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The power electronic transformer (PET) is one of the promising equipment of the energy Internet. In a distributed
network, cascaded (cascaded full-bridge, CFB)-type PETs can withstand high-voltage stress and contain a low-
voltage DC (LVDC) port, which provides access for distributed generation (DG). However, the hardware cost
of the traditional CFB-type topologies remains high, and structure compactness can still be improved. The

recently presented mixed-frequency conversion cascade PET (MFCC-PET) is one of the promising solutions. In
this study, a comprehensive circuit design of MFCC-PET, a low-voltage distortion nearest-level pulse width
modulation (NL-PWM), and a sub-module (SM) voltage balancing strategy for the proposed modulation method
under mixed-frequency conversion are presented. A 100 V/2,000 W MFCC-PET prototype is built based on the
above analysis and successfully placed into operation.

1. Introduction

THE PET is an essential equipment with the abilities of power con-
version, electrical isolation, voltage transformation, power factor
correction, and power flow control. Moreover, it contains an LVDC port,
which provides access for DG.

PETs are classified into three [1], namely, single-stage [2,3], two-
stage [4-6], and three-stage structures [7-16]. The three-stage struc-
ture contains DC stage at HV and LV sides, providing strong controlla-
bility, good power quality characteristics, and multiple ports. Thus, it is
widely studied.

In medium-/high-voltage applications, a substantial device number
of high-frequency transformers (HFTs) and power switches in three-
stage topologies result in two problems: 1) High hardware cost. HFTs
and power switches dominate the cost of PET hardware [17], and
reducing the device number of HFTs and power switches contributes to
reduced cost [1]; 2) Not compact enough structure. In medium- and
high-voltage applications, although the volume of a single HFT is small,
too many HFTs occupy a large volume because of insulation gaps be-
tween each device [17]; thus, reducing the device number of HFTs can
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increase the power density of PET. Power switches with different current
capacities can be accessorized in the same package [18,19]. Using one
power switch with a high current capacity rather than using several
power switches with a small current capacity can improve the
compactness of the converter valve.

Cost and volume have become the main factors affecting the appli-
cation of PET [1]. Reducing costs and improving structural compactness
have become essential requirements for PET in real applications.

A two-stage CFB topology is proposed by [20], in which DC capaci-
tors exist on the HV and LV sides of HFT; this topology reduces the
number of HFTs and LV-side power switches. The main advantages and
benefits of this topology are lower hardware cost and compact structure
due to the small device number of HFTs and power switches. Moreover,
it has fewer high-frequency conversion stages, making the consistency of
the parameters easy to achieve. The HV side of this topology achieves a
single-stage low-frequency AC to high-frequency AC power conversion
by generating line-frequency and high-frequency voltages through CFB
at the same time; thus, it is named MFCC-PET in this work. Similar
studies can be found in [21].

The above research on MFCC-PET has already made some progress in
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the aspects of topology, function principle, and performance compari-
son. In this work, the studies of MFCC-PET in the following aspects are
discussed: (1) A circuit design is presented. (2) A low-voltage distortion
NL-PWM method is proposed, and the implementation of mixed fre-
quency conversion is presented on this basis. (3) Experiments are carried
out based on a 100 V/2,000 W prototype.

2. Circuit design
2.1. Topology

The topology of MFCC-PET is shown in Fig. 1 [20]. The three-phase
configuration is a combination of three single-phase ones.

Fig. 1a shows a simple single-phase structure of the MFCC-PET. The
CFB functions as a multi-frequency voltage source. Filter inductor Lf
serves as a low path filter (LPF). Resonant capacitor Cr and inductor Lr
operate as a band pass filter (BPF), wherein Lr can be integrated into
HFT Tr.

The MFCC-PET is based on the principle of mixed-frequency con-
version: Part of the SMs output a line frequency sinusoidal voltage, and
the other part of the SMs output same-phase square-wave voltage. A
filter circuit separates the low-frequency components and high-
frequency components output by CFB. Therefore, the energy exchange
with the power grid and HFT can be realized at the same time. In this
way, the series connection of two-stage sub-modules can be avoided,
thereby reducing the number of HFT and power-switching devices.

The three single-phase bridge arms in Fig. 1a are star-connected, as
shown in Fig. 1b. Three separated HF paths on the primary side are used
in the type 1 circuit. The DC ports of the three secondary-side full-bridge
SMs (FBSMs) are parallel connected to provide a LVDC bus. The DC/AC
in the LVDC bus, not shown in Fig. 1b, converts LVDC to LVAC.

