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Abstract 
The stochastic configuration network (SCN) is an incremental neural network 
with fast convergence, efficient learning and strong generalization ability, and 
is widely used in fields such as medical data analysis. However, SCN is mainly 
used for supervised learning and its performance is limited in the case of scarce 
labeled data. To this end, this paper proposes semi-supervised SCN (MR-
SCN) in combination with manifold regularization to make full use of unla-
beled data to improve the model performance. Experimental results show that 
MR-SCN can still maintain high classification accuracy with a small number 
of labeled samples, which is better than LapRLS, SS-ELM and LapSVM, and 
the training time is shorter, showing good learning ability and computational 
efficiency. 
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1. Introduction 

In many practical applications, acquiring a large amount of labeled data is usually 
costly, especially in fields such as medical diagnosis, autonomous driving, and 
natural language processing, where manual labeling is not only time-consuming 
and laborious, but may also require specialized knowledge. On the other hand, 
unlabeled data is often abundant and easily available, so how to efficiently utilize 
unlabeled data becomes a key issue. Supervised learning requires a large amount 
of labeled data but the labeling cost is high, and unsupervised learning only relies 
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on the intrinsic structure of the data and lacks clear guidance signals, which 
usually makes it difficult to achieve the effect of supervised learning. Semi-supervised 
learning emerges as a solution to efficiently and fully utilize cheap and easily 
available unlabeled data. This approach integrates the characteristics of supervised 
learning and unsupervised learning, leveraging the synergy between a small 
amount of labeled data and a large quantity of unlabeled data. It not only reduces 
dependence on labeled data and improve the model’s generalization ability while 
ensuring the accuracy. 

For the classification scenario of semi-supervised learning, the representative 
algorithms can be roughly divided into four categories, namely discriminant-
based methods [1] [2], difference-based methods [3], generation-based methods 
[4], and graph-based methods [5]. Among them, graph-based methods are 
hotspots in the field of semi-supervised learning, which abstract all data into a 
graph and use the graph to characterize the similarities between data pairs thus 
revealing the distribution of the data, but their essence is still propagated by 
labeling [6]. Manifold regularization is a semi-supervised learning technique 
based on graphs, which builds a manifold structure of the data. This enables the 
model to leverage the distribution information from unlabeled data, thereby 
enhancing its learning ability. 

Therefore, many researchers have combined the manifold regularization 
framework with different classification models to fully utilize the information of 
unlabeled data and improve the classification performance of the models. Zhao et 
al. proposed a semi-supervised broad learning system (SS-BLS) by combining 
manifold regularization with broad networks, which improves feature extraction 
and classification under limited labeled data by utilizing the information of the 
manifold structure of the data [7]. Belkin et al. applied manifold regularization to 
support vector machines (SVMs) and constructed semi-supervised SVMs to 
improve the model learning performance [8]. Huang et al. integrated the manifold 
regularization framework with extreme learning machines (ELMs), introducing 
semi-supervised and unsupervised ELMs to enhance the learning ability of 
ELMs with limited or unlabeled data [9]. And Li et al. introduced the manifold 
regularization framework into the multilayer extreme learning machine (ML-
ELM) and proposed the LAP-ML-ELM model to enhance the adaptability of deep 
learning methods in semi-supervised environments [10]. These studies show that 
manifold regularization has broad application prospects in enhancing the learning 
ability of classification models, especially in semi-supervised and unsupervised 
learning tasks, which can effectively utilize the manifold structure of data and 
improve the classification accuracy and generalization ability of the model. 

With the development of information technology and the improvement of data 
storage capacity, human society has stepped into the era of big data. Characterized 
by huge volume, rapid growth, and diverse types, big data has a profound impact 
on various fields, and at the same time brings challenges in data storage, 
management and analysis. In this context, machine learning (ML), as an important 
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branch of artificial intelligence, has attracted widespread attention because of its 
ability to automatically learn data patterns and make predictive decisions. 
Traditional analysis methods can hardly cope with the scale and complexity of big 
data, while deep learning (DL), as the core direction of machine learning, has 
made remarkable achievements in computer vision, natural language processing, 
financial forecasting and other fields with the help of the continuous evolution of 
neural networks (e.g., DBN, CNN, RNN). Advances in large-scale data and high-
performance computing devices have further boosted the development of deep 
learning, enabling it to play a key role in the age of intelligence. 

