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a b s t r a c t 

This paper describes a method combining Bayesian optimization (BO) and a lumped-capacitance thermal 

network model that is effective for speeding up the thermal design optimization of an electronic circuit 

board layout with transient heating chips. As electronic devices have become smaller and more complex, 

the importance of thermal design optimization to ensure heat dissipation performance has increased. 

However, such a thermal design optimization is difficult because various trade-offs associated with pack- 

aging and transient temperature changes of heat-generating components must be considered. This study 

aims to improve the performance of thermal design optimization by artificial intelligence. BO using a 

Gaussian process was combined with the lumped-capacitance thermal network model, and its perfor- 

mance was verified. As a result, BO successfully found the ideal circuit board layout as well as particle 

swarm optimization (PSO) and genetic algorithm (GA) could. The CPU time for BO was 1/5 and 1/4 of 

that for PSO and GA. In addition, BO found a non-intuitive optimal solution in approximately 7 min from 

10 million layout patterns. It was estimated that this was 1/10 0 0 of the CPU time required for analyzing 

all layout patterns. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In recent years, electronic devices and energy storage systems 

ave become smaller (thinner), and their internal structures have 

ecome more complex; therefore, ensuring their good heat dissi- 

ation performance has become an issue. Thermal design and tem- 

erature control are becoming key elements in improving product 

erformance and reliability [ 1 , 2 ]. For example, temperature sup- 

ression methods combining composites, fins, fluids, and phase 

hange materials (PCMs) among others have been studied [3–11] . 

ost of the heat generated inside a small electronic device is dis- 

ipated through the printed circuit board (PCB) on which the heat- 

enerating components are mounted and then dissipated to its sur- 

oundings. To improve this heat dissipation, i.e., the cooling perfor- 

ance, the layout of the heat-generating components mounted on 

he PCB (hereinafter referred to as the PCB layout) must be opti- 

ized. This optimization process requires consideration of trade- 

ffs due to various constraints in product packaging and a large 
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umber of layout patterns, making the search for an optimal solu- 

ion difficult. Therefore, the development of efficient thermal de- 

ign methods using artificial intelligence (AI) has been reported 

12–19] . Wang et al. [12] used ant colony optimization (ACO) to 

ptimize the PCB layout. Alexandridis et al. [13] applied parti- 

le swarm optimization (PSO) to a similar PCB layout optimiza- 

ion. Ismail et al. [14] used a genetic algorithm (GA) for a similar 

CB layout optimization. The reported studies show the feasibility 

f metaheuristic algorithms for PCB layout optimization although 

hese algorithms have issues such as convergence to a local solu- 

ion and difficulty to determine appropriate hyperparameters, de- 

ending on the optimization problems [20–23] . 

Bayesian optimization (BO) using Gaussian processes has re- 

ently been applied for optimal design of various devices and sys- 

ems [24–31] . It has been reported that BO does not easily fall into

 local solution [ 32 , 33 ], and its algorithm is provided as a pro-

ramming library for ease of use. Therefore, BO may be effective 

or the PCB layout optimization problem; however, its effectiveness 

as not been verified so far, to the best of the authors’ knowledge. 

In this study, BO is combined with a lumped-capacitance ther- 

al network model and applied to PCB layout optimization prob- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Printed circuit board (PCB) model consisting of board and five heating chips 

(A-E) (the electronic circuit pattern illustration on the board is just a texture and 

not considered in the simulation). 

Table 1 

Specification of circuit board model components. 

Dimensions 

[mm] 

Max. heating power 

[W] 

Integrated heating 

energy [Wh] 

Board 210 × 150 × 1 N/A N/A 

Chip A 30 × 30 × 10 4.1 1.54 

Chip B 30 × 30 × 10 4.0 1.25 

Chip C 30 × 30 × 10 3.8 1.03 

Chip D 30 × 30 × 10 3.0 0.83 

Chip E 30 × 30 × 10 2.0 0.50 
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Table 2 

Thermophysical properties of circuit board model components. 

Board Chip package Chip core 

Materials Aluminum Epoxy resin Silicon 

Specific heat [J/g �K] 0.9 1.5 0.77 

Density [g/cm 

3 ] 2.7 1.2 2.3 

Conductivity [W/m �K] 170 0.3 156 

Table 3 

Simulation conditions. 