Three single-phase PETs are combined to form a three-phase topol-
ogy type 1 structure, as shown in Fig. 1(b). In the figure, the three phases
of the LVDC side are connected in parallel to improve the flow capacity;
the three phases can also be connected in series to improve the with-
stand voltage level. In terms of control, the high-frequency electricity
output by the three-phase CFB on the high-voltage side is set to be in
phase, and there is no neutral line without a zero-sequence path on the
high-voltage side and high-frequency current will not be generated on
the grid side.
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Fig. 1. Topology of MFCC-PET.
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In order to further reduce the number of HFTs and the number of
low-voltage side power switching devices, the three-phase resonant LC
ends are connected to one point to form a midpoint, and the neutral line
is drawn from the midpoint. The common point of the three-phase to-
pology constitutes a type 2 structure as shown in Fig. 2. In this fig., Lrx
(x = abc) and Crx form a band-pass filter in series to limit the trans-
mission of power frequency current and high-frequency associated
current between phases; Lrx, Crx, Lrnp, Crnp, and low-voltage side
neutral line inductance Lrns, Capacitor Crns constitutes a band-pass
filter to limit the injection of power frequency current and high-
frequency associated current into the HFT.

Other benefits: (1) In the type 2 structure, the HFT is located in the
neutral line, so there is no positive sequence and negative sequence
current in the transformer current, which is beneficial to reduce the HFT
current. (2) Type 2 structure has high-frequency interphase paths on the
high-voltage side that can exchange three-phase energy on the high-
voltage side without HFT, which is useful for three-phase unbalanced
control and sub-module capacitor voltage fluctuation stabilization.

Considering the three-phase type 2 structure is a modification of the
type 1 structure, in the following, the type 1 structure is studied.

2.2. Function principle

The following part describes the power decoupling of MFCC-PET to
show how the input stage control of MFCC-PET can be same as CFB-PET.

For the CFB bridge arm, assuming that the number of SMs outputting
square-wave voltage is 6N (6 is the proportion of sub-modules outputting
power frequency sine to the total, N is the total number of submodules.
0 < 6 < 1, and 6N is an integer), the number of SMs outputting the si-
nusoidal voltage is (1-5) N.

Thus, the sinusoidal voltage of bridge arm is:

Uymg = (1 — §)MNUsysin(w,t + ¢,) (@D

Where M is the modulation ratio, wy is the line frequency, ¢q is the
initial angle, Uy, is the submodule voltage.
The RMS of the square wave voltage is:

Usmn = 0NUsm 2

For the input stage, according to the relationship between voltage,
current and impedance (VCR), iz can be obtained:

. 1

g = L (tty — tharm g )t =
1 .
o [y — (1 — 8)MNUsysin(wyt + @,)]dt 3)
Where ug is the grid side phase voltage, Lt is the inductance value of
the bridge arm; ug is the grid side phase voltage, ¢y is the initial angle of
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Fig. 2. Three-phase type 2 structure.
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Ug.
According to (1) and (3), the instantaneous power between CFB and
the network per phase is:

SCFB.g = Uarmgly =
e / [y — (1 — S)MNUsysin(wyt + )] dt @
In which the magnitude of the active power is:

Where Upm,g is the bridge arm rms voltage, Uy is the grid side phase
rms voltage, 6 is the power angle.
The magnitude of the reactive power is:

Pcrpg = |sind)| (5)

Uarm = U,y |U,
QCFB,g ~ } 8 g| e _

Cl)gL(‘
[(1 - 8)MNUsw/v2 — U, |U,

ouLs ©

From the above analysis, the power of the input stage only relates to
the line-frequency sinusoidal voltage U,., without the high-frequency
one. Therefore, the power decoupling character is achieved. Thus, the
operating principle of the input stage of MFCC-PET is the same as that of
CFB, as well as the control.

2.3. Circuit design

The following part describes the design method of the circuit com-
ponents, including reactors and capacitors.

The HV-side CFB functions in unit power factor; thereby, the RMS of
g is:
I = P CFB,g %)

g Ug

The high-frequency conversion stage contains an LC serial resonant
tank, and the square-wave voltage on the HV and LV sides are in phase
[20]. Under such open-loop control, HFT current iyx (x = a, b, ¢) isin a
quasi-sine wave, and the ZCS [27] of the LV-side power switches is
obtained. The LVDC voltage can be adjusted within a small range by just
changing the capacitor voltages of CFB.

