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ABSTRACT Accurate modeling of underwater vehicle dynamics is an essential component of various
solutions designed to address a range of challenges involved in both the vehicle’s design and operation.
Such models are usually parametric, including dynamic equations that simulate the vehicle’s response to
various controls and environment conditions. They can be used to determine the vehicle’s capabilities,
estimate the vehicle’s state in the absence of external communications, or to derive control signals to produce
desired state responses. While a range of explicitly derived models have been commonly used in various
applications, modeling the complex nonlinear dynamics using machine learning has recently attracted
considerable interest. This topical review focuses on the integration of machine learning in underwater
vehicle modeling, and covers two categories: artificial neural networks and non-parametric regression
models. The first category includes recurrent neural networks and physics-informed neural network. They are
trained to estimate model parameters, forces and moments from damping and disturbances, or to completely
replace the dynamic model by outputting the expected state responses. The second category of the reviewed
models covers support vector machines and Gaussian process models. These are non-parametric dynamic
models and their training requirements are generally lower than ANN-based models. An overview of the
theory behind each model is presented, along with examples of specific applications. The capabilities of
each machine learning method are compared, and the challenges of their implementation for underwater
vehicle dynamic modeling are discussed.

INDEX TERMS Underwater vehicle, dynamics, machine learning, artificial neural network, Lagrangian
mechanics, support vector machine, Gaussian process.

I. INTRODUCTION

There are many challenges in operating underwater vehicles,
which arise from the complexity and uncertainty in these
systems and their environment. These include the highly
nonlinear system dynamics, unknown external disturbances,
limited wireless communication [1], and underwater navi-
gation difficulties [2]. Underwater vehicle dynamic models
are used to address many of these challenges, in both the
design and operation processes. Accurate dynamic models
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allow for the capabilities of potential vehicle designs to
be evaluated in a timely manner compared to physical
trials and computational fluid dynamics (CFD) simulations.
Using these models, the real-time estimation of the vehicle’s
motion also enables localization in the absence of external
communications and the compensation of undesired nonlin-
ear dynamics in uncertain ocean environments for adaptive
control.

A range of parametric, coefficient-based dynamic models
for underwater vehicles have been developed over the years,
differentiated by the velocity relationships considered in
their dynamic equations [3]. The choice of which model
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to use depends on the application’s required accuracy,
maximum processing time, and available computation power.
The specific equations used for an application may also
be adapted to account for variations such as the available
actuators and the relevant degrees of freedom.

Recent advancements in the field of supervised machine
learning (ML) have demonstrated promising results in
regression and approximation for complex nonlinear dynamic
models. Specifically, these ML algorithms have been applied
in two ways. The first is a form of black box non-parametric
modeling, where the ML algorithm is trained to estimate
the system dynamics response directly from the system’s
present and past states. The second is a form of regression for
estimating parametric model coefficients. Both applications
have trade-offs regarding accuracy limitations and implemen-
tation challenges. Recent implementations of ML algorithms
for underwater vehicle modeling span over a range of
algorithms including various neural network architectures for
modeling hydrodynamics [4], [5] and model uncertainties [6],
[7], support vector regression [8], [9], [10], and Gaussian
process regression [11], [12], [13]. Documentation of these
developments include a recent survey [14] that explores
the history and developments of estimating hydrodynamic
coefficients using traditional and ML-based methods. Wehbe
et al. [15] have also compared four ML algorithms and the
traditional least-squares method for estimating the decoupled
hydrodynamic damping function.

In this topical review, we elaborate on the implementation
of different machine learning algorithms for developing
dynamic models of underwater vehicles and similar mar-
itime systems, analyzing their demonstrated and potential
applicability for different underwater vehicle modeling tasks.
The benefits and limitations of both non-parametric and
parametric modeling methods are explored, and a focus
on physics-informed neural networks and non-parametric
regression methods differentiates this review from existing
literature for underwater vehicles. For each modeling method,
the theoretical background and mathematical implementation
are reviewed, followed by examples of its implementation for
underwater vehicle dynamic model approximation. We con-
clude the review with a final comparison and discussion on
the suitability of the reviewed ML algorithms for different
underwater vehicle modeling applications.

The rest of this review is structured as follows. Section II
provides the background information on the parametric
models used for underwater vehicles. Section III describes
the general implementation methods of ML algorithms for
producing both parametric and non-parametric underwater
vehicle models, highlighting their comparative advantages
and limitations. Section IV introduces artificial neural
networks (ANNs) and its variations. The development of
physics-informed neural networks and their properties are
explored in Section V. The literature on support vector
regression and Gaussian process regression is introduced
in Section VI, highlighting works that compare different
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FIGURE 1. An illustration of the body-fixed frame {B} relative to the
reference frame {N}, displaying the position and directions for the control
forces and linear velocities.

regression methods. A discussion on the application of
machine learning for modeling underwater vehicle dynamics
is presented in Section VII, followed by the conclusion in
Section VIII.

Il. CLASSICAL PARAMETRIC MODELS

Various parametric dynamic equations that approximate
the complex nonlinear dynamics of an underwater vehicle
are available for time efficient simulation and control
applications. Considering the vehicle as a rigid body with
all six Degrees of Freedom (DoF), these models are based
on Newton’s second law and express the vehicle’s dynam-
ics using forces and moments relative to the body-fixed
frame {B} attached to the vehicle [16]. The forces and
moments considered in these models include the Coriolis
forces/moments, hydrodynamic damping, combined gravity
and buoyancy, actuator forces/moments, and external dis-
turbances. By expressing the dynamics in {B}, these forces
and moments can be estimated using functions relating
to the vehicle’s states. For example, Fossen’s vectorial
model [17], [18] expresses an underwater vehicle’s dynamics
and kinematics as:

MY+ Cww+Dow+gm=t+Jm~ b (1)
n=Jmv, (2)

where:

e v =1[uvwpqr]' is the vehicle’s linear and angular
velocity components in the body-fixed frame {B}.

e 7T = [XY Z K M N]" denotes the total control
forces and moments produced by the vehicle’s actuators
relative to {B}, which can be calculated from models of
the individual actuators.

e = [xyz¢ 6 Y]" denotes the global location and
pose vector of the vehicle, expressed as the position and
orientation of frame {B} relative to the north-east-down
reference frame {N}, as shown in Figure. 1

The rotation matrix J(1) € R®*® transforms state vectors

between the {B} and {N} frames, and the function g() € R®
outputs the combined gravity and buoyancy forces/moments
vector. The accuracy of the model depends on how accurate
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FIGURE 2. Block diagram of a simple 6-DoF dynamic model based on
equations (1) and (2), featuring the actuator loads, external disturbances,
6-DoF equations for dynamics and kinematics, and time integrators.

the external disturbance vector b € RO is estimated, and on
the accuracy of the parameters for total (rigid body and added)
inertia matrix M € R®*®, total (rigid body and added)
Coriolis matrix C(v) € R®*® and the hydrodynamic
damping matrix D(v) € R®*6. The off-diagonal terms in
these matrices account for the coupling between different
DoFs in the model, and using constant values in C and D will
produce a linearized model.

This dynamic model can be conceptualized with the simple
block diagram shown in Figure 2. Such models can be used
to simulate the vehicle’s states in response to control signals,
or inverted to derive the control signals required to achieve a
desired vehicle state.

Vectorial models such as equation (1) express the 6-DoF
dynamics of the vehicle in a compact form, but at the
complication of hiding the individual terms (and their coef-
ficients) that affect the individual DoFs. Models such as the
ones proposed by Gertler and Hagen [20] and Feldman [21]
express the dynamic equations for an underwater vehicle in an
expanded form, with equations for each DoF. As an example,
in Gertler and Hagen’s model, the equation for the surge DoF
(along the x-axis of {B}) is given by:

m(it — vr +wq — x6(¢* + ) + yo(pg — ) + z6(pr + )
1
= EpL4(X(;qq2 + X%+ X;,mp)
1 3 /. / /
+ EpL X+ Xy vr + X, wq)
1
+ EpLz(XI,/{uuz + X\ivvz + Xifvwwz)
1
+ EPL2(X§R8R”28% + Xjos5187 + Xj psgit®8})
1
+ E,OLz(aiM2 + biuuc + Ciu?)
— (W — B)sin(0)
1
+ EPLZ(XéRERnuz(SE + thsésnuzasz)(nv )
1
+ S PLAX A+ X w0 = 1), 3)

where the X] terms are non-dimensional hydrodynamic
coefficients with subscripts i € {qq rr rg ... vvn wwn}
specifying the state variables (velocity vector components
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and actuator states &, 5, 8p, ) to which the coefficient is
relevant. (W — B) is the combined gravity and buoyancy force
magnitude, §,, ds, 6p are angles of the rudder, stern plane,
and bow plane, respectively, and 7, is the self-propulsion to
actual velocity ratio (1, = 1 at steady state). The fifth and
eighth lines of equation (3) are models of the surge force
produced by control surfaces, and the sixth line is a model
of the force produced by a main thruster (using a;, b;, ¢; as
parameters).

