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This paper describes a method combining Bayesian optimization (BO) and a lumped-capacitance thermal
network model that is effective for speeding up the thermal design optimization of an electronic circuit
board layout with transient heating chips. As electronic devices have become smaller and more complex,
the importance of thermal design optimization to ensure heat dissipation performance has increased.
However, such a thermal design optimization is difficult because various trade-offs associated with pack-
aging and transient temperature changes of heat-generating components must be considered. This study
aims to improve the performance of thermal design optimization by artificial intelligence. BO using a
Gaussian process was combined with the lumped-capacitance thermal network model, and its perfor-
mance was verified. As a result, BO successfully found the ideal circuit board layout as well as particle
swarm optimization (PSO) and genetic algorithm (GA) could. The CPU time for BO was 1/5 and 1/4 of
that for PSO and GA. In addition, BO found a non-intuitive optimal solution in approximately 7 min from
10 million layout patterns. It was estimated that this was 1/1000 of the CPU time required for analyzing

all layout patterns.

© 2021 The Authors. Published by Elsevier Ltd.
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1. Introduction

In recent years, electronic devices and energy storage systems
have become smaller (thinner), and their internal structures have
become more complex; therefore, ensuring their good heat dissi-
pation performance has become an issue. Thermal design and tem-
perature control are becoming key elements in improving product
performance and reliability [1,2]. For example, temperature sup-
pression methods combining composites, fins, fluids, and phase
change materials (PCMs) among others have been studied [3-11].
Most of the heat generated inside a small electronic device is dis-
sipated through the printed circuit board (PCB) on which the heat-
generating components are mounted and then dissipated to its sur-
roundings. To improve this heat dissipation, i.e., the cooling perfor-
mance, the layout of the heat-generating components mounted on
the PCB (hereinafter referred to as the PCB layout) must be opti-
mized. This optimization process requires consideration of trade-
offs due to various constraints in product packaging and a large
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number of layout patterns, making the search for an optimal solu-
tion difficult. Therefore, the development of efficient thermal de-
sign methods using artificial intelligence (Al) has been reported
[12-19]. Wang et al. [12] used ant colony optimization (ACO) to
optimize the PCB layout. Alexandridis et al. [13] applied parti-
cle swarm optimization (PSO) to a similar PCB layout optimiza-
tion. Ismail et al. [14] used a genetic algorithm (GA) for a similar
PCB layout optimization. The reported studies show the feasibility
of metaheuristic algorithms for PCB layout optimization although
these algorithms have issues such as convergence to a local solu-
tion and difficulty to determine appropriate hyperparameters, de-
pending on the optimization problems [20-23].

Bayesian optimization (BO) using Gaussian processes has re-
cently been applied for optimal design of various devices and sys-
tems [24-31]. It has been reported that BO does not easily fall into
a local solution [32,33], and its algorithm is provided as a pro-
gramming library for ease of use. Therefore, BO may be effective
for the PCB layout optimization problem; however, its effectiveness
has not been verified so far, to the best of the authors’ knowledge.

In this study, BO is combined with a lumped-capacitance ther-
mal network model and applied to PCB layout optimization prob-
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Fig. 1. Printed circuit board (PCB) model consisting of board and five heating chips
(A-E) (the electronic circuit pattern illustration on the board is just a texture and
not considered in the simulation).

Table 1
Specification of circuit board model components.

Dimensions Max. heating power Integrated heating
[mm] [W] energy [Wh]

Board 210 x 150 x 1 N/A N/A

Chip A 30 x 30 x 10 4.1 1.54

Chip B 30 x 30 x 10 4.0 1.25

Chip C 30 x 30 x 10 3.8 1.03

Chip D 30 x 30 x 10 3.0 0.83

Chip E 30 x 30 x 10 2.0 0.50

lems, and its effectiveness is verified by comparing it with other
algorithms (PSO and GA). Furthermore, the optimization was car-
ried out based on unsteady state temperature simulations in which
time variations of heating power and temperature of the compo-
nents were taken into account. In the reported studies on PCB lay-
out optimization, the heating power of the heating components is
assumed to be constant, and the layout optimization is performed
using the temperature under steady-state conditions. However, in
actual PCBs especially for power units in electric vehicles, the heat-
ing power often varies with time. Therefore, the present study un-
veils the performance potential of BO in more complicated opti-
mization cases than those in reported studies.