Since the power balancing principle, ignoring the power loss, the
power of the line-frequency port should be the same as the power of the
high-frequency side:

4
hUymn—7= = 1, U, (8)
h hﬂ\/i gle
Therefore:
.U
[, =—=S"° 9
" 22U ©

According to (7):

_ 7PcrB g
2V/26NUsy

The RMS current of HFT depends on the LV-side loads, therefore,
Pcpp, = P, thus:

h (10)

Py

_ 11
2v/26NUsy an

Iy
Where P, is the absolute value of the power of LV-side loads per
phase.
Furthermore, according to (7) and (11), as well as the power balance:
PCFB,g = PL; the RMS of iarm is:
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P\’ ( 7Py )2
Lm = — _ 12
\/(Ug> * 2v/2 6NUsy 12

Ignoring the line-frequency voltage drop of the AC filter, Uaym,g = Uy,
thereby NUgy = \/ﬁUg/(M(l—rS)), thereby, I, can be rewritten as:

(1 - 8)aMP,
=~ 13
h s (13)

Then, the RMS of iy, is:

(PN [ = 8)amP P

=y () [ as
According to (1), N should satisfy:

N V2Uing . V2U, (1s)

(1 —8)MUsy (1 — 6)MUsy

Assuming:

./ (L)%#):
o (1 - 5)MUSM Ug 2\/§§NUSM

| () + [ ]

2
S
(1 - 8)MUsuU, 2v/26Usm
\/{ V2P ]ZJF( o )2_£ __ . (16)
(1=o)MUs] " \2v26Usu) ~ Usw\| (1—07M> 88
Assuming:
2 7’

p= a7

(1—8)°M2 T

NI,y decides the current capacity requirement for power switches.
When Py, and Ugy are specified, the only factor that affects the value of
NI,y is ; therefore, it can be used to investigate the influence of § on the
total current capacity of power switches. The universal used modulation
ratios are investigated assuming M = {0.75, 0.80, 0.85, 0.90, 0.95}
[7-16]; according to (17), the curve of f versus § can be obtained. Fig. 3
shows that when § €[0.4, 0.5],  is small. When 5 = 0.5, 6N is an integer
if N is even; it has good universality, such that 5§ = 0.5 is studied in this
work.

An equivalent circuit of the single-phase high-frequency conversion
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Fig. 3. Curve of f vs. 6.
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stage is shown in Fig. 4. A full-bridge SM represents the CFB. R; is the
equivalent series resistance.

Design requirements for L;, and C, are as follows: 1) Resonant
angular frequency is wp; 2) Reduce loss: the RMS of the line frequency
current in the high-frequency conversion stage — I,¢ is no larger than oI
(o1 > 0), 3) Reduce loss: the RMS of the switching harmonic currents in
the high-frequency conversion stage — I,s is no larger than o5 (63 > 0),
and 4) Reduce voltage stress: the peak of resonance voltage across Ly
and Cyp, - Uy is no larger than 63Uy (03 > 0).

Normally, the power loss on R; is small compared with that on the
power switch. R; can be ignored, and (18) can be obtained according to
1):

1

N

Similarly, (19) can be obtained according to (2):

Wy (18)

Ug

< o] 19
_ngrp_O'lh 19)

1
wgCrp

Combining (18) and (19), (20) can be obtained:

U,w, 14U, w,

> = = .
"o (a)h2 - wgz) o\ wMPy ((0h2 — (ug2) Lip min (20)

Similarly, according to (4), (21) can be obtained:

2xMP
Us = V2IyonLey = VarMPLonLy < 63U,
4U,
2v205U,° 2
LU o0y, @1
TMPy wy 2w,

Larger Ly, improves the frequency selection characteristics of the
resonant tank, thereby reducing the harmonic currents in the high-
frequency conversion stage. Thus, combining (20) and (21), the
maximum of L, is adopted.

Furthermore, according to (18), Cy is:

1

Cp=——
P mehz

(22)
The frequency of the switching harmonics can be or around the LC

serial resonant frequency. R, cannot be ignored when calculating the

switching harmonic current. According to (3), I is as follows:

2

= Uams = MP,
= 35 [ s

wy=0

1 2
Zy = \/R,z + (a)yLrp - ﬁ) (23)
y&rp

where Uam,s is the switching harmonics of Uym. It is affected by the
modulation method of the CFB stage, and in this work, Uam,s can be
found in (46).

Lyp and Cyp, can be determined by (21) and (22) because wy is already
known, and wy is related to HFT. Thus, only the equivalent PWM
switching frequency ws can be adjusted to satisfy the restriction in (23).