From the velocity terms in the Gertler-Hagen model
expressed in equation (3), it is clear that hydrodynamic damp-
ing is approximated as a quadratic function of velocity with
coupling between the DoFs. In comparison, the notation of
Fossen’s model provides flexibility in how the hydrodynamic
damping is calculated depending on the choice of D(v). The
velocity-based terms used to approximate the hydrodynamic
damping of the underwater vehicle are what differentiate
most of the classical parametric dynamic equations from one
another. Examples of the velocity terms used by different
models are listed in Table 1.

The choice of which velocity terms are used to approximate
the hydrodynamic damping is based on the desired balance
between accuracy and computation complexity. Factors
such as a vehicle’s hydrodynamic characteristics and its
expected velocity range during operation will affect which
specific velocity terms produce the most desirable accuracy-
to-complexity ratio. Studies, such as [3] and [19], have
conducted comparisons between parametric model simula-
tion states and recorded physical trial results to determine the
effects of hydrodynamic term selection on dynamic model
accuracy. The eight different 6-DoF underwater vehicle
dynamic models used in the comparison were the McFarland-
Whitcomb, pitch-yaw, Gertler-Hagen, linear, Coe, Prestero,
uncoupled, and Fossen models. Though there was not a
clear advantage found between a majority of the models,
it was seen that certain models produced less accurate state
estimates due to the assumptions made in the velocity term
selection being invalid for the tested maneuvers [19].

Although the selection of velocity terms does differentiate
models, the accuracy of the coefficients used by a model
is critical to its practical utility. Coefficients for the inertia,
added mass, gravity, and buoyancy can be obtained from
the vehicle’s measurable physical characteristics. Captive
model tests, or high-fidelity simulations, can be used to
obtain a model’s remaining coefficients by recording the
forces experienced by a vehicle (or a scaled-down model of
the vehicle) when traveling at a range of velocities varying
in magnitude and direction [16]. The coefficient values are
then approximated from the state-force data points. This
process of fitting a function to model the relationship between
observed inputs and outputs is known as regression. With
the model’s dynamic equations providing the structure of
the function, several analytical semi-empirical methods are
available for determining the coefficient values that provide
the best correlation between the dynamic equations and the
data set of state-force measurements.

VOLUME 12, 2024
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TABLE 1. Velocity term choices of the different parametric dynamic equations that are compared in [19], with examples of the velocity terms consisting of

the hydrodynamic coefficients X, ,’ and their relevant velocity components i € {uju| ulv|u u] uv ...

u? v2)19].

Model name

Velocity term(s)

McFarland-Whitcomb
Pitch-yaw

Gertler-Hagen

Sign-preserved quadratic: X

Linear, quadratic variations: X/, u, Yl’u | lul, X7 02, X

L\U\U‘ULXLMU‘UL ..

!

uwu|v|7 X! yuv, ...

T ’ 2 /
Quadratic: X, u”, X, vr,. ..

Linear Linear: X/, u, X| v, ...
Coe Quadratic variations (specific terms): X/, u2, X;‘u‘u\u\ , X! v?
Prestero Quadratic variations (specific terms): Xc’quz, X/, or, X7’L|“|u|u|, ..
H H S ot H . ! / ’ 2 /
Uncoupled Linear, quadratic variations (no coupling): X, u, XW |ul, X!, u?, Xu‘u|u|u\, ...
Fossen Linear, sign-preserved quadratic (no coupling): X, u, X/, ulul,...

ulul

The work in both [3] and [19] use the least-squares
regression method to obtain their model coefficients from
data sets constructed from physical underwater vehicle trial
data. Each data set consisted of the vehicle’s state (position,
orientation, velocities) over the course of the trial. Paired with
information regarding the vehicle’s physical characteristics,
the data set is augmented with estimates of the forces and
moments from the inertia, added mass, gravity, buoyancy, and
forward propulsion. Using this data with a given parametric
model, that model’s unknown hydrodynamic terms can be
estimated for each data point. The least-squares method is
then used to optimize the model’s coefficients that correlate
the hydrodynamic term estimates to the vehicle’s state. The
model comparison in [3] was conducted for two similar
vehicles 690AUV and 690SAUYV, each with a training and
validation data set. The data sets each contained variations
in depth, yaw, and propeller speed to capture a range
of operational dynamics. Although the data sets are not
available, it is stated that the 690AUYV and 690SAUYV training
sets consisted of 200 seconds of data for four control
conditions, and 280 seconds of data for six control conditions,
respectively. The validation sets consisted of 30 seconds for
two control conditions, and 70 seconds for three control
conditions, respectively.

In [22], the least-squares regression method was used
to obtain the sway and yaw coefficients from data of
the “Small Autonomous Underwater Vehicle That Tows a
Large Payload™ vehicle, which was collected from virtual
planar motion mechanism tests. Three sets of coefficients
were estimated from the data - one using the geometric
information of the vehicle, and the other two using simplified
approximations of the geometry. Specifically, the coefficients
estimated using the prolate spheroid and Myring profile
geometries were compared against the true geometry. The
predicted sway forces and yaw moments produced by
dynamic models using the coefficient sets were compared
to the recorded test data, demonstrating the accuracy of
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using least-squares regression and the higher similarity of the
prolate spheroid approximation to the actual geometry.

The work by Ahmed et al. [23] proposes an improved
analytical semi-empirical methods for 6-DoF Fossen model
coefficient estimation from free-running trial data. The
resulting model was analyzed by comparing its trajectory
estimations with results from equivalent CFD simulations.
Further examples of implementing parameterized underwater
vehicle models have been surveyed in [14].

Ill. MACHINE LEARNING ALGORITHMS FOR MODELING
DYNAMICS
Machine learning algorithms can be classified in different
ways. From a learning strategy perspective, they can be
classified into three main categories determined by the data
used to condition or train them, namely supervised, unsu-
pervised, and semi-supervised learning [24]. In supervised
learning, the models are trained using paired input and
output (i.e. labeled) data. The training algorithm usually
learns a mapping between the input and desired output.
In unsupervised learning, the algorithms are conditioned with
unlabeled data. The resulting models are commonly trained
to discover patterns or features within the input data. In semi-
supervised learning, a combination of labeled and unlabeled
data is used. The role of the training algorithm may therefore
be to learn mappings from the labeled data and features
from the unlabeled data, thereby reducing errors in prediction
as compared to learning from the labeled data alone [25].
Models of maritime vehicle dynamics are generally most
amenable to supervised learning algorithms, as training data
sets are typically comprehensive. This is because the time
histories of all control signals and vehicle states can often
be readily obtained from free-running trials or captive-model
runs.

Due to the broad definition of machine learning, all
regression methods that are applied for parametric model
coefficient estimation can technically be considered as a form
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of supervised ML. For a parametric model, using parametric
methods such as linear and polynomial regression is intuitive
for estimating specific model coefficients individually [14].
To obtain most of these model coefficients, data sets
consisting of a vehicle’s correlated states and resulting
hydrodynamic forces and moments must be created. Such
data sets can be produced through physical system trials
in controlled conditions, or through high fidelity CFD
simulations. Given that the parametric model structure is
predefined, the number of data points needed to estimate
a coefficient can be minimized to match a dynamic model
term’s correlation to vehicle states. To reduce the impact of
any disturbances and unmodeled dynamics represented in
the data, it is common practice to sample data at regular
intervals as seen in works surveyed by Ahmed et al. [14].
Once the main challenge of producing a comprehensive data
set is addressed, the computational complexity of traditional
regression methods are minimal in comparison to that of most
ML algorithms such as neural network training.

The review conducted by Panda et al. [26] highlights the
various methods of obtaining data sets from both controlled
experiments and high-fidelity simulations. Unlike parametric
models which simplify the vehicle to a point, the high-fidelity
simulation methods all model the vehicle’s geometry. This
also allows for the modeling of time-dependent interactions
between the vehicle geometry and the turbulence it produces
during motion. Listed in order of increasing computational
complexity, the methods reviewed are strip methods, panel
methods, and CFD. The experimental methods for obtaining
dynamic model data as seen in [22] and [23] may not
be computationally complex, but instead require expensive
specialized equipment, sensors, and a physical vehicle
model.

However, machine learning is more commonly used to
refer to non-parametric methods such as support vector
regression, Gaussian process regression, and ANN training.
It should be noted that ANN training is only non-parametric
when the network structure is not predefined. Although
a predefined network structure has a finite number of
connections and is technically parametric, the data-driven
nature of training the network for dynamic modeling does
not have the limitations of classical parametric models. With
a suitably large network structure and diverse data set, all
prominent dynamics terms can be learned.