2. Simulation model and problem setting
2.1. Thermal network model for PCB layout optimization

A lumped-capacitance thermal network model (TNM) was used
for the transient temperature simulation of a PCB. It is a model
based on the analogy between electrical circuits and heat trans-
fer phenomena and is widely used in design simulation of thermal
systems because it allows unsteady heat transfer simulation of sys-
tems without using fine computational mesh and time-consuming
complex fluid simulations [34-40].

Fig. 1 shows the PCB model to be optimized. There are five
heat-generating components (hereafter referred to as heating chips
or chips). The dimensions, maximum heating power, and inte-
grated heating energy (for 0 < t < 1800s) of the PCB and each
chip are summarized in Table 1. Fig. 2(a) shows the TNM of the
PCB, which consists of 5 x 7 computational nodes. Fig. 2(b) shows
the TNM of the heating chip. It consists of a central semiconductor
chip core (red-colored 1 node), the heat source, and its surround-
ing resin chip package (6 nodes). The thermophysical properties of
the model components are summarized in Table 2. As shown in
Fig. 3, it was assumed that the heating power of each chip varied
with time. Each chip has different time-varying characteristics, to-
tal heating power, which is the sum of the heating power of each
chip (black line), and peaks at t = 1047s. This particular power
dissipation pattern was randomly determined so that the sum of
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Table 2
Thermophysical properties of circuit board model components.
Board Chip package  Chip core
Materials Aluminum Epoxy resin Silicon
Specific heat [J/g-K] 0.9 1.5 0.77
Density [g/cm?] 2.7 1.2 2.3
Conductivity [W/m:K] 170 0.3 156
Table 3
Simulation conditions.
Initial temperature of all 25 °C

components
Air temperature
Boundary conditions

25 °C (Constant)

Board-Air: Natural convection
Chip-Air: Natural convection
Board side and bottom: Adiabatic
Heat transfer coefficient for 10 W/m?-K
natural convection

the heating power has a peak during the simulation period. Such a
pattern can be a possible case for PCBs with semiconductor chips
in power units of electric vehicles.

Because the lumped-capacitance model is used, the heat capaci-
tance is connected to every node in Fig. 2(a) and (b), although their
circuit diagram symbols are omitted in the figures. It is noted that
the circuit symbols of thermal resistance between the nodes and
the ambient air are also omitted. In TNM, the temperature at the
nth node is calculated as:

1
dT,
;Qi: T:mncn (1)

where Q; [W] is the amount of heat flowing from the neighboring
nodes, [ is the number of neighboring nodes, T, [K] is temperature,
t [s] is time, my, [kg] is mass, ¢, [J/kgeK] is the specific heat, and
the subscript indicates the number of nodes. Q; is calculated by the
following equation:
AT,

o= )

AT; [K] is the temperature difference between the nth node and
the adjacent node, R; [W/K] is the thermal resistance considering
conduction and convection, which are calculated by the following
equations [36].

1

Rcom/ = m (3)
d

Rcond = m (4)