Initial temperature of all 

components 

25 °C 

Air temperature 25 °C (Constant) 

Boundary conditions Board-Air: Natural convection 

Chip-Air: Natural convection 

Board side and bottom: Adiabatic 

Heat transfer coefficient for 

natural convection 

10 W/m 

2 �K 
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ems, and its effectiveness is verified by comparing it with other 

lgorithms (PSO and GA). Furthermore, the optimization was car- 

ied out based on unsteady state temperature simulations in which 

ime variations of heating power and temperature of the compo- 

ents were taken into account. In the reported studies on PCB lay- 

ut optimization, the heating power of the heating components is 

ssumed to be constant, and the layout optimization is performed 

sing the temperature under steady-state conditions. However, in 

ctual PCBs especially for power units in electric vehicles, the heat- 

ng power often varies with time. Therefore, the present study un- 

eils the performance potential of BO in more complicated opti- 

ization cases than those in reported studies. 

. Simulation model and problem setting 

.1. Thermal network model for PCB layout optimization 

A lumped-capacitance thermal network model (TNM) was used 

or the transient temperature simulation of a PCB. It is a model 

ased on the analogy between electrical circuits and heat trans- 

er phenomena and is widely used in design simulation of thermal 

ystems because it allows unsteady heat transfer simulation of sys- 

ems without using fine computational mesh and time-consuming 

omplex fluid simulations [34–40] . 

Fig. 1 shows the PCB model to be optimized. There are five 

eat-generating components (hereafter referred to as heating chips 

r chips). The dimensions, maximum heating power, and inte- 

rated heating energy (for 0 ≤ t ≤ 1800s) of the PCB and each 

hip are summarized in Table 1 . Fig. 2 (a) shows the TNM of the

CB, which consists of 5 × 7 computational nodes. Fig. 2 (b) shows 

he TNM of the heating chip. It consists of a central semiconductor 

hip core (red-colored 1 node), the heat source, and its surround- 

ng resin chip package (6 nodes). The thermophysical properties of 

he model components are summarized in Table 2 . As shown in 

ig. 3 , it was assumed that the heating power of each chip varied

ith time. Each chip has different time-varying characteristics, to- 

al heating power, which is the sum of the heating power of each 

hip (black line), and peaks at t = 1047s. This particular power 

issipation pattern was randomly determined so that the sum of 
2 
he heating power has a peak during the simulation period. Such a 

attern can be a possible case for PCBs with semiconductor chips 

n power units of electric vehicles. 

Because the lumped-capacitance model is used, the heat capaci- 

ance is connected to every node in Fig. 2 (a) and (b), although their 

ircuit diagram symbols are omitted in the figures. It is noted that 

he circuit symbols of thermal resistance between the nodes and 

he ambient air are also omitted. In TNM, the temperature at the 

 th node is calculated as: 

l 
 

i =1 

Q i = 

d T n 

dt 
m n c n (1) 

here Q i [W] is the amount of heat flowing from the neighboring 

odes, l is the number of neighboring nodes, T n [K] is temperature, 

 [s] is time, m n [kg] is mass, c n [J/kg •K] is the specific heat, and

he subscript indicates the number of nodes. Q i is calculated by the 

ollowing equation: 

 i = 

�T i 
R i 

(2) 

�T i [K] is the temperature difference between the n th node and 

he adjacent node, R i [W/K] is the thermal resistance considering 

onduction and convection, which are calculated by the following 

quations [36] . 

 con v = 

1 

hA 

(3) 

 cond = 

d 

λA 

(4) 

here R con v [K/W] is the thermal resistance of convection, R cond 

K/W] is the thermal resistance of conduction, h [W/m 

2 �K] is the 

eat transfer coefficient, λ [W/m �K] is the thermal conductivity, A 

m 

2 ] is the heat transfer area, and d [m] is the distance between 

odes. The thermal resistance due to thermal radiation is neglected 

ere. The initial and boundary conditions are listed in Table 3 . Nat- 

ral convection with h = 10 W/m 

2 �K was assumed at all board-air 

nd chip-air boundaries. The bottom and side of the board were 

ssumed to be adiabatic. In this study, the contribution of radia- 

ion heat transfer was neglected to simplify the simulation model. 