Early applications of ANNs in modeling underwater
vehicle dynamics were primarily as replacements for the
parametric regression methods used to determine parametric
model coefficients, from either online or offline motion
data. In online identification, regression is performed on
real-time data pertaining to a vehicle’s live motion. Derived
model constants are continually updated, and reflect the live
conditions of the vehicle. In offline identification, regression
is performed on experimental data from free-running trials or
captive-model runs.

In this manner, Xing and McCue [27] used ANN regression
to identify hydrodynamic coefficients pertaining to dynamics
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in one degree of freedom (roll motion) of a surfaced vehicle,
noting that the method can be extended to other degrees of
freedom. The ANN itself is trained to estimate the produced
rolling moment output from an input of vehicle states and
actuator loads. The coefficients can then be extracted by
specifying a parametric dynamic equation, and inserting the
input states and estimated output moment.

To derive hydrodynamic coefficients for the damping in all
six degrees of freedom of a submerged vehicle, Van de Ven
et al. [28] used six segregated ANNs in the same manner,
one for each degree of freedom. A quantitative comparison
of the damping coefficients was conducted to demonstrate
the accuracy of the method. As previously mentioned, [14]
provides a survey of the developments in machine learning
methods focusing on hydrodynamic coefficient estimation for
underwater vehicles.

A second approach to applying ML algorithms for under-
water vehicle dynamic modeling is to partially/completely
replace the parametric model with the data-driven/non-
parametric models that are learned from the observed
input-output dynamics. It follows that either or all of the
blocks in Figure 2 can be replaced or augmented with
ML models. Unlike the parametric model equations which
are limited in their fidelity by the pre-selected velocity
terms, data-driven and non-parametric models effectively
have unlimited fidelity. Indeed, they learn prominent input-
output correlations, from the very large (practically infinite)
number of possible parameters, within the machine learning
model’s architecture.

From this general understanding of how ML algorithms
are implemented for underwater vehicle dynamic modeling,
it can be inferred that certain methods are most suitable
for different modeling applications. For applications that
demand high accuracy over computational simplicity, and
where adequate data is available, the use of ML-based non-
parametric modeling is most suitable. However, for real
time applications such as modeling for control feedback,
aparametric model using pre-calculated coefficients provides
the necessary response time. For such applications, ML-based
regression of dynamic disturbance or modeling uncertainty
terms is more suitable. In contrast, there is no obvious
benefit for using ML-based regression for static coefficient
estimation in predefined parametric models. A growing
range of research has formed to explore these hypotheses,
investigating the practical feasibility, limitations, and relative
advantages of various proposed ML-based modeling methods
for underwater vehicles.

IV. ARTIFICIAL NEURAL NETWORK METHODS

The architecture of an artificial neural network, also known
as a feedforward neural network or multilayer perceptron,
consists of an input layer, one or more hidden layers,
and an output layer. Each layer is composed of multiple
interconnected nodes, also called neurons, which perform
computations on the input data.
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FIGURE 3. Schematic of a generic feedforward neural network with two
hidden layers.

In an ANN, the nodes in each layer are fully connected to
the nodes in the next layer. Each connection is associated with
a weight, which determines the strength of the connection.
During training, the weights are adjusted in order to minimize
the error between the network’s output and the desired output.

A simple ANN with two hidden layers, as shown in
Figure 3, has limited ability to represent or approximate
functions beyond a narrow and specific category. To address
this challenge in ANNs, Hornik et al. [29] established the
underlying theory which allows the utilization of “Multi-
layer Feedforward Networks,” as universal estimators. The
network typically consists of multiple layers of forward-
connected neurons. These networks are commonly used for
classification, regression, and data clustering, utilizing a set
of weights to connect neurons in each layer and transmit-
ting information forward through the network. Multilayer
feedforward networks are typically employed for supervised
learning, where input data is labeled, and the desired output
is known. Hornik et al. [29] established that multilayer
feedforward networks with a single hidden layer, equipped
with any ‘“squashing” activation function, can serve as
universal approximators that are capable of approximating
any Borel measurable function from one finite-dimensional
space to another with a desired degree of accuracy. This
eliminates the need for prior assumptions, linearization,
or local time-stepping and requires an adequate number of
hidden units.

Recurrent neural networks (RNNs) build upon the ANN
structure by using the neuron states from the previous
operation as part of the input, allowing RNNSs to learn time-
dependent behaviors. To achieve this, the data set for training
an RNN consists of ordered pairs of input and observed
output values, taken at discrete time intervals. The structures
in the network that enable and control the state feedback are
known as “Long Short-Term Memory” (LSTM) cells [30].
The LSTM cells control which states and prior time steps are
memorized. When “unfolded” along a discrete time series
of inputs, the RNN can be represented as a chain of ANNs
linked together by the memorized outputs from the LSTM
cells, as illustrated in Figure 4. Although the LSTM cells can
only memorize a short interval of prior states, the dependence
of those prior states on even older states allows the network
to learn time-based dynamic relationships through the whole
sequence in the data set.
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FIGURE 4. Schematic of a generic recurrent neural network with inputs x,
outputs o, hidden layers h, memorized outputs V, and the network’s
corresponding unfolded structure through time.

A. LEARNED MANEUVER MODELS

Learned maneuver models are data-driven machine learning
algorithms that learn to model the total vehicle dynamics,
modeling the relationship between vehicle states and control
signals, with the resulting vehicle velocity. Learning is
supervised and is performed on training data from free-
running trials. The dynamics are therefore learned from the
training data. The form of functions defining loads and
motions is implicitly learned, as opposed to being explicitly
specified in parametric models. In reference to Figure 2,
this approach lumps the actuator loads and dynamics blocks
together in an ANN. Should the training data be inconsistent,
such as being adversely affected by noise, it cannot be
guaranteed that the learned model will conform with physical
expectation and may result in nonphysical behavior.

Faller et al. [31], [32], [33] used a RNN with two hidden
layers to model the time-varying states of a submerged
vehicle. Each node would take the sum of its weighted inputs
Y w;x;, and use a binary sigmoid activation function:

! 4)
1 4+ex’

—X

fx) =

to calculate the node’s output. The network took the current
vehicle state and control signals (i.e. propeller rotation rate
and control surface deflection) to determine the vehicle state
at the successive time step. The model was trained and
validated on free-running trials data.

It is noteworthy that a form of dynamic similarity needs to
be determined if the RNN is to be generalized across different
length scales (i.e. when training on data from model scale to
determine behavior at full scale). Faller et al [31] provided
a working solution using dimensionless velocity (based on
current speed):

V(4 Ay = v(it' + AY)O[IT1LL L]T’ 5
U
where L is the vehicle hull length, U(¢') is the translational
speed, and ¢’ is the current dimensionless time, which
corresponds with the time required for the flow to travel the
length of the hull:

AU
O ar =4 ALY ®)
L
where At’ is the chosen constant sampling time interval, and
At is the varying sampling time interval that depends on the

vehicle length and speed. Because of the varying sample time,
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the number of data points obtainable from a given maneuver
varies with U(¢") and L.

Furthermore, Faller et al. [32] noted that training data must
be high quality (i.e. processed before it is fed to the RNN),
and that the RNN architecture and time step size need to
be determined by trial. Further maneuver simulations were
conducted to evaluate the RNN model, which reinforced
confidence in its accuracy and the observation that dynamic
similarity should be made with the time-varying velocity
rather than initial velocity [34], [35].

Results from the study indicated that the RNN can
accurately predict maneuvers in 6-DoF motion, specifi-
cally crashbacks, rise jams, dive jams, rudder jams, turns,
vertical overshoots and horizontal overshoots. The model
also indicated that it had learned some characteristics of
forced unsteady separated flows, which are not readily
modeled with conventional parametric dynamic models,
as it demonstrated adequate accuracy in predicting similar
maneuvers at intensities outside of the training data range.

Following on from the work of Faller et al [31], [32],
[33], Moreira and Soares [36], [37] developed an RNN for
surfaced vehicles. The study showed that an RNN can be
trained to predict maneuvers with sea trials data, however,
it was identified that environmental factors can contaminate
the training data, resulting in an improperly trained network.
This can pose a point of concern, specifically when the RNN
predicts nonphysical behavior.