where Rcony [K/W] is the thermal resistance of convection, Rgyq
[K/W] is the thermal resistance of conduction, h [W/m?2-K] is the
heat transfer coefficient, A [W/m-K] is the thermal conductivity, A
[m?] is the heat transfer area, and d [m] is the distance between
nodes. The thermal resistance due to thermal radiation is neglected
here. The initial and boundary conditions are listed in Table 3. Nat-
ural convection with h = 10 W/m2-K was assumed at all board-air
and chip-air boundaries. The bottom and side of the board were
assumed to be adiabatic. In this study, the contribution of radia-
tion heat transfer was neglected to simplify the simulation model.
Some PCB thermal design literature also ignores the radiation heat
transfer. However, in the case of chip cooling by natural convec-
tion, if the temperature difference between the chip and the sur-
face of the surrounding object (e.g., the inside wall of the case) is
large, the radiation heat flux can be comparable to or larger than
the convective heat flux. In such a case, the radiation heat transfer
should not be ignored.
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(a) PCB component with heating chips
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Fig. 2. Lumped-capacitance thermal network model for PCB model. The nodes for ambient air, thermal resistances between the board and chip surface to the air, and heat
capacity of board and chip nodes are omitted in Fig. 2(a). Heat capacity of each node are omitted in Fig. 2(b)
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Fig. 3. Time-variations of heating power of five heating chips (A-E) in circuit board model.

This model was implemented in MATLAB/Simulink, and an un-
steady heat transfer simulation was performed to obtain the tem-
perature change characteristics of each node. The chip tempera-
ture is defined as the average temperature over the nodes within
the chip component. Fig. 4 shows the TNM in MATLAB/Simulink.
Fig. 4(a) shows the TNM of PCB with heating chips, in which the
chip components are connected to the network at their positions
on the PCB. Fig. 4(b) shows the TNM of the chip components. The
placement of the heating chip can be easily enabled or disabled
by changing the setting values of thermal resistance components
and heat capacity components enclosed by the dotted black line
to zero. This method makes it possible to change the PCB layout
with less computational effort. Moreover, MATLAB provides a fast
solver for multiple simultaneous linear equations given by Eq. (1),
contributing to fast computation of the unsteady heat transfer phe-
nomenon.

2.2. Optimization problem setting

The target of the optimization is the PCB layout, that is, the
placement pattern of five transient heating chips A to E. In ac-
tual product design, there may be restrictions on chip placement
depending on the functions of the devices. To simulate this situa-
tion, two restrictions on chip placement are given as (i) placeable
area for each chip and (ii) distance between chips. In restriction
(i), each chip can only be placed in a mesh defined by a frame of
the same color as the color of the chip symbol, as shown in Fig. 5.
In other words, each chip can only be placed within a specified
area. In restriction (ii), the distance between the nodes at the cen-
ter of the chips must be less than or equal to the values shown in
Table 4. For example, in Fig. 4, the distance between chips A and B
is 51.96 mm, which satisfies the restricted value (90 mm).

Table 4
Restriction (ii).

Max. distance between the chips [mm]

Chips A-B 90
Chips B-C 90
Chips A-D or D-E 90

Optimization was performed so that the value of the following
objective function f (x) was minimized:

Fx) =w max{Trmean(t)} + (1 — w) max{Tygn(t)} (5)

where x indicates one of the PCB layouts. Tmean (t) is the mean
chip temperature, that is, the average chip temperature over the
five chips at time t; Tpigp, (t) is the highest chip temperature among
the five chips at time t; max{} is the maximum value during
the simulation time period (0 < t < 1800s); w is the weight co-
efficient; with the optimization being performed for three cases
namely: w = 1, 0, and 0.5. This methodology is called the weighted
sum method and commonly used for multi-objective optimiza-
tion [41,42]. The objective function for w = 1, 0, and 0.5 is f
(%) = max{Tmean ()}, f (x) = max{Tyign (£)}, and f (x) = [Max{Tmean
(O3 max{Thigy (£)}]/2, respectively.

