baleanu k-1 .
derivative and Caputo-Fabrizio derivative with its possible appli-  L{D® f(t)} =s°F(s) = Y s*1f(0);
cations can be found in [23]. i=0
k—1<e <k keN; F(s)=L{f(t)}.
Definition 1. The following formula represents the Laplace transfor- Definition 2. For the graph G, define the matrix A = A(G) = [aj;],
mation of Caputo fractional order operator such that a;; = 1 if u; is adjacent to u; in G and a;; = 0 otherwise. A

118
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Fig. 14. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0.95, with all gains G; = —1.

is called adjacency matrix of G.

Definition 3. The Hermitian matrix of a digraph D is defined as:

3. The novel 6D chaotic model and its basic characteristics

In the following, let us write th“as DV. The 6D nonlinear frac-

tional autonomous novel system is described by

DVy; = a1 (Y2 — Y1) + Y2Y3Y4.
DYy, = B1(¥2 + Y1) — Y1V3Ya.
D¥y3 = —yy3 + Y1¥2Y4 + YsY6Ya,
DVy4 = —8Ya4 +Y1Y2¥3 + Y5Y6Y3.
DVys = a2 (V6 — ¥5) + Y6Y3Va,
DVys = B2 (Y6 +¥5) — Y5Y3Ya.

wherey; (i=1, 2, 3, ...,

1if (u,v) and (v,u) are edges in D;
iif (u,v) is an edge in D but (v, u) is not;
{—i if (v,u)is an edge in D but (u,v) is not;
0 otherwise.

Huyw (D) =

The basics of the graph theory and its applications can be found
for example in [24]
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(6)

6) are the state variables of the proposed



M. Higazy, N. Almalki, S. Muhammad et al. Journal of Ocean Engineering and Science 9 (2024) 112-125

Conho"edlnodelatﬁacﬁonalorderos

10
Wm‘—z_—_ MN*_E___ B
-5 0

00 0 50
Ume Ume time
6 5
4
>§r | >© 0
2
0 -5
00 0 50 100
nme nme time

Conﬂo"edlnodelatﬁacﬁonalorder1

Jk

rf

i

Fig. 15. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0.9, with all gains G; = —1.
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Fig. 16. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 1, with all gains G; = —5.
Table 1
Lyapunov exponents of the proposed system (18) for various values of fractional order v.
Fractional order v LE1 LE2 LE3 LE4 LE5 LE6
0.8515 5.9389 0.0031 -0.1850 -8.7262 -40.1658 -57.4287
0.9010 49808 0.0362 -0.0060 -6.9942 -32.1153 -46.8727
0.9505 3.6936 0.0006 -0.0006 -53108 -25.4198  -37.3238
1 0.3514 0.0007 -0.0068 -3.8473 -19.9668 -27.2099
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Fig. 18. Dynamics of the newfractional 6D chaotic model before and after control at fractional order v = 0.9, with all gains G; = —5.
Table 2 Table 4
The tree shape 1/s%9(2dB) integrator: val- The used voltage summing devices’: gains for inputs
ues of resistors (c.f. [27]). (A, B, C) and output O.
v Rq Ry R¢ summer symbol A B C [0}
09 155MQ  61.54MQ  2.5KQ S1 -30 -1 30 0.28
S2 -10 1 10 0.28
S3 -1 -1 1 0.015
Table 3
S4 -1 -1 10 0.015
The tree shape 1/s°9(2dB) integrator: S5 1 30 30 028
values of capacitors (c.f. [27]). 6 10 1 10 028
v Ca Cy C
09 0.73uF  0.52uF  1.1uF

model, and o1, a3, B1. B2, ¥, 8 are the model parameters and
all of them are positive real constants.

Constructing this model and determining the values of its
parameters such that the model has chaotic dynamic follow

some common concepts of chaotification [25,26], to build an
autonomous chaotic paradigm or to chaotic a non-chaotic au-
tonomous paradigm, the coming framework rules need to be satis-
fied:
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i) Dissipative of the model, in other words, the energy of the
model is diminishing (except if Hamiltonian models are taken
into consideration).

ii) The model has an unstable equilibrium. In other words, the
equilibrium-evaluated Jacobian value has unstable eigenvalues.

iii) The model consists of one cross product term at least. That is,
the dynamic effects between different variables can be consid-
ered.

iv) All system trajectories are bounded. In other words, dynamic
equilibrium is maintained by increasing and decreasing system
energy.

The method of chaotifying the discrete models have some sys-
tematic steps [25], but there are no general techniques for non-
discrete cases. In the latter case, the above analytical conditions
usually need to be combined with trial-and-error computer exper-
iments to accomplish the needed chaotic job. System (6) is also
has such a shape. Now, some basic features of (6) are examined.