B. LEARNED DYNAMIC MODELS

In later works, actuator load models were used to pre-process
the control signals into actuator load estimates 7 for the same
purpose of estimating the future dimensionless velocity of the
vehicle. The premise of these studies is that the motion of a
vehicle is not directly related to the desired control signals,
but rather to the loads generated as a result of actual actuator
outputs. The intermediate determination of loads therefore
serves to relate control signals to the dynamics of the vehicle.
As such, the RNN is effectively constrained physically,
so long as the supplied loads are physical. The burden
therefore falls on the loads module to remain physically
meaningful. In Hess and Faller [38], [39] Hashem [40], and
Hess et al. [41], [42], a parametric model was used for the
actuator load model, which provide physically meaningful
loads. The predetermined form of the parametric equations
limit the fidelity of models, and may not consider conditions
such as hydrodynamic stall. The RNN developed in [42]
was trained for the faster-than-real-time 6DoF simulation of
non-axisymmetric underwater vehicle motion. Training was
conducted offline on 17 control conditions for 29000 epochs,
though details regarding the data set size were not made
available. The data was obtained through free-running trials
of the vehicle, and the control conditions varied in turn angle
and forward velocity while using different combinations
of the vehicle’s available actuators. The trained network’s
modeling accuracy was then validated against a data set
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of 7 control conditions, with the accuracy of a predicted
time series being quantified by the Average Angle Measure
AMM = 0.860 and correlation coefficient R = 0.932, where
a value of 1 corresponds to a perfect magnitude and phase
correlation to the validation data.

Chiu et al. [43] used the same parametric actuator load
model, and demonstrated that their trained RNN was capable
of capturing the effects of unsteady fluid dynamics in the
vehicle dynamics. To model the propeller thrust X, that was
used as an input for these RNNs, the following parametric
equations were used:

X, = (1 - t,)pn*D}Kr (7

Kr =ap +aiJp + alef (8)
Up

Jy = "D, 9)

up = u(l — wp), (10

where p is the water density, D), is the propeller diameter,
K7 is the thrust coefficient estimate with model parameters
[aop a1 az], Jp is the advance ratio, and u,, is the propeller’s
effective inflow speed estimate related to the wake fraction
wp. The net thrust acting on the vehicle is given by X = X, —
R, , where R, is the resistance for the rudder deflection §,.. The
deflected rudder also produces the lateral force Y, at the aft
of the ship, which produces a yawing moment. The equations
for these rudder forces are:

Ry = (1 —1,)Fy sin(|3;|) (11)
Y, = —Fy cos(5,), (12)

where t, is the rudder force deduction factor and F is the
normal force acting on the rudder. Further details on the
parametric component of the models, such as the equation for
Fy and the Munk moment, can be found in [43] and similar
works by Hess and Faller [39] and Hess et al. [42] that also
use a parametric actuator load model connected to an ANN.

The RNN and parametric actuator model combination was
also deemed suitable as a plant model for systems not well
suited to linearized plant models. The applied model required
less training data to achieve similar accuracy as related works.
For example, only 20 rise-to-jam experiment results were
needed to acceptably predict the responses of all rise-to-jam
maneuvers.

The capability to learn underwater vehicle dynamics has
also been applied to hull design applications. Faller et al.
[44], [45] used the same RNN framework and used the
hull geometry as an additional input, demonstrating that
the trained RNNs can predict the dynamic response of
vehicles following changes to their hull shape. A similar
study is conducted in [46] for estimating maneuvering
characteristics for surface ships. Instead of training to
estimate vehicle dynamics, an ANN is trained to estimate
characteristics such as the vehicle’s turning circle diameter.
This process provided fast feedback on the capabilities of
vehicle hull designs while being far less computationally
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FIGURE 5. Block diagram of how an RNN is used for modeling dynamics
with a separate actuator model, based on the works in [42] and [47].

intense than performing multiple simulations to determine
these maneuvering characteristics.

In [47], the parametric actuator models (specifically for
propellers) were replaced with separate ANNs. In this
approach, the actuator load models consist of feedforward
neural networks that estimate the output t as functions
of control signals and vehicle states. Separate ANNs were
trained, each correlating the input vector to one element of the
output t. The use of an ANN for underwater vehicle actuator
modeling is further explored in [48] with quantified analysis
on the accuracy of the ANN models.

The resulting implementation of an RNN for dynamic
modeling is illustrated in Figure 5, where the actuator load
models (parametric or using ANNSs) provide the inputs to the
RNN. The prior output velocities are memorized and used as
further inputs to estimate the future velocity as the RNN’s
output. The vehicle’s velocity in the inertial frame is then
obtained using the kinematic equations, and can be integrated
to estimate the vehicle’s position and orientation.

As noted by Van de Ven et al. [28], when separate networks
are employed for each output element, the dynamics are
uncoupled in each degree of freedom. This helps reduce
under/over training since the rates of learning can differ
between degrees of freedom. It is noteworthy that this
approach improves training and prediction performance, and
is utilized in the RNN implementations already discussed
above. What differentiates the work of Van de Ven et al. [28]
is the further use of ANNS to estimate individual components
of the dynamic equation. Specifically, ANNs are trained to
approximate the responses of the inertia term M, gravity term
g(n), Coriolis term C(v)v, and damping term D(v)v to form
the dynamic model as expressed by (1).

C. CORRECTOR TO EXISTING MODEL

Although the advantages of using ANNs for dynamic
modeling are clear, for many underwater vehicles, parametric
models may have been already developed from the design
process or prior control implementations. Using an ANN
together with a parametric model provides dynamic modeling
capabilities with a predefined level of baseline performance,
while taking advantage of the increased modeling flexibility
and fidelity made possible through ANNs. These charac-
teristics enable the modeling of uncertain disturbances and
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vehicle parameter variations that are unaccounted for in
a parameterized model. If performed in real time, ANN-
based model correction can be implemented as part of an
adaptive model-based controller for underwater vehicles as
demonstrated in the recent work by Gong et al. [49].

The study by Marlantes and Maki [6] demonstrated the
techniques in predicting effects on the nonlinear vehicle
motions from a range of wave conditions using an RNN.
Similar work is reported in [7] and [50], where the external
disturbance forces and moments (from wind and waves,
respectively) that affect a surface ship are estimated by an
ANN.

Faller et al. [51] demonstrated a different approach to
augmenting a parametric model with an ANN. Here, RNNs
are trained to correlate the parametric model’s net forces and
moments estimate M;v, with the error MV — M;V; between
the estimate and its corresponding simulations/experimental
value. Once trained, the output of the RNN is summed
with the parametric model estimate such that its errors are
compensated. The study demonstrated that it is possible,
within limits, to create estimates of vehicle motion, with no
significant difference between model and experiment.

D. RECENT ARCHITECTURE ADVANCEMENTS

The versatility of the general ANN architecture has enabled
the development of countless architecture variations, which
are still being explored by the recent literature. Although
these novel implementations are often for other dynamic
systems or for applications other than dynamics modeling,
they do indicate the feasibility of these ANN architectures
for underwater vehicle modeling.

Feng et al. [52] explores the use of a Graph Convolutional
Neural Network (GCNN) in classifying an underwater vehi-
cle’s motion state as either ‘“‘straight near surface”, “‘straight
at fixed depth”, or “divergent at fixed depth due to external
disturbance” . The proposed implementation for multivariate
time series classification was demonstrated to have higher
classification accuracy than a classification support vector
machine, and two other deep ANN architectures.

Many recent works which attempt to use neural net-
works for modeling dynamic systems implement a form of
physics-informed neural network. A relevant example can be
found in [53], where an ANN is trained to approximate the
3-DoF dynamic model of a surface ship. The dynamic model,
along with models for steering and forward speed are used
as loss functions to train the ANN to output the expected
velocities for a given input time. Compared to an ANN that
was trained to predict velocities directly, the velocity mean
square errors of the physics-informed neural network were
an order of magnitude lower at all the investigated training
data set sizes (1000 to 5000 samples).

V. PHYSICS-INFORMED NEURAL NETWORKS

Unlike RNNs, physics-informed neural networks (PINNs) as
proposed in [54] are not associated with a specific network
structure. Rather, the capability of deep ANNs to act as
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universal function approximators is utilized [29]. The choice
in network inputs and training loss function is what enables
PINNS to output physically valid solutions or approximations
of nonlinear partial differential equations (PDEs).

PINNs incorporate the PDEs and output prediction errors
in their loss functions during training, and are trained using
data of the boundary and initial conditions of the PDEs’
solutions. This enables PINNs to learn from a relatively
small amount of data by incorporating prior knowledge of
the underlying physics. It should be noted that the number
of layers and neurons per-layer in the network must be
chosen to provide sufficient approximation capacity for the
expected complexity of the solution function. Procedures
such as Bayesian optimization can be used to determine
suitable values for these network hyperparameters.

Raissi et al. [54] presented two training methods (for
discrete and continuous time models) to produce PINNs that
output the solutions to a PDE (acting as an approximation
of the solution function), or that output estimates of the
parameters/coefficients. The quantified performance of these
methods was demonstrated on physics problems from various
disciplines, including fluids, quantum mechanics, reaction-
diffusion systems, and the propagation of nonlinear shallow-
water waves. The networks themselves were simple deep
feed-forward networks using hyperbolic tangent activation
functions, without any regularization layers.