3. Validation of the simulation model

Prior to performing the optimization and to confirm the validity
of the present lumped-capacitance TNM, three-dimensional (3D)
finite element method (FEM) simulations under the same model
and conditions were conducted, and the results were compared
with the results obtained by TNM. The commercial software ANSYS
was used for the FEM simulation. FEM simulation is a widely used
simulation in the field of heat transfer engineering. The FEM sim-
ulation generally provides reliable results; however, it requires a



D. Otaki, H. Nonaka and N. Yamada

International Journal of Heat and Mass Transfer 184 (2022) 122263

MATLAB/Simulink
Chip component

(a) PCB component with heating chips

% Air

Chip packlage

= = A= = = =
- S B - " R i
= = S g B =
- D
= = =] a bl = =)
A -
B e =& = @BEFe |a
=) f i;.J F_‘ -] i =
MATLAB/Simulink
[ 7

- B . I

(b) Chip component

Fig. 4. Thermal network model implementation in MATLAB/Simulink. The right figure shows the MATLAB/Simulink model of the left figure..

Fig. 5. Restriction (i): Colored mesh depicts placeable areas for each chip with the
same colored symbols.

fine 3D computational mesh and a fine time step, resulting in high
computational cost. The number of computational meshes used in
the FEM model was set to 3630. By contrast, the number of com-
putational nodes in TNM is 95. A comparison of the results from
FEM and TNM is shown in Figs. 6 and 7. The upper and bottom fig-
ures in Fig. 5(a)-(d) show the FEM and TNM results of temperature
distribution at elapsed times t = 250 s, 750 s, 1250 s, and 1800 s,
respectively. The TNM results depict the mean temperature over
the surface nodes within each mesh. The trends of the temperature
distributions in both simulations agreed well. For a more quantita-
tive comparison, Fig. 7 shows a comparison of the time variation of
chip temperature, that is, the average temperature of the chip com-
ponent, in both simulations. For FEM, it is the volume average tem-
perature of computational meshes in the chip core, and for TNM, it
is the temperature of the red dot of the lumped capacitance chip
core shown in Fig. 2(b). The trends of each chip were consistent.
The root mean square error (RMSE) between the chip tempera-

ture profile obtained by the TNM and FEM for each chip ranges
between 0.45—1.12 °C. These results show that the present TNM
has sufficient validity for the PCB layout optimization, although the
spatial resolution of temperature distribution is lower than that of
FEM simulations. Moreover, the CPU time of the TNM was approxi-
mately 10 times faster than that of the FEM, although FEM simula-
tion was conducted using Xeon E5-2620v3 x 2 (RAM:64 GB), and
TNM simulation using AMD Ryzen9 3950 x 3.49 GHz (RAM:16 GB).

4. Applying Bayesian optimization

The thermal design optimization problem can be formulated as
an optimization of the black box continuous functions f{(x) as fol-
lows:

X = argminy f (X) (6)

where x is the input variable, and f (x) denotes the objective func-
tion of Eq. (5). The de-facto standard model for black-box optimiza-
tion is BO with a Gaussian process. Bayesian optimization (BO) is
a popular framework for optimizing the black box function owing
to its sample efficiency. The Gaussian process has been widely ap-
plied to solve real-world problems such as the prediction of ther-
mal systems due to its ability to capture non-linearity and quantify
uncertainty [43-45]. Due to such characteristics, a Gaussian pro-
cess is often selected to model the unknown objective function of
BO. In BO, f (x) is a stochastic process, which is assumed to fol-
low a Gaussian process, that is, the following Eq. (7), where w(x)
is the mean function (of the objective function at point x), o (x) is
the covariance function (of the objective function at a point x), and
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Fig. 7. Comparison of simulated chip temperature between FEM and TNM. RMSE between FEM and TNM for each heating chip is shown in parentheses.

k(x,x") is the kernel function.

F@) ~ GP(i(x). 0 (x)) = GP(1(x), k(x. X)) (7)

In this method, the posterior distribution of f (x) is calculated
from the currently observed data based on Eq. (7), and the next
search point is determined using the acquisition function based
on the information of the peripheralized predicted distribution.