However, models such as CNN [11] and RNN [12] usually rely on the BP 
algorithm to calculate gradients layer by layer to update weights, which results in 
a complex training process, large number of parameters, and high computational 
cost. In contrast, randomized learning (RL) has shown broad prospects in the field 
of machine learning due to its efficient modeling capabilities. Randomized 
learning technology started in the 1980s and was further developed in the 1990s. 
Pao and Takefuji proposed the random vector function link network (RVFL) [13] 
[14], and Schmidt et al. proposed the random weight feed-forward neural network 
(FNNRW) [15]. The core idea is to randomly initialize the weights and biases of 
the hidden layer and use the least squares method to calculate the output weights, 
thereby simplifying the training process and improving learning efficiency. 
However, subsequent studies have shown that the universal approximation of 
RVFL and FNNRW depends on the number of hidden layer nodes and the range 
of random parameters, and whether the model can approximate the target 
function with high probability depends on whether the parameters are properly 
selected. To enhance the generalization ability of randomized neural networks, 
Wang and Li proposed the stochastic configuration network (SCN) in 2017 [16]. 
SCN adopts an incremental learning method and introduces a supervision 
mechanism to adaptively adjust the range of random parameters through inequality 
constraints to ensure universal approximation, reduce human intervention, and 
improve the learning accuracy and training efficiency of the model. 

In order to improve the performance and stability of SCNs, scholars have 
proposed SCNs based on L1 regularization [17], SCNs based on L2 regularization 
[18], and SCNs based on Dropout regularization [19], which reduce the over-
fitting during model increment. In addition, Wang and Li proposed a robust SCN 
using kernel density estimation method to calculate the penalty weights of the 
training samples, which improves the generalization of the learning model by 
reducing the negative impact of noise or outliers [20]. To solve the problem of 
time-consuming model training in SCNs, a bidirectional SCN algorithm [21] was 
introduced to categorize the addition of hidden nodes into forward learning mode 
and backward learning mode. In addition, block-based incremental SCNs [22] 
and hybrid parallel SCNs [23] were developed to improve the modeling speed and 
shorten the training time. Deep SCNs [24] were also developed based on SCNs, 
which provide faster and more extensive network generation. There are also other 
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excellent SCN-based models, such as deep stacked SCN [25], distributed SCN [26], 
etc. Although SCNs have many important variants and are widely used in areas 
such as hardware implementation, computer vision, medical data analysis, and 
fault detection and diagnosis, these models are mainly targeted at supervised 
learning tasks, and SCN models dedicated to semi-supervised learning have not 
yet emerged. In some cases, such as text categorization, information retrieval, and 
fault diagnosis, acquiring labeled data is both time-consuming and expensive, 
while a large amount of unlabeled data is simple and cheap to collect. Therefore, 
it is of significant research value to explore how to design a semi-supervised SCN 
by combining the unique supervisory mechanism of SCNs and its universal 
approximation properties with graph regularization frameworks, such as manifold 
regularization, in order to improve the learning efficiency while guaranteeing the 
learning accuracy. 

In this paper, we will explore the combination of SCNs and semi-supervised 
learning, aiming to improve the model’s learning ability on complex network data 
by constructing a semi-supervised learning framework based on SCNs. Through 
theoretical analysis and experimental validation, we hope to reveal the potential 
of SCNs in semi-supervised learning and provide new ideas and methods for 
future research. 

2. Preliminaries 
2.1. Stochastic Configuration Network (SCN) 

SCN is a stochastic incremental learning model proposed in the last few years, 
whose network structure can grow gradually according to the training data. 
Specifically, it starts with a simple small neural network, randomly configures the 
input weights and biases through a data-dependent inequality supervision 
mechanism, and gradually adds new hidden layer nodes until a predefined 
termination condition is met, then stops and successfully generates a SCN 
network model. This incremental structural growth allows the SCN to adaptively 
scale the network to accommodate data of varying complexity. 

Consider an objective function : d mf →  , then a SCN network with 1L −  
hidden nodes can be given by the following formula.  