In the following subsections, some basic characteristics of the
proposed system (6) are examined.

3.1. Dissipative feature for the proposed model (6)

The 6D nonlinear fractional autonomous novel system is de-
scribed by

DYy = a1 (Y2 — Y1) +Y2Y3ya =1,
DYy, = B1(¥2 + Y1) — Y1V3Ya = V2,
DVy3 = —yy3 +y1Y2Ya + Ys¥eYa = V3,
DVys = —8ya +Y1¥2Y3 +YsY6Y3 = Va,
DVys = a3 (Yo — Y5) + Y6Y3Ya = Us,
DVyg = By (Y6 +¥5) — YsY3Ya = Vs.

For this model (7), let V = [v; v, ..., vg]T, we have

6
V~V=Z1:aayi(D“yf)=(ﬂ1+ﬁz)—(oe1+az+5+y)=D. (8)

Then, system (7) is dissipative, if
9)

Suppose that @(t) is a suitable region in R® which has a smooth
boundary and let ®(t) € A(t)such that A(t) is the flow of the vec-
tor field V (t). Plus, let that the volume of ®(t) is V(t). Referring
to Liouville’s theorem as in [13], we get

Bi+B2)—(@1+a+5+y) <0

) 6
V() = / (V) [ dvi (10)
0] k=1
Then from (7) and (9), we have
] 6
V() = / () [[dvic = DV (©) (11)
() k=1
Integrating (11), then
V(t) =V (0)e™ (12)

from (12), we conclude that the orbit of this dynamic model (6)
forces all contained volumes to be reduced to zero. Therefore, there
are attractors that attract all the orbits of the new model. From
this, we can show that the newly proposed chaos model (6) is dis-
sipative in the following condition is met:

Bi+B)—(a1+a+5+y) <0 (13)
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3.2. Model (6) equilibrium points

The equilibrium points of the proposed model (6) can be found
by simultaneously solving the next equations:

a1 (Y2 —y1) +y2y3ya =0, B1(Y2+Y1) —Y1Y3Va
=0, —yy3 +Y1Y2Va +Ys5YeYa = 0, —=8Ya + Y1¥2¥3 + ¥5Y6¥3
=0, (Y6 —¥5) +Y6Y3Ya =0, B2(¥6 +¥5) —ysysya=0. (14)

Clearly, Py = (0,0,0,0,0,0) is one of the equilibrium points.
The system is very complex and has many other equilibrium points
that can be calculated using Matlab. Here, the stability of the zero
equilibrium P, is examined only. The Jaccobian can be obtained by
linearizing system (6) at Py as:

—0q o1 0 0 0 0
Bi B O 0 0 0O
_ 0 0o -y O 0 0
J= 0 0 0 -8 0 0 (15)
0 0 0 0 —-a; o
0 0 0 0 B pB
That has the following eigenvalues:
1 1 1
Ao = 5,31 _jalij\/a%‘i‘GahBl"',B]zv (16)
A3 ==8, g =Y,
1 1 1
Asg = 5,32 5t t5y o + 60,8, + 3. (17)

Since all model parameters are positive real numbers, it is easy
to find that A, Ag > 0, proving the instability of the equilibrium
Py. The other nonzero equilibria, it is still possible to numerically
evaluate their stabilities. Since two unstable equilibriums has been
got at Py, this long numerical calculation becomes not needed then
it is not examined further here.

4. Displaying of new chaeotic attractors

In the following, to simplifying the study, the produced model
parameters are taken as: oy =y =a,8;1 =, =by =cand § =d.
Then proposed model is rewritten as follows.

D¥yy = a(y2 —y1) +y2y3ya,
DVy; =b(y2 +y1) — y1Y3Ya.
DVy3 = —cy3 + y1Y2Y4 + Y5YeYa,

18
DVy4 = —dys +y1¥2Y3 + Ys5Y6Y3, (18)
DYys = a(ys — ¥s) + Yey3Ya.
DVys = b(ys +¥s5) — YsY3Va.
Considering  condition  (12), with initial conditions
Y(0)= (177,166, 7.2,1.5,1.77,1.66) and fractional order

v = 0.8515, 0.9010, 0.9505, 1, many numerical experiments have
been executed, certain discoveries recorded as follows.