HV LV
Cfp Lrp in

A
v |

Fig. 4. Equivalent circuit of high frequency conversion stage.

Ry T
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The lower limit of @ can be obtained by taking Uurm s into (23).

Next, the analysis below considers the influence of the SM capacitor
voltage ripple on iy. The output voltage of the CFB bridge arm can be
written as a sum of three parts:

Uayrm = Uarm,g + Uarmp + Uarm s 24)

Ignoring the switching harmonic current and considering the refer-
ence direction, as shown in Fig. 1b, the bridge arm current is the sum of
two parts:

farm = ig —ip (25)
According to (24) and (25), bridge arm charging power is:

Pym = Mamlam = (uurm.g + Uyrmn + Murm.s) (lg - lh) =
(uarm,gig - uarm,hih) +

( - uarm.gih + unrm,hig + uarm.sig - iarm.gih) (26)

The charging power of the bridge arm reflects the charging power of
the SM capacitors. The high-frequency voltage ripple is small because
the SM capacitor is a low-pass filter. According to the Product to Sum
Formula: uamgl; contains DC and double-line frequency components,
and uurm hih includes a DC component. Available from the power bal-
ance, the DC components of Uy gig and Uarm hin are canceled by each
other, and the double-line frequency component of uarm gig is the same as
that of the traditional CFB-type PET. Considering that wp>»wg and the
bridge arm equivalent switching angular frequency w; satisfies ws>wy,
Uarm,gih, Uarm,hig, and Uarmsig only contain high-frequency components.

To eliminate the low-frequency components of uarm sih, @s and oy
should satisfy:

O — >0, 27

Once (27) is satisfied, the main voltage ripple of the SM capacitor in
MFCC-PET is consistent with that of the traditional CFB type PET, and
the method in [22] can be obtained to design the SM capacitor of MFCC-
PET.

The voltage ripple of SM is mainly in double-line frequency. Assume
its peak is 64Ugym (04 > 0) and the peak of the modulation wave of the
high-frequency square-modulation is 1 (unit). According to the Fourier
Transform, the peak of the fundamental of a high-frequency square
modulation wave is 4/z (unit). Furthermore, according to the Product to
Sum Formula, when line frequency f; = 50 Hz, the RMS of f, &= 100 Hz
voltages, which are generated by the product of the SM capacitor double
line-frequency ripple and high-frequency square modulation wave is:

71 1 4»1\](74ljsy\/[7264l]g

Uarm = Uarm. - =5 =2 = 28
SMh-+ SMh 2an 2 P (28)
The RMS of the HFT injection harmonic current by Upaim smns and
Uarm,sMh- is:
20'4 Ug
Ihsmnt =

2
ﬂM\/er + |:277,'(ﬁ1 +100)Lpx — m]

204Ug

2
;rM\/er + [2n(fh —100)Lypx — m}

(29

Ih‘SMh— =

Available from (29), adjusting o4 to limit the HFT harmonic current
is effective. When Uy = 5.77 KV, f; = 50 Hz, M = 0.75, 3P, = 1 MW, 01 =
02 =3 %, fn = 2.1 kHz, R, = 0.01 % p.u., 03={15, 10, 5}, and 64={1 %, 2
%, 5 %, 10 %}, the ratios of the RMS of the sum of in smh and ih,smh- to Iy
are shown in Fig. 5.

Fig. 5 shows that the injection harmonic current accounts for a small
amount when o4 < 2 %. The proportion of harmonic currents does not
exceed 10 % when 04 = 5 %, 03 = 10, or 15. The proportion of harmonic
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Fig. 5. Proportion of HFT harmonic currents generated by the 2nd order har-
monic ripple of SM capacitor voltage under different o3 and o4,

currents exceeds 10 % when 64 = 10 %. When 64 < 5 %, selecting the U,
= 10U, = 57.7 kV is a balance of harmonic current and LC voltage stress.

The resonant voltage is extremely high, and the following methods
can be used to reduce the LC voltage stress:

(a) Resonant inductor can be placed on the LV side;

(b) The HV side only keeps the necessary capacitance to satisfy
design requirements (2), others can be placed on the LV side: According
to (21), the minimum resonant inductance Ly, min required is 1/8.9 of the
selected inductance Lyp,max, in other words, to satisfy design require-
ment (2), the maximum resonance capacitance Crp max is 8.9 times of the
selected capacitance Cyp min. Thus, it is only needed to retain Cyp max 0D
the HV side. Thereby, the peak value of the resonance voltage across Cyp,
max 18 57.7 kV/8.9 = 6.5 kV, and its RMS is 4.6 kV. Considering the line-
frequency phase voltage, the RMS voltage across Crp max is 7.4 kV. An 8
kV high-frequency capacitor [23] is available for this application.