ome PCB thermal design literature also ignores the radiation heat 

ransfer. However, in the case of chip cooling by natural convec- 

ion, if the temperature difference between the chip and the sur- 

ace of the surrounding object (e.g., the inside wall of the case) is 

arge, the radiation heat flux can be comparable to or larger than 

he convective heat flux. In such a case, the radiation heat transfer 

hould not be ignored. 
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Fig. 2. Lumped-capacitance thermal network model for PCB model. The nodes for ambient air, thermal resistances between the board and chip surface to the air, and heat 

capacity of board and chip nodes are omitted in Fig. 2(a). Heat capacity of each node are omitted in Fig. 2(b) 

Fig. 3. Time-variations of heating power of five heating chips (A-E) in circuit board model. 
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Table 4 

Restriction (ii). 

Max. distance between the chips [mm] 

Chips A-B 90 

Chips B-C 90 

Chips A-D or D -E 90 
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This model was implemented in MATLAB/Simulink, and an un- 

teady heat transfer simulation was performed to obtain the tem- 

erature change characteristics of each node. The chip tempera- 

ure is defined as the average temperature over the nodes within 

he chip component. Fig. 4 shows the TNM in MATLAB/Simulink. 

ig. 4 (a) shows the TNM of PCB with heating chips, in which the 

hip components are connected to the network at their positions 

n the PCB. Fig. 4 (b) shows the TNM of the chip components. The

lacement of the heating chip can be easily enabled or disabled 

y changing the setting values of thermal resistance components 

nd heat capacity components enclosed by the dotted black line 

o zero. This method makes it possible to change the PCB layout 

ith less computational effort. Moreover, MATLAB provides a fast 

olver for multiple simultaneous linear equations given by Eq. (1), 

ontributing to fast computation of the unsteady heat transfer phe- 

omenon. 

.2. Optimization problem setting 

The target of the optimization is the PCB layout, that is, the 

lacement pattern of five transient heating chips A to E. In ac- 

ual product design, there may be restrictions on chip placement 

epending on the functions of the devices. To simulate this situa- 

ion, two restrictions on chip placement are given as (i) placeable 

rea for each chip and (ii) distance between chips. In restriction 

i), each chip can only be placed in a mesh defined by a frame of

he same color as the color of the chip symbol, as shown in Fig. 5 .

n other words, each chip can only be placed within a specified 

rea. In restriction (ii), the distance between the nodes at the cen- 

er of the chips must be less than or equal to the values shown in

able 4 . For example, in Fig. 4 , the distance between chips A and B

s 51.96 mm, which satisfies the restricted value (90 mm). 
3 
Optimization was performed so that the value of the following 

bjective function f ( x ) was minimized: 

f ( x ) = w max { T mean ( t ) } + ( 1 − w ) max 
{

T high ( t ) 
}

(5) 

here x indicates one of the PCB layouts. T mean ( t ) is the mean

hip temperature, that is, the average chip temperature over the 

ve chips at time t; T high ( t ) is the highest chip temperature among

he five chips at time t ; max{} is the maximum value during 

he simulation time period (0 ≤ t ≤ 1800s); w is the weight co- 

fficient; with the optimization being performed for three cases 

amely: w = 1, 0, and 0.5. This methodology is called the weighted 

um method and commonly used for multi-objective optimiza- 

ion [ 41 , 42 ]. The objective function for w = 1, 0, and 0.5 is f

 x ) = max{ T mean ( t )}, f ( x ) = max{ T high ( t )}, and f ( x ) = [max{ T mean 

 t )} + max{ T high ( t )}]/2, respectively. 

. Validation of the simulation model 

Prior to performing the optimization and to confirm the validity 

f the present lumped-capacitance TNM, three-dimensional (3D) 

nite element method (FEM) simulations under the same model 

nd conditions were conducted, and the results were compared 

ith the results obtained by TNM. The commercial software ANSYS 

as used for the FEM simulation. FEM simulation is a widely used 

imulation in the field of heat transfer engineering. The FEM sim- 

lation generally provides reliable results; however, it requires a 
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Fig. 4. Thermal network model implementation in MATLAB/Simulink. The right figure shows the MATLAB/Simulink model of the left figure.. 