 ( ) ( ) ( )
1 1

1 0
1 1
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L l l l l l l
l l

f g g b f
− −
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where x  is the input vector, ,1 ,2 ,, , ,l l l l m=  


β β β β  is the output weights of 

the l -th hidden node, lw  and lb  respectively represent the input weight and 
bias of the l -th hidden node, ( )lg ⋅  is the activation function of the l -th 
hidden node. In practice, the sigmoid function is frequently employed as the  

activation function, expressed as ( ) ( )
1, ,

1 e
b

g b
− +

=
+

w x
x w


. The residual of the 

current network can be expressed as  

 1 1 1,1 1,2 1,, ,..., .L L L L L me f f e e e− − − − − = − =    (2) 
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If 1Le −  does not reach the preset expected residuals, the hidden layer will add 
new nodes. We must create a new random basis function Lg  ( Lw  and Lb ) 
under the supervision mechanism, and then recompute the output weights Lβ . 
This adjustment ensures that the model 1L L L Lf f g−= + β  achieves a reduced 
residual error. 

In practice, let the input matrix be N d×∈X   and the targets matrix be 
N m×∈T  . Denote ( )Lh X  as the output of the L -th hidden node for X   

 ( ) ( ) ( )1 , , ,L L L Nh g g =  X x x


 (3) 

where ( ) ( ), , , 1, 2, ,L n n L Lg g b n N= =x x w  . The output matrix of the entire 
hidden layer can be written as  

 ( ) ( ) ( )1 , , .L Lh h=   H X X X  (4) 

The residual matrix is represented as ( )1
N m

Le ×
− ∈X  , where  

( ) ( ) ( )1, 1, 1 1,, , N
L q L q L q Ne e e− − − = ∈ X x x 


, 1,2, ,q m=  . According to the 

global approximation theorem proposed by Wang [16], a new set of random basis 
functions ( ),L L Lg bw  is generated when the residuals 1Le −  do not reach the 

pre-set target values . If the new vector Lg  satisfies the inequality  

 ( )
( ) ( )( )
( ) ( ) ( ) ( ) ( )

2

1,
, 1, 1,T 1 0,L q L

L q L L q L q
L L

e h
r e e

h h
ξ µ−

− −

⋅
= − − − ≥

⋅

X X
X X X

X X


  (5) 

then the new input weights Lw  and bias Lb  can enter the candidate node pool, 
and the size of the candidate pool is denoted by maxT , where ( )Lξ X  is defined as  

 ( ) ( ),
1

.
m

L L q
q

ξ ξ
=

= ∑X X  (6) 

The node with the largest ( )Lξ X  in the candidate pool becomes the added 
node. Then, the output weights can be obtained by the following optimization 
problem  

 * * *
1 2

1
, , , arg min .

L

L l l
l

f g
β =

  = −  ∑


β β β β  (7) 

Then, we have *lim 0L Lf f→+∞ − = , where * *
1

L
L l llf g

=
= ∑ β ,  

* * * *
,1 ,2 ,, , ,l l l l m =  


β β β β . 

2.2. Semi-Supervised Learning 

Manifold regularization is a semi-supervised learning approach based on graphs, 
which creates a manifold structure for the data. This allows the model to leverage 
the distributional information from unlabeled data, thereby enhancing its 
learning capacity. The core idea of this framework is that high-dimensional data 
is usually distributed on a low-dimensional manifold, so the model can be 
constrained by manifold regularization to make it change smoothly on the data 
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manifold, thereby improving the generalization ability of classification and 
regression tasks. The manifold regularization framework is usually based on semi-
supervised learning, combining information from labeled and unlabeled data, and 
mainly includes the following assumptions:  

Assumption 1 (Smoothness Assumption [8]) If two input samples 1 2,x x  are 
close to each other, then the corresponding conditional probabilities  
( ) ( )1 2| , |y x y x   should be similar. 
Assumption 2 (Cluster Assumption [8]) The decision boundary should be 

positioned within a low-density region of the input space X . 
Assumption 3 (Manifold Assumption [8]) The marginal distribution X  is 

defined over a low-dimensional manifold   embedded in X . 
Based on the above assumptions, the manifold regularization framework 

introduces an additional manifold regularization term into the traditional 
supervised learning loss function to maintain the smoothness of the model over 
the manifold structure. 