(c) Adopting the basic-function-unit cascade structure [20], the
voltage stress of LC is inversely proportional to the number of cascaded
basic function units.

In summary, the existence of an SM capacitor voltage ripple makes
the resonant voltage of L, and Cy;, the strictest condition for design. So,
once o3 is determined by the manufacturing level of Cyp, from (1), Lyp
and Cyp, is acquired.

3. Modulation design

To achieve the mixed frequency conversion in section II, the NL-
PWM is considered. First, to further reduce the voltage distortion of
the traditional triangle carrier NL-PWM [24], in this section, a sawtooth
carrier NL-PWM is proposed. Then, the implementation of mixed fre-
quency conversion based on the proposed modulation method is
studied.

3.1. Sawtooth carrier NL-PWM
For NL-PWM, one SM is in PWM state and the other SMs are in stair

wave modulation state. Taking phase-a as an example, the stair wave
voltage Ustair of CFB is:

7 U'ao
Ugn d =, —-N < d ~ | <N
roun < Uor ) roun < Uor )

Um(N — 1), round([} > >N (30)

Ustair =

—Ugn(N — 1),round<’:]“'°) < —-N

sm

Where u*, , is the phase-a reference voltage of CFB, it is a sin-wave
voltage.
According to Fourier Series, the standardized spectrum of uy;; is:

© 2N-2

Ustair 2
U~ Z Z cos(nyy)sin(ny)

n=135--
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k - 1
, N 2N
T — arcsin | ~— |k

Yk = 31
1.57,k=0
0.57,k=2N —1

Where round(x) is the rounding of x.

According to (30), Fig. 6 can be obtained.

Furthermore, the standardized phase-a PWM reference is:

M*PWM,a _ @ _ Ustair (32)
Usm Upmi U

The circuit of full bridge SM is shown in Fig. 7.

Based on the sawtooth carrier and unipolar modulation, for one SM,
the PWM reference voltage, the carrier, and the SM output voltage are
shown in Fig. 8.

According to Fig. 8:

- Ugnx € [0 — 77)
tat o1 (%) = { Ox € [00 — 7) U [n2x) (3
| Ugnx € [00)
tpt 1 (¥) = { Ox € [627) G4
i
IP\‘,VM = Uplnl (X) = upl,ol(x) - unl‘ol(-x) (35)
0 = n(MNsiny+N — 1 —k),k =0,1,2, -+, 2N — 1 (36)
The double Fourier Series is [25]:
Aoo =
u(t) =u(x,y) =—+ Z Agncos(ny) + Bonsin(ny) | +
Z[Amocos(mx) + Buosin(mx) ] +
m=1
0 +o00
Z Z [Amncos(mx + ny) + Bugsin(mx + ny) |
m=1 n=%+1
1 [ [ .
Apn + By = —/ / u(x, y)e ™) dxdy 37)
27[2 - -

According to (37), for the PWM voltage of CFB, the Fourier Co-
efficients are:

Aw
USlTl B 0 (38)
”*PWM’ lf?“’hit-k) llmpry(k)
1050y /
2 . =

-0.5Usm

-(N 1>

T, yl?[ yk+1" Voo Vo 31y 3myy

Vo2V Ve M1 Yo

Fig. 6. Bridge-arm modulation voltage, SM PWM reference voltage, and
bridge-arm stair wave voltage.
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Fig. 7. Circuit of full-bridge SM.
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Fig. 8. PWM carrier and the reference voltage of upper and lower bridge arms.