We can express the general formula for a nonlinear PDE
as:

2

9 a
5M+N(A’M’_ ..)=0,t€[0,T], (13)

u, —u,
ax  ox2

where N(X, u, %u, ...) is a nonlinear function of the
parameter vector A, the hidden solution function u(f, x) and
its partial derivatives in terms of the space (e.g. state vector) x.
By specifying a PDE in this notation, a PINN can be trained
to perform one of two functions: estimating the outputs of
u(t, x) given the fixed model parameters A, or estimating
the parameters A given training data that correlates outputs
of u(t, x) to the inputs of time ¢ and state vector x. For an
underwater vehicle, x will consist of the states n, v, and .
Note that the u, x, and y variables used in this section and
Section VI do not refer to the scalar state variables described
in Section II.

A. SOLVING PDES WITH A PINN

The solution function u(t, x) is defined as a deep ANN, such
that the partial derivatives of the function can be obtained
using the gradients of the network. We can then define the
PINN f using the left-hand side of the general PDE equation,
the ANN u, and the partial derivative function N using the
defined parameters X of the PDE:

2

9 0
f:Eu-’_N()\’u’_u’ u,...). (14)

ax  ox?

139494

Both networks are then trained to minimize the mean
square error (MSE) loss function:

MSE = MSE,, + MSEy (15)
1 o .
MSE, = — > lluty, x) — u'| (16)
ny <
i=1
1 ny
MSE = - > IFaf xDI, (17)
i=1

where MSE, enforces the initial and boundary conditions
of the PDE using the training data set {r, x}, u'}?" , and
MSE; enforces the structure of the PDE using the set of
collocation points {t},x}}?i 1~ In [54], the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm was used to
optimize the loss function.

The trained ANN u(t, x) can then approximate the solution
of the PDE for time and space input outside the training data
set. It provides computationally efficient inference compared
to the traditional analytical/experimental methods utilized to
generate the training data.

A relevant example presented in [54] was the use of
a PINN trained using the Navier-Stokes equation (in two
dimensions). Trained on noisy measurements of the velocity
field {¢/,x',y", u’, v}l | around a circular cylinder, the
resulting PINN could accurately identify the Navier-Stokes
equation parameters and predict the pressure field function.
Such a method could be applied to augment results from
the CFD simulations that are used in modeling underwater
vehicles.

A recent review on PINNs [55] further discusses the
potential of future applications in dynamics modeling. The
three methods of incorporating physics information into an
ANN are described as observational bias (training on data
which reflects the physics), inductive bias (modifying the
ANN model architecture to adhere to mathematical con-
straints), and learning bias (selecting the loss function, state
constraints, and post-model inference algorithms to express
physical relationships). A combination of these methods
can be used to develop a PINN, with the review providing
example implementations ranging from 3D fluid dynamics
estimation to molecular simulation. The current limitations
of PINNs are also highlighted, including difficulties learning
high-frequency functions due to steep gradient, and learning
multiple simultaneous physics concepts due to computational
complexity. The more complex loss functions used to develop
a learning bias are also likely to be highly non-convex, such
that convergence to a global minimum cannot be guaranteed
during training.

B. PINN FOR AN UNDERWATER GLIDER

Lei et al. [4] proposed a new method for modeling
the dynamics of underwater gliders (UGs) that combines
physics-driven and data-driven modeling. Their PINN-based
method uses a theoretical model, including subsystem models
developed by [56] and [57], as a baseline and compensates

VOLUME 12, 2024



X. Macatangay et al.: ML for Modeling Underwater Vehicle Dynamics: Overview and Insights

IEEE Access

Control Signals c(t)

Parametric
Model

Hidden o)

Layer

Output
Layer

(b)

FIGURE 6. (a) The network structure of the RBF PINN using Gaussian
activation functions g;|i € [1, n] for a hidden layer with n nodes, and
(b) the framework for using the PINN to estimate the modeling errors E
of the parametric model output v; as proposed in [4].

for modeling errors using an ANN known as a radial basis
function (RBF) neural network. This ANN consists of a single
hidden layer and uses an RBF activation function:

Ix — Cil?

2b? ) (1%

gi = exp(—
where C; and b; are the center and width hyperparameters of
the Gaussian function g; for the i node in the hidden layer
that takes an input vector of x. This network’s structure is
illustrated in Figure 6(a).

The ANN was trained on prerecorded trial data. The
control signals c(f), the state estimate produced by a
parametric model ¥,(¢), and the error of the parametric
model estimate E(f) = v(t) — ,(¢) (relative to external
measurements) were used as the inputs x = [c V; E]. These
inputs were paired with the observed modeling error of the
next time step as the output y = [E(t + 1)]. The MSE loss
function for training using gradient decent was defined as:

1 .
MSE = - > |Ei - Eil, (19)

"
where n is the number of data points in the data set D =
{(ci, \7}, E;, Ei;1)|i = 1,...,n}. The resulting trained PINN
is used to estimate the modeling error in the absence of
external measurements by using its estimated error output
E (t + 1) as an input in the next time step. The final state
estimate is produced using:

D+ 1) =Dt + 1)+ E@+1). (20)

The implementation of the PINN with the parametric model
to produce the final velocity estimate, and how the estimate
error is fed back to the PINN, are illustrated in Figure 6(b).
A sliding window method was implemented to improve the
online learning capabilities of the PINN. The hydrodynamic
characteristics of the UG were determined using towing tank
tests and CFD. The proposed method is compared with both
a CFD-based theoretical model and an RBF-based data-
driven method, and is shown to improve accuracy by 41 and
82 percent, respectively. The PINN method was also shown
to be applicable to other underwater vehicles. Overall, their
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proposed method was an effective and efficient approach
for modeling the dynamics of UGs and other underwater
vehicles.

C. LAGRANGIAN NEURAL NETWORKS
A broad range of methods for incorporating concepts of
physics into ANNs have since been developed for similar
applications. This includes physics-constrained neural net-
works [58] for material modeling, variational PINNs [59] for
PDE solution approximation, and conservative PINNs [60]
for nonlinear conservation laws. The Lagrangian Neural
Network (LNN) is another variant of the PINN, which is
trained to account for the conservation of energy in its
approximations of system models.

The theoretical foundation of LNNs is grounded in the
Euler-Lagrange equation for each DoF j € [1, 6] (see [61]):

d 9L 0L
dt dn;
L=T@,n -V, (22)

where L is the Lagrangian, an equation of the kinetic energy
T (n, ) and potential energy V(1) within a closed system.

A modified application of the Lagrangian for train-
ing ANNs is proposed in [62], which accounts for
non-conservative forces in systems with actuators using:

d oL  dL
dt aﬁj - anj T
where 1; expresses the actuation forces in each DoF, and can
be used to account for damping forces that are a function of
the generalized system state variables.
By defining the vector V,L := [% %]T, the
Euler-Lagrange equation can be expanded in vector form as:

2n

(23)

d
Vil =Vl +7 (24)
(V4 L)ii + (7 V) Ly = VoL + T, (25)

which can be used to obtain an estimate of # using:
i=(V;Vi L) (VoL + 7 —(V,ViL)i)).  (26)

By using an LNN to approximate the Lagrangian L(n, 1),
the partial derivative vectors V, and V; are obtained using
the Hessian operation on the trained LNN to obtain its
gradients [5]. Finally, (26) can be used to obtain the estimated
acceleration. This process is summarized in Figure 7.

An ANN is trained into an LNN through back-propagation
with the objective of minimizing the MSE loss between the
observed and estimated accelerations:

MSE =
1 n

. Try—1 Trve a2
= 2 Wil = (73, L7 (VgL + 7 = (T, 5L

i=1

27)

Mirzai [5] demonstrated the use of an LNN to learn the
state-space model [63] of an underwater vehicle, accounting
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FIGURE 7. lllustration of the Lagrangian Neural Network proposed in [5].
The network weights are used to obtain the Lagrangian gradients v, L,
Yy v;.’rL, and v, v TL from the network weights to calculate the dynamic
response ij using (26).

for non-conservative control forces. The chosen structure for
the LNN is shown in Figure 7, containing three hidden layers
of 128 nodes, an input of x = [n 5], and an output of the
system’s Lagrangian y = [L] as specified in (22).

An additional second ANN was also trained to estimate
the damping in the system that was not considered by
the LNN. The damping estimate was added to the LNN’s
output to form the estimated total dynamic response. Both
networks were trained to learn from over 65,000 data points
obtained through system simulations, consisting of initial
states (input) and final states (output) after an integration step
of 0.01 seconds. The estimates produced by the LNN were
compared to the response of the true dynamic equations over
a range of integration steps. The results demonstrated the
limitations of training an LNN on a non-conservative system
for approximating the dynamics, and that the implemented
second ANN did not effectively learn the non-conservative
forces to compensate for the LNN’s limitation.