To impose the assumptions on the data, the manifold regularization framework 
minimizes the following loss function  

 ( ) ( )( )22 1 | | ,
2

N N

ij i jM
i j

f W= −∑∑ y x y x   (8) 

where ijW  is the pairwise similarity between two samples ix  and jx  and 

,i j N N
W W

×
  = , N  is the total number of samples, including l  labeled samples 

and u  unlabeled samples. Regarding the computation of W , according to the 
work in [27], W  can be defined by the Gaussian kernel function, i.e.,  

 

2

22
, e ,

i jx x

i jW σ

−
−

=  (9) 

where 0σ >  is the regulation parameter. 
It is well known that it is practically difficult to calculate the conditional 

probabilities ( )| iy x  and ( )| jy x . Therefore, for the convenience of 
calculation, the predicted output of the model can be used to replace the 
conditional probabilities and obtain the following approximate expression  

 ( )22 1 ,
2

ˆ ˆ
N N

ij i jM
i j

f W= −∑∑ y y  (10) 

where ˆiy  and ˆ jy  are the predictions for samples ix  and jx , respectively. 
By defining the total predicted output [ ]1 2,ˆ ˆ ,ˆ ˆ, NY = y y y  and the diagonal 

elements to be 1
N

ii ijjD W
=

= ∑  of the diagonal matrix D , we can simplify (10) to 
a matrix form  

 ( )2 ˆ ˆ ,Mf Tr Y Y=   (11) 

where N N×∈  is the Laplacian matrix and D W= − . Furthermore , in order 
to facilitate calculation, Belkin et al. [8] recommended using the normalized 
Laplacian matrix 

1 1
2 2D D

− −
=   instead of  . 
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3. Semi-Supervised SCNs Based on Manifold Regularization  
Framework 

In the practical applications of semi-supervised learning, a common situation is that 
labeled data is scarce while unlabeled data is abundant. This situation of uneven data 
distribution is one of the challenges that semi-supervised learning methods need to 
focus on. To fully leverage the substantial amount of unlabeled data and improve the 
classification accuracy in the presence of scarce labeled samples, we combine the 
SCN with the manifold regularization framework and propose a semi-supervised 
SCN algorithm called the MR-SCN algorithm. In semi-supervised learning, the 
dataset   is set to contain lN  labeled samples and uN  unlabeled samples, 

denoted as ( ){ }
1

,
lNl l l

n n n=
= x t , { }

1

uNu u
n n=

= x , where l uN N N= +  is the total 

number of samples. The traditional SCN is a supervised learning, which only needs 

labeled data for model training. For the labeled data set ( ){ }
1

,
lNl l l

n n n=
= x t , we can 

get the optimization objective function of the standard SCN as  

 

( )

2 2

1
min

2

s.t. , 1, 2, , .

lN

n
n

l l l
n n n

C

n N
=

+

= − =

∑

h x t ξ 

 

ξ β

β

 (12) 

where the first term is the loss function, nξ  is the training error vector of the 

output neuron corresponding to the training sample l
nx ,  

( ) ( ) ( ) ( ) ( )1 1 1, , , , , , , ,l l l l l
n n L n n n L Lg g g b g b   = =   h x x x x w x w   is the output of 

the hidden node relative to the input sample l
nx ; the second term is the 2L  

regularization term, and 0C >  is the regularization parameter. 
By incorporating the loss function of the manifold regularization framework 

into the conventional supervised SCN formula (12), we can derive a semi-
supervised SCN algorithm.  

 

( )
( )

( )

2 2

1
min

2 2

s.t. , 1, 2, , ,

, 1, 2, , ,

lN

n
n

l l l
n n n

n n

C Tr

n N

n N

η
=

+ +

= − =

= =

∑ F F

h x t ξ

f h x







 

βξ

β

β

 (13) 

where N N×∈  is the graph Laplacian matrix constructed by labeled samples 
and unlabeled samples, N m×∈F   is the final output matrix of the network, 
whose n -th row represents the output ( )nf x  of the n -th sample , and 0η >  
is the trade-off parameter of the manifold regularization term. 