A n
U° =0,n#£0 (39
Ap =0,m#0 (40)
B
UOO =0 (41)
B 5 =2
LR MN+; Z COSYk (42)
sm k=1
Bo,, 2 2N-2
= cos(nyy),n =3,5,7- (43)
Um nrm ;
B, =
( _ l)mN+1 ooz
“0Sem i:2.4,6-~~Ji(mﬂMN)’m #0,n =42, +4, +6---
: 44
2

7[1,(,

N
P 1™ Jo(maMN) |,m # 0,n =0

Taking (38)~(44) into (37), the Fourier Series of the CFB PWM
voltage is:

i 2Uc o 2N-2
U pwMa = Z Z cos(nyy)sin(ny) +

n=1,35+ k=1

MNUgpsin(@yt) + 2Ugy Z Bosin(ma.t) +

m=2,4,6-
© +oo
Usn E B, nsin(mo.t + nat) (45)
m=2,4,6--- n=+1
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Summing (31) and (45), the Fourier Series of CFB bridge arm voltage
Uyo = MNUusin(@,1) + Upems =

MNUgpsin(@,f) + 2Ugy Z B,osin(ma.t) +

M2 6
0 +o0
2Ugm Z Z B, sin(mawct + nw,t) (46)
m=246- n—=+1

Furthermore, the Fourier Series of the ab line voltage is:

Uy = \/iMNUsmcos (w,t —E) +

3
0 +oo
W D, D Bux
m=24,6- p=+142 44
n#3r;reZ
Pia Pia
cos (mwct +not —n 5) sin (n 5) (47)

Taking N = 12, M = 0.75, and w./w; = 60 as an example [24], ac-
cording to (47) and [24], the line voltage spectrums of CFB based on the
sawtooth carrier NL-PWM and the triangular carrier NL-PWM under
unipolar modulation are shown in Fig. 9(a) and (b), respectively.
Although the sawtooth carrier NL-PWM has more abundant sidebands
than the triangular carrier one, the amplitude of sidebands is lower, and
the THDu (2nd-250th) is reduced by 24.2 %. The simulation results in
Section IV prove that the sawtooth carrier NL-PWM has a better quality
of line current than the triangular carrier.

For SM voltage balancing, NL-PWM uses the sorted method [26]. The
bridge arm current of MFCC-PET contains mixed-frequency compo-
nents. The criterion of voltage balancing is unique:

Taking ig > 0 as an example, assume that the output voltage level of
SM is Sw, Sw = 1 refers to the positive voltage level, Sw = O refers to the
zero voltage level, and Sw = -1 refers to a negative voltage level. In one
Th/2, the low-frequency current in the bridge arm can be regarded as a
constant because Tp/2<«Tg. According to the reference direction shown
in Fig. 1b, assuming that voltage balancing is conducted at t = 0, then for
every Th/2, the change of SM capacitor charge:

Th
2

AQnonPWM =Sw [ (lg — ih)dl (48)
0

According to (48), AQnonpwn is determined by the integration of Sw
and ig-i, between t = 0 and t = Ty,/2. Therefore, the sign of the above
integration should be judged first. Then, the suitable Sw should be
selected.

Assuming the above integration to 0:

B, — [Fiyde = 0 That is: ig| = 2/26 — I,, (49)

Available from (48) and (49), when |ig|=Ize, AQnonpwm = 0; When |
ig|>Ige, AQuonpwm and igSw share the same sign; When |ig|<Ige,
AQnonpwn and -ip Sy share the same sign.

According to the above analysis, the specific voltage balancing
method is as follows:

When |ig| <Ige and i, < 0, or |ig|>Ige and iy < 0: If u*pwp’ >0, the SMs

=4 X
) THD=3.25% | THD=4.29%
=2 =2
Q Q
g g
2o sl ﬁo Lt bl i
0 50 100 150 200 250 0 50 100 150 200 250
w/w, w/w,

a) Sawtooth carrier b) Triangle carrier

Flg' 9. Spectrum of the line voltage of NL-PWM.
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of the capacitor voltage from high to low in turn output: positive voltage
level (+), PWM, zero voltage level (0), and negative voltage level (-); If
u*pwm’ <0, the capacitor voltage from high to low in turn output: +, 0,
PWM, and -;

When |ig| <Ige and -iy > 0, or |ig|>Ige and iy > 0: If u*pww’ >0, the SMs
of the capacitor voltage from high to low in turn output: -, 0, PWM, and
+; If u*pwm’ <0, the SMs of the capacitor voltage from high to low in turn
output: -, PWM, 0, and +.

The above analysis does not consider the PWM SM. The change of its
charge has a minimal influence on the change of the bridge arm charge
because of only one PWM SM.