Fig. 5. Restriction (i): Colored mesh depicts placeable areas for each chip with the 

same colored symbols. 
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ne 3D computational mesh and a fine time step, resulting in high 

omputational cost. The number of computational meshes used in 

he FEM model was set to 3630. By contrast, the number of com- 

utational nodes in TNM is 95. A comparison of the results from 

EM and TNM is shown in Figs. 6 and 7 . The upper and bottom fig-

res in Fig. 5 (a)–(d) show the FEM and TNM results of temperature 

istribution at elapsed times t = 250 s, 750 s, 1250 s, and 1800 s,

espectively. The TNM results depict the mean temperature over 

he surface nodes within each mesh. The trends of the temperature 

istributions in both simulations agreed well. For a more quantita- 

ive comparison, Fig. 7 shows a comparison of the time variation of 

hip temperature, that is, the average temperature of the chip com- 

onent, in both simulations. For FEM, it is the volume average tem- 

erature of computational meshes in the chip core, and for TNM, it 

s the temperature of the red dot of the lumped capacitance chip 

ore shown in Fig. 2 (b). The trends of each chip were consistent. 

he root mean square error (RMSE) between the chip tempera- 
4 
ure profile obtained by the TNM and FEM for each chip ranges 

etween 0.45—1.12 °C. These results show that the present TNM 

as sufficient validity for the PCB layout optimization, although the 

patial resolution of temperature distribution is lower than that of 

EM simulations. Moreover, the CPU time of the TNM was approxi- 

ately 10 times faster than that of the FEM, although FEM simula- 

ion was conducted using Xeon E5–2620v3 × 2 (RAM:64 GB), and 

NM simulation using AMD Ryzen9 3950 × 3.49 GHz (RAM:16 GB). 

. Applying Bayesian optimization 

The thermal design optimization problem can be formulated as 

n optimization of the black box continuous functions f(x) as fol- 

ows: 

 = argmi n x f ( x ) (6) 

here x is the input variable, and f ( x ) denotes the objective func-

ion of Eq. (5) . The de-facto standard model for black-box optimiza- 

ion is BO with a Gaussian process. Bayesian optimization (BO) is 

 popular framework for optimizing the black box function owing 

o its sample efficiency. The Gaussian process has been widely ap- 

lied to solve real-world problems such as the prediction of ther- 

al systems due to its ability to capture non-linearity and quantify 

ncertainty [43–45] . Due to such characteristics, a Gaussian pro- 

ess is often selected to model the unknown objective function of 

O. In BO, f ( x ) is a stochastic process, which is assumed to fol-

ow a Gaussian process, that is, the following Eq. (7) , where μ(x )

s the mean function (of the objective function at point x ), σ (x ) is

he covariance function (of the objective function at a point x ), and 
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Fig. 6. Comparison of simulated temperature distributions between FEM (upper figure) and TNM (bottom figure) at t = 200 s, 500 s, 1000s, and 2000s. 

Fig. 7. Comparison of simulated chip temperature between FEM and TNM. RMSE between FEM and TNM for each heating chip is shown in parentheses. 
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“

 ( x, x ′ ) is the kernel function. 

f ( x ) ∼ GP ( μ( x ) , σ ( x ) ) = GP 
(
μ( x ) , k 

(
x, x ’ 

))
(7) 

In this method, the posterior distribution of f ( x ) is calculated 

rom the currently observed data based on Eq. (7) , and the next 

earch point is determined using the acquisition function based 

n the information of the peripheralized predicted distribution. 
5 
his process is repeated to find the optimal solution [46–48] .The 

atérn5/2 kernel [33] was used as well as an expected improve- 

ent (EI) [ 32 , 33 ]. The combination of EI and the Matérn5/2 ker-

el is often used in practical applications [29] . In simulation, the 

bayesopt” function of MATLAB library was used. Optimization 

ith PSO and GA was also performed and compared with BO. The 

particle swarm” and “ga” functions of the MATLAB library were 
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Fig. 8. Comparison of optimized component layouts by BO for different objective functions. 

Table 5 

Hyperparameters of GA and PSO. 