4.1. Varying the fractional order with a =30, b=10, c=1, d =10

Fig. 1 displays the spectrum of Lyapunov exponents versus the
order v of fractional derivative and parameters are chosen as a =
30, b=10, c =1, d = 10. From which one can note that LE1 and
LE2 are positive for fractional order v e [0.8515, 1]. In Table 1,
some values of Lyapunov exponents are recoded against different
values of v. The proposed system (18) has a hyperchaotic behavior
for the fractional orderv ¢ [0.8515, 1]. Fig. 2 shows the bifurcation
map of y; related to the fractional order v where parameters are
chosen as a=30, b=10, c=1, d = 10. Figs. 3, 4, show two hy-
perchaotic attractors at fractional orders 0.9 and 1 respectively. For
v outside this period v € [0.8515, 1], the system has fixed point
behavior as shown in Fig. 5.
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From above experiments, the proposed system is hyperchaotic
for fractional order v € [0.8515, 1] where model parameters are se-
lected as a=30, b=10, c=1, d =10.

4.2. Vary the parameter a and fix b=10, c=1, d =10

As clear from Fig. 6, the spectrum of Lyapunov-exponents show
that the proposed model (18) is hyperchaotic for a wide range
of the parameter a for fractional order v <[0.8515, 1] and the
system lose its chaotic dynamical behavior outside this period.
Fig. 7 displays the bifurcation maps of y; related to parameter a
where other parameters are selected as b=10, c=1, d =10 at
different fractional orders.

5. Structural characteristic of proposed model (18)

In this section, we display the relations between the different
terms of the proposed model via drawing its graph. The proposed
model consists of pure state variables and nonlinear product terms.
We draw the suggested graph as follows. The graph vertices are
the six pure state variables plus the eight nonlinear product terms.
There will be a directed edge between two vertices if the corre-
sponding terms affect the other. For example, there will be a di-
rected edge from the vertex corresponds to the termy,ysy, to the
vertex corresponds to the term y;, but there no edge from the
vertex corresponds to y; towards that corresponds to y,y3V4, SO
model (18) can be displayed by the digraph D given in Fig. 8. Many
structural characteristics of the model can be calculated from the
adjacency and Hermitian matrices.

The underlying graph G (shown in Fig. 9) of a digraph D is con-
structed by neglecting the direction of the edges and the loops
(edges with same ends). Following Definitions 2, 3, respectively,
the adjacency matrix A(G) for the underlying graph of D and the
Hermitian matrix H(D) for the model digraph D are constructed as
follows in (19) and (20).

yi [0
Y2
V3
pZ!
Vs
Y6
A(G) — Y2Y3Ya
Y1Y3Y4
Y1Y2Ya
YaYsYe
Y1y2y3
Y3YsYe
Y3YaYe
Y3Yays ||

OO —RLRORr P, L, OOOOO R~
UG WU NI U U G e o o ol o i )
O VI VI WV W g g W o Tl o e Wl s Wl e Ml )
—_ =m0 - 00 0= OO0 00O0
—_—= _ O, 0000~ 0000
[eNeNeNeNeNoNoNeNeRe At
[eNeNeNeNeNoNoNeNoRa Rt
O OO OO0 OOOO ===
CO0O000O0O0O~=mmm=0O0
OO0 O0OOOCOOO === =
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OO, ORr = —_0000=

—
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Y1
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_Y2y3Ya
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~ 0000 =
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|
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The eigenvalues of A(G) are:

—

OO OO OO OO ~ =
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{-4.755, -2.3723, -1, -1, 0, 0, 0, O, 0, O, O, 0.6605,
3.3723, 5.0945}. And the eigenvalues of H(D) are: {3.2361, 2,
-2,-1.2361, 3.3723, 3, 2,-2.3723,-2,2,3.2361,0,0, —1.2361}.

14
The energy of the graph G is defined as E(G) = |\l =
i=1

18.2546, where 14 is the order of G and A’s are the eigenvalues
of its adjacency matrix. This idea was presented by I. Gutman in
[24] and has several applications and it can be utilized to estimate
the whole energy of graphs. The Hermitian energy is defined as

14

EH(D) = Y_ |ui| = 27.689, where 14 is the order of D and u'’s are
i=1

the eigenvalues of its Hermitian matrix.