3.2. Implementation of mixed frequency conversion

To meet the requirements of mixed frequency modulation, NL-PWM
needs to simultaneously output three types of voltage: high-frequency
rectangular wave voltage, quasi-sinusoidal step wave voltage, and
PWM voltage. Due to the use of unipolar frequency modulation, both the
quasi-sinusoidal step wave voltage and PWM voltage are unipolar
voltages. However, to improve the utilization of DC voltage, high-
frequency rectangular wave voltage is bipolar voltage. Suppose high-
frequency rectangular waves are directly superimposed on the bridge
arm output of CHB. In that case, it will cause significant power backflow
due to the difference in positive and negative levels of the submodules.
Therefore, it is necessary to sum the high-frequency rectangular wave
modulation voltage with the quasi-sinusoidal step-wave modulation
voltage to obtain the total output level. Then, calculate the number of
sub-modules that need to be input and bypassed to achieve positive and
negative level cancellation.

The voltage balancing method is similar to the process described in
Section III A. Still, considering that there are a large number of sub-
modules outputting high-frequency rectangular wave voltage and only
one submodule outputting PWM voltage, in order to reduce the addi-
tional switching frequency generated by voltage sharing switching, the
voltage sharing switching time is set at the rising and falling edges of the
high-frequency rectangular wave.

4. Simulation verification

Simulation verifications are carried out by EMTDC/PSCAD. The
simulation model is shown in Fig. 1b. The HV sides and LV sides of PET
are connected to the 10 kV network and 0.75 kV LVDC loads, respec-
tively. The parameters of the simulation model are shown in Table 1.

Simulation results of grid voltage and current with triangular carrier
and sawtooth carrier NL-PWM under-rated power is shown in Fig. 10(a)
and (b), respectively. The three-phase voltage and current are in phase,
realizing unit factor control. In Fig. 10(a), THDi (2nd-39th) is 1.31 %,
and THDi (2nd —-250th) is 1.72 %. In Fig. 10(b), THDi (2nd-39th) is 1.19
%, and THDi (2nd -250th) is 1.57 %, indicating that THDi is reduced by
9.2 % and 8.7 %, respectively, by adopting the sawtooth carrier NL-
PWM.

Simulation results of the CFB bridge arm current and the LVDC
voltage are shown in Fig. 11. The bridge arm current contains line-

Table 1
Simulation Parameters of MFCC-PET.

Rated power Py/ Line voltage Line frequency  Standardized filter

kw Ug/kV fo/Hz inductor L¢/p.u.

1000 10 50 0.05

Rated voltage of Number of SMs Resonant Resonant capacitor
SM Usm/V per phase N inductor Crp/nF

Lyp/mH

900 24 84 68.4

Frequency of HFT =~ PWM carrier Ratio of HFT LVDC voltage
fu/Hz frequency f./Hz n Uae/V

2100 3000 10.8:0.75 750
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Fig. 11. Waveform of bridge-arm current and LVDC voltage.

frequency components and high-frequency components, which is in
accordance with theoretical analysis. The RMS current is 62 A, which
has a small difference from the theoretical value of 67.1 A by (11). The
ripple of LVDC voltage is less than 1.07 %.

The simulation results of the voltage and its dispersion of the 24 SMs
of the CFB bridge arm under rated load are shown in Fig. 12. The
maximum dispersion of SM voltage is 18 V (2 %), indicating good
voltage balancing. The SM capacitance is 1,375 pF, and the peak ratio of
the SM voltage second-order ripple is 2 %, which is equal to CFB-PET
[22]. Fig. 12(d) shows that when t = 1.6 s, power reverses, and the
SM voltage reaches a steady state 0.8 s later. During the whole process,
the SM voltages are well balanced, which verifies that the proposed
control can ensure the voltage balancing of SM.

Simulation results of grid current, HFT LV-side current, and LVDC
voltage when load drops from 1 MW to 0.8 MW are shown in Fig. 13.
When t = 1.6 s, load drops 0.2p.u., and only after 0.3 s, steady state is
obtained.

The line voltage spectrum of sawtooth carrier and triangular carrier
NL-PWMs are shown in Fig. 14(a) and (b), respectively. Comparison of
Figs. 14 and 8 shows that the theoretical analysis and simulation results
agree. The THDu (2nd-255th) of the sawtooth carrier NL-PWM is 24.2 %
lower than that of the triangular carrier one.

5. Experimental verification

The experimental setup is shown in Fig. 15. The experiment verifi-
cation is conducted according to the prototype parameters in Table 2.

The experimental results of the HV-side AC voltage, current, and
LVDC voltage under rated load are shown in Fig. 16. The voltage and
current are in phase. The AC voltage contains a small amount of high-
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Fig. 15. Experimental device.

Table 2
MFCC-PET Prototype Parameters.