GA 

Population size 50 

Selection Stochunif 

Mutation rate 0.01 

Crossover rate 0.8 

PSO 

Swarm size 50 

Cognitive parameter 1.49 

Social parameter 1.49 
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Table 6 

Comparison of optimization results (temperature). 

Objective function 

(Optimization to 

minimize f ( x )) 

f ( x ) of the 

optimized PCB 

layout [C] 

Searching all 

layout patterns 

BO PSO GA 

f ( x ) = max{ T mean ( t )} 

76.88 ← ← ← 

f ( x ) = max{ T high ( t )} 90.20 ← ← ← 

f ( x ) = [max{ T mean ( t )} 

+ max{ T high ( t )}]/2 

83.68 ← ← ← 

Table 7 

Comparison of optimization results (CPU time). 

Objective function 

(Optimization to 

minimize f ( x )) 

CPU time to obtain 

optimized PCB 

layout [s] 

Searching all 

layout patterns 

BO PSO GA 

f ( x ) = max{ T mean ( t )} 

9836 183 866 691 

f ( x ) = max{ T high ( t )} ↑ 163 738 438 

f ( x ) = [max{ T mean ( t )} 

+ max{ T high ( t )}]/2 

↑ 62 328 495 

l

i

s

a

f

sed for PSO and GA, respectively. The hyperparameters of PSO and 

A are shown in Table 5 , which were the typical hyperparameter 

ettings used here [49–51] . The total number of iterations was set 

o 200 for all algorithms. To determine the true optimal PCB layout 

henceforth, ideal layout), all 7776 layout patterns were searched 

nd f ( x ) for them were evaluated in advance. The performance of 

ach algorithm was verified by comparing their optimized layout 

ith the ideal layout. The CPU time consumed by each algorithm 

as compared. All the simulations were conducted on a Windows 

orkstation with AMD Ryzen9 3950 × 3.49 GHz and 16 GB mem- 

ry. Note that previous studies [12–18] did not make comparisons 

ith the ideal layout. 

. Optimization results 

Tables 6 and 7 show the comparison of optimization results, 

hat is, values of f ( x ) of the optimized PCB layout, and CPU time,

or each algorithm including all layout pattern searches. With 200 

terations, three algorithms reached the same layout as the ideal 
6 
ayout regardless of the f ( x ) case. BO reached the ideal layout 

n approximately 1/150–1/90 of CPU time for all layout pattern 

earches, and in approximately 1/5 and 1/4 of the CPU time of PSO 

nd GA, respectively. The swarm size and the population size af- 

ect the CPU time of PSO and GA, respectively. In this case, because 
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Fig. 9. Optimization progress by BO. 

Fig. 10. Optimized component placement by BO w/o restrictions (i) and (ii). 
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oth sizes are set to 50, PSO and GA must evaluate 50 layout pat- 

erns per iteration. By contrast, BO evaluated one layout pattern 

er iteration. As the transient temperature simulation per layout 

attern takes a long CPU time, PSO and GA must take a longer 

PU time per iteration than BO. This is the major reason for the 

ncrease in CPU time for PSO and GA. By the authors’ trial, reduced 

opulation and swarm size (i.e., population size and swarm size of 

) actually shortened the CPU time but resulted in incorrect op- 

imization. The performance of PSO and GA may be improved by 

urther careful tuning of hyperparameters; however, this is time 

onsuming. It is noted that BO was still faster than PSO and GA 

ith population and swam size of 5. These results imply that BO 

an be a time-efficient algorithm for PCB layout optimization cou- 

led with the transient temperature simulation. 

Fig. 8 (a) and (b) show the optimized layouts (which are iden- 

ical to the ideal layouts) obtained by BO in three f ( x ) cases,

espectively. In the figures, the corresponding time variations of 

ach chip temperature and T mean ( t ) or T high ( t ) are also shown. In

ig. 8 (a), T mean ( t ) reaches the maximum value at approximately 

m  

7 
 = 1200s. This maximum value is the temperature of Chip A, 

hich has the highest total heat generation, as shown in Table 1 . 

n this case, because the chips should be evenly distancing to min- 

mize f ( x ) = max{ T mean ( t )}, it would be easy for us to predict

 similar layout pattern intuitively. By contrast, in Fig. 8 (b), with 

he optimization to minimize f ( x ) = max{ T high ( t )}, Chips B and C

re arranged close to each other, and Chip A is mostly distancing 

rom the other chips, which would not be easy for us to predict 

ntuitively. This indicates that the optimized layouts are reasonable 

nd that the thermal design optimization using BO is effective. 