VI. ARTIFICIAL NEURAL NETWORK ALTERNATIVES

The use of ANNs is only a subset of the various
non-parametric machine learning methods. In the application
of underwater vehicle modeling, the use of support vector
regression and Gaussian process regression have been found
to produce practical results with certain benefits when
compared to ANN methods. These non-parametric regression
methods are also differentiated from statistical regression
methods, as the model structure is learned rather than prede-
fined (as linear, polynomial, etc.) based on assumptions [64],
and the use of optimization methods like gradient descent
produces estimates rather than the analytical solutions
of the correlations produced by least-squares methods.
These differences from parametric regression methods allow
non-parametric regression methods to learn more complex
models with less manual configuration, while needing less
computational resources when learning on larger data sets.

A. SUPPORT VECTOR REGRESSION METHODS
Support vector machines (SVMs) have a similar structure
to ANNs. These similarities also produce comparable
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capabilities in classification and estimation tasks. In classi-
fication tasks, SVMs learn a high-dimension boundary called
a “hyperplane” which separates classes. The input data is
transformed into higher dimensions using kernel functions,
and a subset of the training data (known as the support
vectors) is used to maximize the hyperplane’s distance
between all classes. The support vectors are selected as data
points within a margin from the hyperplane. Since only the
support vectors are necessary for the optimization, SVMs do
not require large training data sets like ANNs.

Support vector regression (SVR) is a machine learning
method derived from SVMs with the objective of func-
tion approximation. Instead of maximizing the distance
from training data points, SVR maximizes the number
of observation points within a certain distance from the
high-dimensional estimated function f (x), given by:

n
fGe) =D ik, x) + b, (28)
i=1

where w is a linear weight vector to be learned, b is an
offset parameter to be learned, and « (x;, x,) is a chosen kernel
function that maps the input vectors to a higher-dimensional
space. The support vectors are a subset of the training data set
that is selected as the data points outside of a margin € from
the hyperplane.

The function is trained to act as an estimate of the unknown
relationship function between the inputs and outputs in the
training data set D = {(x;, y;)|i = 1, ..., n} consisting of n
points. By ignoring the points within a distance ¢ from the
objective function, overfitting during training is prevented.
Discrete output values can then be extracted from the trained
function for a given set of input states. The use of the
boundary distance results in a function that may not coincide
with the observed data points.

To learn the function’s parameters, the following objective
function is minimized:

1 n n
Lio, ") = 5 3 > (o — erf)eg — o (i )

i=1 j=1
n n

+eD (@it+ah) = > yilei—af). (29
i=1 i=1

under the constraints:

D (ai—af)=0 (30)
i=1

Vi:0<a<C (1)
Vi:0<af <C, (32)

where the weight vector is determined by w = o — o*, and C
is the positive box constraint that penalizes data points outside
of € to reduce overfitting.

The terms in the objective function minimize the weight
terms « and o*, and the error between f(x;) and y;. The
optimal solution for minimizing the objective function can
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FIGURE 8. (a) The training process of a SVR model, and (b) the
implementation of an SVR model for underwater vehicle modeling as
presented in [8].

be obtained by satisfying the additional optimization con-
straints known as the Karush-Kuhn-Tucker complementarity
conditions:

Viiai(e+&—yi+f(x)=0 (33)
Vi:ai(e+& +yi—fx) =0 (34)
Vi:&(C —aj))=0 (35)
Vi:EX(C —af) =0, (36)

where &; and £ are slack variables that consider data points
beyond € in the regression. These conditions also infer that
data points within ¢ have a weight w; = 0. All other
data points with non-zero weights are considered support
vectors [65]. These steps for training an SVR model are
summarized in Figure 8(a).

Wang et al. [66], [67] employed v-""support vector regres-
sion” to construct a model for ship maneuvering motion.
Introduced in [66], the v-SVR algorithm is implemented
for surface ship model parameter estimation. It uses a cost
function to select the disturbance level €, which controls
the insensitivity tube size used for the support vector
selection. This provides added robustness against different
disturbance levels when compared to SVR algorithms that
are trained using a fixed/pre-selected € or support vector
count. In [67] the work is extended to utilize Kernel-
based regularization, a non-parametric system identification
approach, to enhance the accuracy of their model by curbing
model complexity and overfitting of data. This regularization
technique relies on penalty terms that assess the similarity
between diverse data points and yield a trade-off between
model simplicity and accuracy. However, due to the intrinsic
nature of support vector regression, which seeks to describe
a highly nonlinear system using a multiple linear regression
framework, identification accuracy may be compromised
when limited data are available.

Wehbe et al. [8], [9], [10] have done extensive work
on applying SVR to model underwater vehicles, with the
online model updating during operation. When compared to
parametric damping models that were identified using the
least-squares method, the SVR models demonstrated superior
accuracy in estimating the dynamic responses in a testing data
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set. To perform the online optimization in real time, the total
set of training data points must be limited. A simple solution
18 to discard the oldest data when new data is received, but this
approach can cause the model to ““forget” useful dynamics
that have not been experienced recently.

In one of their works, Wehbe et al. [9] propose an inclusion
and forgetting criteria to control the data set size during online
training. The inclusion criteria limits the new data points that
are added by ensuring that the observed output y; does not lie
within the € range of f (x;), and that the new data point’s input
and output are not within a predefined range of an existing
data point. The forgetting criteria is used when the maximum
desired data set size is exceeded, and works by segmenting the
data set into bins at a set resolution, then removing the oldest
data point from the most populated bin. Using this method an
SVR model was trained to estimate the damping term of the
dynamics for yaw motions, using the input x; = [r] and the
output y; = [(D(v)v)eg], where e = [0 00 0 0 1] is a unit
vector that that isolates the yaw component of the damping
vector term D(v)v. The online training demonstrated the
ability for the estimated damping term to adapt to changes
caused by an added physical component to the vehicle. The
radial basis function kernel function was chosen for this
implementation, defined as:

K (Xas Xp) = exp(— Ixa — xp[1), (37)

where y is a scalar hyperparameter that determines the
smoothness of the kernel function.

Another variant of an SVR model was developed in [10],
where the input was limited to exclude the position and
orientation data to predict vehicle accelerations for planar
motion. Specifically, the inputs were defined as x; =
[u v r n; ny n3] which include the thruster control signals
ni, ny, n3, and the output as y; = [i v r]. This work
explored the use of a weight vector in the kernel function,
such that each element in the input vector would have an
individual hyperparameter to allow the kernel function to
learn the relative importance of the inputs to one another. The
resulting weighted-distance-squared-exponential kernel had
the function:

N
Kk (xa, Xb) = exp(— D ¥jl1xa; — x5 117, (38)
j=1
where N is the length of the input vector (in this implemen-
tation N = 6), and y is the weight vector.

In a more recent work, Wehbe et al. [8] have proposed an
improved forgetting criteria where each data point is assigned
a metric:

¢ (39)

d
RNZEY
where d is the density of surrounding data points, 7, is
the timestamp at which the data was received, and k is a
constant weight parameter that determines the importance
of the timestamp relative to the density. This metric ¢ is
therefore higher for older and more redundant data points.
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When the maximum number of data points is exceeded, the
data with the highest ¢ is forgotten. This technique was
used to train an SVR model on the dynamic response of
an underwater vehicle moving in the horizontal plane. The
model had an input consisting of the states and control signals
ni, np, n3 in the surge, sway, and yaw degrees of freedom
x; = [x y ¥ uvr ny ny n3], and an output of the accelerations
in the same degrees of freedom y; = [& v 7]. This input and
output structure is shown in Figure 8(b), also illustrating how
the kinematic equations can be used with the SVR model to
estimate the vehicle’s position. As the support vector models
are multi-input single-output systems, separate SVR models
are trained to account for the three output vector element.
The squared exponential kernel function was chosen for this
implementation, defined as:

K (Xa, Xp) = exp(—(Xg — xp) ST (g — X)), (40)

where S = ¥ /y is a matrix proportional to the covariance
matrix ¥ on the training data by the constant y .

B. GAUSSIAN PROCESS REGRESSION METHODS

As explained in [68], ‘““a Gaussian process (GP) model
describes a probability distribution over possible functions
that fit a set of points”. The mean of the GP model
provides the most probable estimate of the target function that
produced the data points. The variance can be used to quantify
the uncertainty of an estimate, which is a unique capability
of GP models when compared to other regression and
classification methods. Gaussian process regression (GPR)
is the machine learning method used to produce a model
for function estimation. GPR assumes that the input-output
relationship that is being approximated f(x) will contain
Gaussian noise € such that the data set of n points {(x;, y;)|i =
1,...,n}is given by:

yi =f(xi)+e, (41)

where & has a mean of zero and a variance of o2.
This makes the GPR model inherently robust to noisy
data [11]. Another difference between SVR and GPR is
that with optimized hyperparameters, GPR will prioritize the
function’s coincidence with the input-output pairs used as
data points for the regression.