This process is repeated to find the optimal solution [46-48].The
Matérn5/2 kernel [33] was used as well as an expected improve-
ment (EI) [32,33]. The combination of EI and the Matérn5/2 ker-
nel is often used in practical applications [29]. In simulation, the
“bayesopt” function of MATLAB library was used. Optimization
with PSO and GA was also performed and compared with BO. The
“particle swarm” and “ga” functions of the MATLAB library were
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Table 5 Table 6
Hyperparameters of GA and PSO. Comparison of optimization results (temperature).
GA Objective function f(x) of the
Population size 50 (Optimization to optimized PCB
Selection Stochunif minimize f(x)) layout [C]
Mutation rate 0.01 Searching all BO PSO GA
Crossover rate 0.8 layout patterns
PSO 76.88 « P P
Swarm size 50 flx) = max{Tmean(t)}
Cognitive parameter 1.49 flx) = max{Tpigh ()} 90.20 <~ «~ «
Social parameter 1.49 83.68 «~ <« <«
fix) = [max{Tmean(£)}
+ max{Thign (0)}1/2
used for PSO and GA, respectively. The hyperparameters of PSO and
GA are shown in Table 5, which were the typical hyperparameter Table 7 o .
N . . Comparison of optimization results (CPU time).
settings used here [49-51]. The total number of iterations was set
to 200 for all algorithms. To determine the true optimal PCB layout Objective function  CPU time to obtain
(henceforth, ideal layout), all 7776 layout patterns were searched (Optimization to optimized PCB
. minimize f(x)) layout [s]
and f (x) fgr them were.evaluated in adyance. The pgrfgrmance of Searching all BO PSO GA
each algorithm was verified by comparing their optimized layout layout patterns
with the ideal layout. The CPU time consumed by each algorithm 9836 183 866 691
was compared. All the simulations were conducted on a Windows ﬁ"g = maX{{TTm"((tt))}} N 163 738 438
. . X) = max i
workstation with AMD Ryzen9 3950 x 3.49 GHz and 16 GB mem- high 1 62 38 495

ory. Note that previous studies [12-18] did not make comparisons
with the ideal layout.

5. Optimization results

Tables 6 and 7 show the comparison of optimization results,
that is, values of f(x) of the optimized PCB layout, and CPU time,
for each algorithm including all layout pattern searches. With 200
iterations, three algorithms reached the same layout as the ideal

fix) = [max{Tmean(t)}
+ max{Thign (5)}1/2

layout regardless of the f (x) case. BO reached the ideal layout
in approximately 1/150-1/90 of CPU time for all layout pattern
searches, and in approximately 1/5 and 1/4 of the CPU time of PSO
and GA, respectively. The swarm size and the population size af-
fect the CPU time of PSO and GA, respectively. In this case, because
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Fig. 10. Optimized component placement by BO w/o restrictions (i) and (ii).

both sizes are set to 50, PSO and GA must evaluate 50 layout pat-
terns per iteration. By contrast, BO evaluated one layout pattern
per iteration. As the transient temperature simulation per layout
pattern takes a long CPU time, PSO and GA must take a longer
CPU time per iteration than BO. This is the major reason for the
increase in CPU time for PSO and GA. By the authors’ trial, reduced
population and swarm size (i.e., population size and swarm size of
5) actually shortened the CPU time but resulted in incorrect op-
timization. The performance of PSO and GA may be improved by
further careful tuning of hyperparameters; however, this is time
consuming. It is noted that BO was still faster than PSO and GA
with population and swam size of 5. These results imply that BO
can be a time-efficient algorithm for PCB layout optimization cou-
pled with the transient temperature simulation.

Fig. 8(a) and (b) show the optimized layouts (which are iden-
tical to the ideal layouts) obtained by BO in three f (x) cases,
respectively. In the figures, the corresponding time variations of
each chip temperature and Tmean(t) 0r Thigy(t) are also shown. In
Fig. 8(a), Tmean(t) reaches the maximum value at approximately

t = 1200s. This maximum value is the temperature of Chip A,
which has the highest total heat generation, as shown in Table 1.
In this case, because the chips should be evenly distancing to min-
imize f (x) = max{Tmean (t)}, it would be easy for us to predict
a similar layout pattern intuitively. By contrast, in Fig. 8(b), with
the optimization to minimize f (x) = max{Ty;g, (£)}, Chips B and C
are arranged close to each other, and Chip A is mostly distancing
from the other chips, which would not be easy for us to predict
intuitively. This indicates that the optimized layouts are reasonable
and that the thermal design optimization using BO is effective.