. Applying BO to extended problem settings 

In the actual thermal design of PCBs, the number of layout pat- 

erns can be even greater. To test the performance of BO in such 

 case, BO was applied to an extended problem setting in which 

he restrictions (i) and (ii) described in Section 2.2 are removed. 

n this case, the number of possible layout patterns is approxi- 

ately 10 million. The optimization for f ( x ) = max{ T high ( t )} case
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[

as performed. Fig. 9 shows the evolution of the value of the ob- 

ective function with respect to the number of iterations. The val- 

es of f ( x ) at the 20, 200, and 2000 iterations are shown in the

raph. Fig. 10 shows the corresponding optimized layouts and the 

ime variations of the chip temperature and T high ( t ) for the opti-

ized layout at 20 0 0 iterations. From Fig. 9 , the value of f ( x ) is

pdated as the number of iterations increases, reaching 90% of the 

0 0 0 iterations’ value at 200 iterations. T high at 200 and 20 0 0 iter-

tions were reduced by 2.79 °C and 2.9 °C, respectively, compared 

o the T high (90.20 °C) under restrictions (i) and (ii), as shown in 

able 6 in Chapter 4. Fig. 10 shows that Chips A and B were op-

imized to maintain distance from the other chips. This is because 

he heating power of Chips A and B is relatively larger, as shown 

n Table 1 , so they are placed farther distancing from each other to 

ower T high . Comparing the temperature trends in Figs. 10 (c) and 

 (b), the temperature of Chip A decreases. The CPU times for 200 

nd 20 0 0 iterations were 434 s and 16676 s, respectively. Based 

n the results in Chapter 5, the estimated CPU times for 20 0 0 

terations for PSO and GA are 160,0 0 0 s, which is approximately 

0 times longer than that of BO. Similarly, the CPU time required 

or the simulation of all layout patterns search was estimated to 

e about 140 days, and BO was able to optimize at approximately 

/10 0 0 of the time for all layout pattern searches. From these re-

ults, the high speed of BO was confirmed in the extended problem 

etting. However, it is reported that the computational complexity 

f BO tends to increase with the number of iterations [48] . This 

act was also confirmed by the present result. The CPU time for 

0 0 0 iterations was 38 times higher than that for 200 iterations. 

his characteristic should be considered when performing the op- 

imization by BO. In the present case, 200 iterations were found to 

e appropriate to obtain a nearly optimal layout pattern. 

. Conclusion 

Bayesian optimization (BO) combined with the lumped- 

apacitance TNM was applied to the layout optimization of an elec- 

ronic PCB with transient heating chips, and its effectiveness was 

erified by fundamental case studies. To evaluate the value of the 

bjective function of the examined layout, a transient heat trans- 

er simulation was performed per layout taking into account the 

ifferent tem poral variations of the heating power of the heat- 

enerating chips. As a result, BO reached the ideal layout in ap- 

roximately 1/150–1/90 of CPU time for all layout pattern searches 

nd in approximately 1/5 and 1/4 of the CPU time of other algo- 

ithms (PSO and GA), respectively. Furthermore, BO was applied 

o the extended problem setting with possible layout patterns of 

0 million. BO found a reasonably best layout, which achieved 

0% of the objective function value of 20 0 0 iterations, at 20 0 it-

rations in approximately 7 min only. All layout pattern searches 

ould have required 140 days, and BO took only 1/10 0 0 of that 

ime for optimization. In addition, by comparing it with other al- 

orithms (PSO and GA), the effectiveness of the present method 

as demonstrated for the PCB layout optimization problem that 

equires a transient heat transfer simulation. In future research, it 

ill be necessary to upgrade to a more realistic model that also 

onsiders more complicated circuit board structures such as multi- 

ayered structures (chip, die bonding, heat spreader, etc.) and con- 

act thermal resistances between the layers and also conditions 

uch as temperature dependent heat transfer coefficient. 
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