6. Electric circuit realization of the studied fractional chaotic
system

In this section, we show that the proposed chaotic model is
applicable by constructing its electric circuit. By constructing an
electric circuit for the proposed model, we prove its ability to be
applicable in real world applications. Here, we consider the sug-
gested 6D fractional order chaotic paradigm (18). First, we fix the
fractional order v 0.9 to design circuit to realize model (18).
We follow the method published in [27] to realize 1/s%°. With aid
of NI Multisim 14.0 package, the electric circuit given in Fig. 10 is
designed, where S1, S2, ..., S6 are six summers all of them has 3
inputs and single output; M1, M2, ..., M11 are AD633 voltage mul-
tiplier with 2 inputs and single output all of them are adjusted
with identity gain; six LM741 op. amp'’s are utilized to simulate the
six 0.9-fractional-order voltage integrators with outputs equal the
states of the system y; to yg; R1, R2, R3, R4, R5, R15 are 100KS2
resistances and R6, R7, R8, R9 are 10KS2 resistances plus a cou-
ple of LM741 op. amps. are used to construct two voltage invert-
ers. The designed values of resistors and capacitors are given in
Tables 2 and 3. In Table 4, we record input/output gain’s utilized

0 0
0 0
11
11
11
11
0 0
o0 (19)
0 0
0 0
0 0
0 0
0 0
0 0]
i 0 0 07
i 0 0 0
S
oS0
0 i —i i
0 i i -
0 0 0 0
0 0 0 0 (20)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
o 0 0 o]
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in voltage summers. The electronic circuit implementing the new
chaotic 6D model (18) is shown in Fig. 10. Figs. 11 and 12 display
the response of 5.4-fractional-order chaotic 6D new model.

7. Design of fractional order active controller for the proposed
chaotic model (18)

In this section, we propose an active control strategy to control
the model states and convert it to a fixed point.

For the proposed system (18), the control rule is designed as
follows:

G =Giy1 — (@2 — Y1) +Y2y3Ya),
G =Gy, —b(y2 +y1) + y1Y3ya.
G = G3y3 — CY3 — Y1Y2Y4 — Y4YsYs.
Cs = G4Y4 — dys — Y1Y2¥3 — Y3¥5Ys,
Cs = Gsys —a(ys — ¥5) — Y3YaYse.
Cs = GeYs — b(ys +¥5) +y3Yays.

Where G;’s are control gains. The controlled model becomes:

DVyy = a(y2 — y1) +y2y3ya +C1,
DYy, = b(y2 +y1) —y1y3ya + G,
DVy3 = —cy3 + Y1Y2Y4 + Ysysya + 3,
DVy4 = —dys + y1¥2y3 + ¥5Y6y3 + Ca.
DVys = a(ys — ys) + Y6y3ya + s,
DVys = b(ys +¥5) — ¥s5y3Ya + Ce.

Substituting (21) into (22), the dynamics of the controlled
model becomes:

(22)

D¥y1 = Giyr.
DVy; = Gyya,
DVy3 = Gsys,

23
DVy4 = G4ya, (23)
DVys5 = Gsys,
DVys = GgYs.

It is obvious that the controlled system (23) has Ey=
(0,0,0,0,0,0) as an equilibrium point. The following theorem can
be proved for the controlled fractional order model (23).

Theorem 1. If all controller gains G;’s inAthe controlled model (23)
are chosen to be negative values, then Ey = (0,0, 0,0, 0,0) of the
controlled model (23) is fixed point.

Proof. Taking Laplace transformation for the controlled model
(23), then

then
s"Y;(s) — s""1y;(0) = GY;(s).

where Y;(s) is the Laplace transformation of y;(t), so

s"'yi(0
Yi(s) = -G (24)
applying inverse taransformation of Laplace for (24), we get
Yi(t) = yi(O)M, (Git"). (25)

such that M. (.) is the common function of Mittag-Leffler. Because

00 h
0<v<1,so My(Git") = 5 Gt
h=0

(T approaches zero for all val-

ues of G;t® if all G;’s are negatives, the reader can consult [28-29]
and its cited references for more about function of Mittag-Leffler.
Then, the states y;(t) of the model are all stable asymptotically.
Figs. 13, 14 and 15 show the time response of the new frac-
tional 6D chaotic model before and after control at fractional order
v=1, 0.95 and 0.9 respectivily with all gains G; = —1. The con-
troller is applied after 30 secs. We can see that the model takes a
transient time to reach its final state. Changing the controller gains
to be G; = -5, the transient time is approaches zero as shown in
Figs. 16, 17 and 18.
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8. Conclusions

The new fractional 6D chaotic model presented above has com-
plicated behaviors and all characteristics of the chaotic system. The
proposed fractional 6D chaotic system with different topology and
structure than the existing 6D systems is constructed in this work.
The basic features and dynamical response of the new model have
been investigated to prove it’s chaotic. Certain graph theory tools
have been utilized to display some hidden properties of the pro-
posed model. In addition, an electronic circuit realizing the pro-
posed model has been designed. Also, an active fractional con-
troller is proposed to control the proposed model. In the future
work, we suggest utilizing this fractional 6D model to produce ran-
dom keys for data encryption and in secure communication appli-
cations.
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