6. Applying BO to extended problem settings

In the actual thermal design of PCBs, the number of layout pat-
terns can be even greater. To test the performance of BO in such
a case, BO was applied to an extended problem setting in which
the restrictions (i) and (ii) described in Section 2.2 are removed.
In this case, the number of possible layout patterns is approxi-
mately 10 million. The optimization for f (x) = max{Tyg, (t)} case
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was performed. Fig. 9 shows the evolution of the value of the ob-
jective function with respect to the number of iterations. The val-
ues of f (x) at the 20, 200, and 2000 iterations are shown in the
graph. Fig. 10 shows the corresponding optimized layouts and the
time variations of the chip temperature and Ty, (t) for the opti-
mized layout at 2000 iterations. From Fig. 9, the value of f (x) is
updated as the number of iterations increases, reaching 90% of the
2000 iterations’ value at 200 iterations. T;g, at 200 and 2000 iter-
ations were reduced by 2.79 °C and 2.9 °C, respectively, compared
to the Tyg (90.20 °C) under restrictions (i) and (ii), as shown in
Table 6 in Chapter 4. Fig. 10 shows that Chips A and B were op-
timized to maintain distance from the other chips. This is because
the heating power of Chips A and B is relatively larger, as shown
in Table 1, so they are placed farther distancing from each other to
lower Tig,. Comparing the temperature trends in Figs. 10(c) and
8(b), the temperature of Chip A decreases. The CPU times for 200
and 2000 iterations were 434 s and 16676 s, respectively. Based
on the results in Chapter 5, the estimated CPU times for 2000
iterations for PSO and GA are 160,000 s, which is approximately
10 times longer than that of BO. Similarly, the CPU time required
for the simulation of all layout patterns search was estimated to
be about 140 days, and BO was able to optimize at approximately
1/1000 of the time for all layout pattern searches. From these re-
sults, the high speed of BO was confirmed in the extended problem
setting. However, it is reported that the computational complexity
of BO tends to increase with the number of iterations [48]. This
fact was also confirmed by the present result. The CPU time for
2000 iterations was 38 times higher than that for 200 iterations.
This characteristic should be considered when performing the op-
timization by BO. In the present case, 200 iterations were found to
be appropriate to obtain a nearly optimal layout pattern.

7. Conclusion

Bayesian optimization (BO) combined with the Iumped-
capacitance TNM was applied to the layout optimization of an elec-
tronic PCB with transient heating chips, and its effectiveness was
verified by fundamental case studies. To evaluate the value of the
objective function of the examined layout, a transient heat trans-
fer simulation was performed per layout taking into account the
different temporal variations of the heating power of the heat-
generating chips. As a result, BO reached the ideal layout in ap-
proximately 1/150-1/90 of CPU time for all layout pattern searches
and in approximately 1/5 and 1/4 of the CPU time of other algo-
rithms (PSO and GA), respectively. Furthermore, BO was applied
to the extended problem setting with possible layout patterns of
10 million. BO found a reasonably best layout, which achieved
90% of the objective function value of 2000 iterations, at 200 it-
erations in approximately 7 min only. All layout pattern searches
would have required 140 days, and BO took only 1/1000 of that
time for optimization. In addition, by comparing it with other al-
gorithms (PSO and GA), the effectiveness of the present method
was demonstrated for the PCB layout optimization problem that
requires a transient heat transfer simulation. In future research, it
will be necessary to upgrade to a more realistic model that also
considers more complicated circuit board structures such as multi-
layered structures (chip, die bonding, heat spreader, etc.) and con-
tact thermal resistances between the layers and also conditions
such as temperature dependent heat transfer coefficient.
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