When passing the input x, to a trained GPR model,
it estimates the output y, and its variance cov(y,) as:

VelX.y. X =k X)K X, X)+02D7 'y (42)
cov(yy) = Kk (e, x,) — k(. X) T (K (X, X)

+02D) 7 k(s X, 43)

where X = |[x] . x,]" is the matrix of all data set

input state vectors, and «(x,,xp) is the kernel function

between the input vectors x, and x. The vector k(x,, X) =

[k (s, x1) K (X, xn)]—r consists of the kernel values
between the test input x, and the data set inputs x;, and K
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is the matrix of kernel values relating the data set inputs with
one another such that K;; = «(x;, xj)|i,j € [1,n] [13].

The RBF kernel function used in Gaussian process
regression is defined as:

2

o, e — x|
e (Xa, Xp) = 0" exp(=——7——), (44)
where the standard deviation o and characteristic length
scale / are the hyperparameters ® = [o [] that will be

learned to improve the GPR model’s estimate of f(xy).
As summarized by Figure 9(a), the training of the GPR’s
kernel hyperparameters is achieved by maximizing the
logarithmic marginal likelihood:

1
L(©) = —7 log(| KX, X)II)

1 _ n
-~ EyTK<x,x> ly — 5 log@m),  (45)

where y = [y; ... yn] is the vector of observed outputs
that correlate to X in the training data set, and n is the
number of data points in the training data set [11]. Methods
such as particle swarm optimization and gradient descent are
used to approximate the solution for the optimization of ®.
The updated kernel hyperparameters are then used in (42)
to approximate the system dynamics, and the variance of the
estimate using (43).

Ramirez et al. [11], [12] explored the use of GPs as
non-parametric models for surface ships and underwater
vehicles. The multiple approaches include the incorporation
of an unscented Kalman filter for position estimation, with a
GPR model replacing the parametric model used to calculate
system states from sensor readings [11]. The model was
trained offline using a data set consisting of the input states
x; = [n(#) v(¢)] and observed outputs y; = [n(t+ta) v(t+1a)]
consisting of the same states after a set time interval 4. As a
GPR model approximates the relationship between the input
vector and an output value, separate models are trained for
each element of the output vector.

A more recent work avoids the use of multiple models
by utilizing a single multi-output GPR model for the
non-parametric system identification of an underwater vehi-
cle [13]. The vehicle velocity is used with the actuator control
signals for the thruster n and control surface angles §, and §;
to form the input states x; = [v n 8, §;]. The multi-output GPR
model is trained to output the resulting system velocity y; =
[v], and has the advantage of learning relationships between
outputs. This implementation of a GPR model is illustrated
in Figure 9 (b) which shows the connection between model
inputs and prior outputs in discrete time intervals, and how the
position estimate is calculated using the vehicle’s kinematics.
The performance of the multi-output GPR model is compared
to two RNNs with different memorized states, all trained on
the same data set. Compared to both RNNs, the GPR model
produced a lower average root-mean-square error, predicted
residual error sum of squares, and mean absolute error in its
estimated output velocity.
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Actuator states n(t), 8,(t), 85(t)
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Update hyperparameters 0: [ GPR Model ]
* Maximize logarithmic
marginal likelihood L(y, x, ©) (t+1) V(1)

using gradient descent

)

Update GPR model f(x):
+ Update kernel value matrix K

()
N

Kinematics

(@) ®)

FIGURE 9. (a) The training process of a GPR model, and (b) the
implementation of a GPR model for underwater vehicle modeling as
presented in [13].

C. SUPPORT VECTOR AND GAUSSIAN PROCESS
REGRESSION COMPARISONS

With both Gaussian process and support vector regression
having similar applications in underwater vehicle modeling,
the two methods have been quantitatively compared in the
literature. In terms of computational complexity, the learning
of the weight vector in SVR has a complexity of O(n?) while
the matrix inversion for learning the kernel hyperparameters
in GPR has a complexity of o) [8].

Van de Ven et al. [28] also compared ANN regression to
least-squares regression, observing that the former yields bet-
ter estimates of hydrodynamic coefficients from experimental
data. This was determined to be due to its ability to generalize,
and hence filter out, the effects of noise in data. This result
was also determined by Wehbe et al. [15], who examined
Gaussian process regression, kernel ridge regression, ANN
regression, and support vector regression, observing that
these methods yield better estimates of hydrodynamic
coefficients from experimental data, in comparison to least-
squares regression. The reason for this is twofold. On one
hand, these techniques provide a means for robust regression,
effectively reducing or removing the effects of outlier data.
On the other hand, the form of hydrodynamic loads terms
can be learned with these techniques and need not be
predetermined, as is the case with least-squares regression.
This permits for nonlinearities to be modeled, as would be
observed when relations break down due to hydrodynamic
stall.

Concluding from the study, Wehbe et al. [15] determined
that Gaussian process regression is useful for providing a
confidence interval for predictions. However, it was deemed
too computationally expensive in comparison to the other
methods, and increasingly so for larger data sets. This was
also noted by Ouyang et al. [69], who proposed an improved
variant of Gaussian process regression for determining
hydrodynamic coefficients, but concluded that further work
should be directed toward improving its computational
efficiency. The other methods trialed by Wehbe et al. [15]
were comparatively less computationally expensive, except
for ANN regression; although it was expensive to train for
small data sets, it was comparatively less expensive with
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increasing data set size, and considerably less expensive to
evaluate.

The relatively low computational cost of kernel ridge
regression, ANN regression, and support vector regression,
in combination with their ability to generalize, renders these
methods favorable to both offline and online identification.
Support vector regression, in particular, has gained increased
attention in identification. The technique has been applied
to identify hydrodynamic coefficients pertaining to motions
from free-running trials data [67], [70], [71], captive-model
runs data [72], as well as simulated motion data from
a coefficient-based dynamic model Xu et al. [73], Chen
et al. [74]. The accuracy of the models produced through
these non-parametric regression models is demonstrated by
comparing the model outputs to the recorded states from
physical/simulated trials.

VIi. SUMMARY AND DISCUSSION

Machine learning algorithms have been applied to underwater
vehicle dynamic modeling to approximate their dynamic
response (partially and completely) in the form of data-
driven/non-parametric models, as well as to estimate the
coefficients in parametric models. This section summarizes
the trends found in the reviewed literature and discusses the
rationale, challenges, and future directions of these trends.
The reviewed literature specifically on ML applications for
underwater vehicle modeling is summarized in Table 2,
highlighting key aspects of each application.

A. ARTIFICIAL NEURAL NETWORKS
Early applications of ANNs for underwater vehicle modeling
involved learning the coefficients for parametric models.
Fully connected feed-forward ANN structures were trained
offline on prerecorded data, or online using sensor read-
ings during real-time operation. The manually predefined
parametric model structure in this form of application did
not fully utilize an ANN’s approximation capabilities, and
required larger training data sets while providing little benefit
when compared to the parametric regression methods used
for system identification. Comparisons show that machine
learning methods for coefficient estimation had improved
tolerance to outliers in training data, but otherwise produced
comparable values to least-squares regression [14], [15].
The data-driven nature of ANNs demonstrated more
utility in applications that replace sections of a parametric
model with a trained ANN. These applications range from
estimating the hydrodynamic drag function and external
disturbances, to replacing the entire parametric model with
a trained network to estimate the systems acceleration or
velocity from prior states and control signals [15], [28], [47].
The ability of RNNs to approximate time-varying func-
tions contrasts with the time-independent nature of feed-
forward ANNs and parametric models. This would enable
RNNs to capture the time-varying component of an under-
water vehicle’s dynamics caused by the wakes and vortices
produced from prior motions. A large portion of the reviewed
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TABLE 2. The reviewed literature specifically regarding the application of machine learning algorithms for underwater vehicle dynamic modeling.