Rated power Py/ Line voltage Line frequency Filter inductor Lg/
kw Ug/V fo/Hz mH
2 100 50 1.6
Rated voltage of Number of SMs per ~ Resonant Resonant
SM Usw/V phase N inductor capacitor Crp/pF
Lyp/pH
52 4 500 12
HFT frequency f,/ Carrier frequency Ratio of HFT LVDC voltage
Hz fo/Hz n Uge/V
3000 3000 1.2:1 80

2 Ss0
o T phaseA phaseB phaseC‘
= 2o / \ 7 \ 7 \
7 8 0 / / § \g / } }i { 5 ug
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=
> 5207
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Fig. 16. Experiment waveforms of the inputs and outputs of PET.

order harmonics because the network is formed by a Chroma power
source, which has an internal impedance. The THDi (2nd-39th) is only
1.52 %. The LVDC voltage is 80 V, which is consistent with the rated

value, and the voltage ripple is very small.

60
g 23 OL phaseA phaseB phasecu
I 255 |
2o 0 |
= & i

-60 e

-60 50 40 -30 -20 -10 0 10 20 30 40
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Fig. 17. Experiment waveforms of the bridge-arm current.
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The experimental results of HV-side three-phase bridge arm currents
are shown in Fig. 17. The bridge arm current contains low-frequency
components and high-frequency components, reflecting the character-
istics of the mixed-frequency conversion.

The experimental results of HFT secondary side voltage and current
are shown in Fig. 18. The voltage and current are almost in phase. By
Fourier Transform, standardizing the current shown in Fig. 19(a) by the
magnitude of 3 kHz component, the spectrum is shown in Fig. 19. Ac-
cording to Fig. 19, except for the 3 kHz component, the amplitude of the
other components is small. The amplitude of the 50 Hz component is
about 3.2 %, which has a small difference with the design value 3.09 %.
The total content of the PWM harmonic current and the harmonic cur-
rent caused by the SM voltage ripple is 13.2 %, and its error from the
design value of 11.5 % is reasonable. The resonance voltage for the
prototype is 2Ug, and harmonic currents can be further reduced by
increasing the resonance voltage.

The experimental results of the voltages of the four SMs of the CFB
bridge arm are shown in Fig. 20. The voltages of the four SMs are well-
balanced. The standardized spectrum of SM capacitor voltage is shown
in Fig. 21. Voltage is standardized by the DC component. The SM voltage
ripple is mainly in double-line frequency, and its amplitude is 3.6 %,
which is slightly less than the theoretical value of 3.8 %.

The experimental results of PWM voltage of CFB, three-phase AC
currents, and LVDC voltage when load steps up from 1,000 W to 2,000 W
are shown in Fig. 22. The results based on sawtooth carrier NL-PWM and
triangular carrier NL-PWM are shown in Fig. 22 a) and b), respectively.
Load steps up at t = — 37 ms. During the dynamic process, the AC
current is not distorted and reaches a steady state after three line-
frequency periods. During the dynamic process, a drop of 8 V (0.1p.u.)
occurs in the LVDC voltage, and the LVDC voltage restores the rated
value after three line-frequency periods. The results show that MFCC-
PET can handle the dynamic state.

The spectrum of steady-state current in Fig. 22 is shown in Fig. 23.
The voltage is standardized by the magnitude of 50 Hz component.
Comparing Fig. 23(a) and (b), the sawtooth carrier NL-PWM has a
smaller amount of current harmonic than the triangular one, especially
the high-order harmonic. Fig. 23(a) and (b) show that THDi (2nd-39th)
are 1.52 % and 1.82 % respectively, indicating that sawtooth carrier NL-
PWM has 16.5 % less THDi than the triangular carrier. The THDi
(2nd-300th) are 2.16 % and 2.46 % respectively. The THDi of sawtooth
carrier one is 12.2 % less than the triangular one.

The experimental results of the capacitor voltage of the four SMs of
the phase a CFB bridge arm when the load drops from 2 kW to 1 kW are
shown in Fig. 24. The LVDC load drops at t = — 20 ms. The voltages of
the four SMs are well-balanced during the whole dynamic process.

The above experimental results show that the topology and control of
MFCC-PET have good input and output quality as well as dynamic and
steady-state performance.

80 86 40
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-80 L 4 -40
-1.2 08 -04 00 04 08
;80 HFT voltage 40 :E
T 40 HFT current | |20 = =
g0 0 5
=-40 20T
80 40 B
-30 -25 20 -15 -10 -5 0 5 10 15 20

t(ms)

Fig. 18. Experiment waveforms of the voltage and current of HFT.
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