ML  Technique  Application Summary Input(s) Output(s) Approximate Ref
(Training Type) Data set Size
ANN (Offline) Estimate damping in sway and yaw v, v, T D(v)v 7 x 10° [15]
SVR (Offline)
GPR (Offline)
ANN Estimate  inertia/gravity/damping 7, v, T M, g(n), Unspecified [14, 27,
(Offline, Online) ~ terms and coefficients D(v)v,C(v), 28]
extracted
coefficients
RNN (Offline) Solve dynamic equations Control signals, past out- Dimensionless Unspecified [31, 32,
puts velocity v/ (184 maneuvers) 33, 34,
35]
RNN (Offline) Solve dynamic equations (with 7, pastoutputs Dimensionless Unspecified [38, 39,
parametric actuator model) velocity v/ (250 maneuvers) 40, 41,
42, 43]
RNN (Offline) Solve dynamic equations (with  Vehicle geometry, past Dimensionless Unspecified [44, 45]
parametric actuator model) outputs, 7 velocity
ANN (Offline) Estimate maneuvering characteris-  Vehicle geometry, v, 7 Steady turn diame-  Unspecified [46]
tics ter
ANN (Offline) Estimate propeller output loads Velocity terms, control  Propeller 7 Unspecified [47, 48]
signals
RNN (Offline) Estimate added resistance from  Vehicle geometry, distur-  Non-dimensional Unspecified [6]
waves bance parameters added resistance
ANN (Offline) Estimate  external  disturbance 7, v External Unspecified [50]
forces/moments from waves/wind disturbance
force/moment
b
RNN (Offline) Estimate parametric model equa-  Parametric model M;ry, Parametric model Unspecified [51]
tions error past outputs, T error Mv — My,
PINN Estimate parametric model equa- ¢, 0, (v — D) (v—1) 1.75 x 103 [4]
(Offline, Online) tions error
PINN Estimate dynamic equations re- 1n,v,T v 216 [5]
(Offline, Online) sponse
SVR Estimate horizontal plane dynamic 7, v, and control signals in ~ w, v, 7 3 x 10* [8]
(Offline, Online) equations response the horizontal plane
SVR Estimate damping in yaw Yaw velocity r Yaw term of D(v)v 104 [9]
(Offline, Online)
SVR Estimate horizontal plane dynamic v and control signalsinthe %, 0,7 10* [10]
(Offline, Online) equations response horizontal plane
GPR (Offline) Estimate position and velocity from 7, v v,n 4 x 103 [11]
dynamic response
GPR (Offline) Estimate velocity from dynamic re-  Control signals, v v 43 [13]
RNN (Offline) sponse
SVR (Offline) Estimate damping coefficients in 7, v, 7 inthe vertical plane ~ D(v)v, extracted  Unspecified [70]
the vertical plane coefficients in the
vertical plane
SVR (Offline) Estimate combined damping and v D(w)v + C(v)v Unspecified [73]

Coriolis terms
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literature utilizes RNNs rather than feed-forward ANNs [6],
[42], [43], [45], [51].

The development of physics-informed neural networks

through selecting physics-based optimization functions has
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shown desirable performance in producing physically-
constrained estimates for other dynamic systems, but current
implementations for underwater vehicle modeling have
produced estimates with lower accuracy than coefficient-
based models [4], [5].

B. NON-PARAMETRIC REGRESSION

Two alternatives to using ANNs for non-parametric underwa-
ter vehicle modeling are support vector regression and Gaus-
sian process regression, which have been applied for both
estimating the hydrodynamic drag and the entire dynamic
model. Compared to the ANN methods and parametric
models, the added utility of these non-parametric regression
models have a strong appeal, with lower training data
requirements and non-parametric flexibility. The benefits
of using these alternative have been demonstrated through
quantitative accuracy comparisons between the modeling
estimates when trained and validated on the same data
sets [8], [13], [15], [73].

A clear difference between support vector regression and
Gaussian process regression can be seen in the behavior
of their learned functions. When using GPR, the learned
function prioritizes coinciding with the training data points,
while SVR results in a function which balances average
error with a reduced non-linearity. GPR also has the
unique property of providing the quantified uncertainty of
a prediction. This has been utilized in model-based control
design to optimize adaptive control terms. The lower training
data requirements of both methods also makes the use of
online training feasible [8], [9], [10], [14].

C. ML-BASED MODELING COMPARISONS AND
RECOMMENDATIONS

As both parametric and ML-based modeling methods are
developed using pre-recorded data sets, their modeling
accuracy is almost always presented relative to a validation
data set rather than in comparison to other modeling methods.
Apart from the occasional modeling method comparison
conducted to demonstrate iterative method improvements,
there is a gap in the literature regarding the relative accuracy
between the range of parametric and ML-based underwater
vehicle modeling methods.

From the comparisons conducted in [15] and [28], it is
observed that non-parametric ML-based models (using neural
networks, SVR, or GPR) did produce higher accuracy
models than those developed using least-squares regression
for a parametric model using the same training data.
In comparison, the differences in mean absolute errors for
predicted forces and moments between SVR and GPR was
negligible, with the neural network model being slightly less
accurate.

It should be noted that this increased accuracy does require
increased model training time as observed in [15], which
suggests that least-squares and SVR are comparatively more
computationally expensive for smaller data sets (<100 data
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samples), and that for larger data set (>10,000 data samples)
all the ML-based regression methods are magnitudes more
computationally expensive than least-squares. The Inference
time for the compared methods was also analyzed, showing
both least-squares and neural networks having the fastest
inference and being independent of training data size. The
GPR and SVR methods had longer inference times that
increased with data set size. Although not included in any
comparisons, PINNs have demonstrated the possibility for
neural network models to train more efficiently and produce
physically accurate results. The complex loss functions that
would be necessary for their application with underwater
vehicles currently limits their practicality.

From these comparisons, the use of SVR for producing
non-parametric underwater vehicle models [8], [9], [10] can
be recommended for its applicability to small data sets,
its balance of accuracy and computational complexity, and
its online training capabilities. It is also suggested that the
dynamics model can be segmented into multiple modeling
terms, such that ML-based terms do not have to approximate
overly complex dynamic relationships, and that parametric
modeling terms that may already be available can be utilized
in addition.

D. CHALLENGES AND FUTURE RESEARCH

e Data sets: Details regarding a majority of the data
sets used in the reviewed literature are unspecified,
and the data sets themselves are rarely published.
This raises issues regarding the repeatability of these
works, and limits their utility in method performance
comparisons between separate works. Both physical trial
data and synthetic simulation data have been used to
create the data sets found in the literature, each with
their own challenges. System uncertainties regarding
sensor accuracy and unmeasured external disturbances
can degrade the dynamics learned by models that use
physical trial data, while models trained on simulation
data cannot demonstrate their ability to account for
uncertainties outside the simulation scope (such as
the time-varying dynamics excluded from parametric
models). The development of physical trial data sets for
underwater vehicles is costly, and the distribution of this
data may be against non-academic interests, but will
be necessary for the advancement of machine learning
applications for underwater vehicle modeling.

o Application validation: The performance of the trained
models is measured by error metrics relative to vali-
dation data that has the same input-output pairs as the
training data. Some of the reviewed works use novel
validation data, but many use very similar maneuver
data for both training and validation. If the modeled
underwater vehicle will be performing maneuvers that
were not included in the training data, they should
be well represented in the validation data to verify
the trained model’s suitability. For the models trained
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online, there has also not been work conducted to
quantify any accuracy improvements from the online
learning in comparison to an equivalent model that is
trained offline.

o Hyperparameter selection: Optimizing model hyperpa-
rameters is a difficulty shared by all machine learning
applications. Though the hyperparameter values are
specified in most of the reviewed literature, the selection
process is only briefly mentioned, if mentioned at
all. The limited validation tests conducted in these
works also brings into question how applicable/effective
the chosen hyperparameter values are for learning the
dynamics of maneuvers that are outside the training data,
and for other vehicles.

o Online learning safeguards: The behavior of a model
that is trained offline can be validated prior to use by
sampling its response to the range of possible inputs.
This is not true for models that continue training
online during use, which opens the possibility of
unknown model responses in critical applications such
as vehicle control and state estimation. The use of
physics-informed neural networks have the potential to
restrict the model responses to a physically-accurate
domain, and has not yet been extensively investigated
in the underwater vehicle literature.

VIil. CONCLUSION

This paper presents an overview of the current developments
in applications of machine learning for the modeling
of underwater vehicle dynamics. The classical parametric
models used for underwater vehicles are introduced. The use
of artificial neural networks for both partially and completely
replacing parametric models were reviewed. The utility
of recurrent neural networks and physics-informed neural
networks for these applications was explored, including
the mathematics behind their implementations. The use
of non-parametric regression methods in the modeling of
underwater vehicles was also reviewed, with the literature
containing both offline and online learning methods. A high-
level analysis of the literature was presented, discussing the
trends and current challenges of applying machine learning to
underwater vehicle modeling. The shift from ANNs to RNNs
was noted due to their time-varying capability, as well as
the recent attempts to adapt PINNs for underwater vehicle
modeling. The appeal of using non-parametric regression
methods was also highlighted by recent applications. We find
that future research will have to address the lack of
hyperparameter selection details and publicly available data
sets, continue to investigate online learning capabilities and
safeguards, and quantify model applicability for more varied
maneuvers.
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