Let  

 

( )
( )

( )

( )
( )

( )

1 11

2 2 2, , .

l
l

l l

l l
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ll NNN

x x
x x
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               = = =               
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











 (14) 
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Substituting the constraints in formula (13) into the objective function, we can 
obtain the equivalent unconstrained optimization objective function  

 
2 21min .

2 2 2
l l C η

− + +H T H H β β β β  (15) 

According to (15), we can easily derive the optimal coefficient vectors of MR-
SCN by gradient operation as follows  

 ( ) 1* .l l l lC η
−

= + +H H I H H H T   β  (16) 

4. Numerical Experiments 

In this section, we conduct experiments using four publicly available benchmark 
datasets to evaluate the performance of the proposed MR-SCN. The 2Moons 
dataset is a classical artificially generated binary categorization dataset, which 
consists of two clusters of points in the shape of two interleaved half moons, 
usually each category contains the same number of data points. The G50C dataset 
is a typical binary classification dataset, where each class is generated from a 50-
dimensional multivariate Gaussian distribution. The COIL20 dataset is an image 
recognition task that consists of 1,440 images of 20 different objects taken from 
different angles, each with a size of 32 × 32 gray pixels. The Image Segmentation 
dataset is derived from the UCI Machine Learning Repository, which contains 
multiple image samples, each sample consists of multiple features, including 
information such as color, texture and location, labeled into different classes, and 
the dataset contains multiple classes such as buildings, trees and people and is 
suitable for evaluating the performance of various image processing and machine 
learning algorithms. All input variables are normalized before conducting the 
experiments. All simulation experiments conducted in this study were performed 
using MATLAB R2022b. 

In the experiment, in order to meet the needs of semi-supervised learning, we 
divide the dataset into three parts: labeled dataset L , unlabeled dataset U  and 
test dataset T , and the specific features are shown in Table 1. 
 
Table 1. Details of the datasets. 

Dataset L  U  T  Attributes Class 

2Moons 15 285 100 2 2 

G50C 50 314 186 50 2 

COIL20 40 1000 400 1024 20 

Image 50 1450 810 19 7 

 

Here, we first compare and analyze the proposed MR-SCN algorithm with the 
traditional supervised learning algorithm SCN, and the experimental results are 
shown in Table 2. From Table 2, it can be seen that the proposed semi-supervised 
algorithm MR-SCN is able to achieve comparable classification results with the 
supervised learning algorithm SCN on most datasets in terms of classification  
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Table 2. Performance of the two algorithms on different datasets. 

Dataset Method Training RMSE Test RMSE Training Time(s) 

2Moons SCN 0.0099 0.0127 0.345 

 MR-SCN 0.0091 0.1088 20.0072 

G50C SCN 0.0071 0.0406 2.4566 

 MR-SCN 0.0094 0.0811 54.6992 

COIL20 SCN 0.0109 0.1835 30.3567 

 MR-SCN 0.0095 0.1063 78.0631 

Image SCN 0.2334 0.4399 15.9883 

 MR-SCN 0.0093 0.1825 57.1824 

 

 
(a) 2Moons                                             (b) G50C 

 
(c) COIL20                                             (d) Image 

Figure 1. Test accuracy for different numbers of labeled training samples. 
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(a) 2Moons                                             (b) G50C 

 
(c) COIL20                                             (d) Image 

Figure 2. Training time for different numbers of labeled training samples. 
 

performance. This shows that MR-SCN can effectively use unlabeled data for 
training, so that it can still maintain high classification accuracy with fewer labeled 
samples. However, in terms of training time, MR-SCN is much higher than SCN. 
The main reason is that MR-SCN needs to calculate the Laplacian matrix, which 
involves the construction of graph structure and feature extraction, adding 
additional computational overhead.  

In order to investigate the effect of different number of labeled samples on the 
performance of the algorithm, we selected six different labeled sample ratios in 
the experiments: 5%, 10%, 15%, 20%, 25% and 30%. We compare and analyze the 
experimental results using three algorithms, SS-ELM, LapRLS and LapSVM. In 
this experiment, the hidden layer activation function of both MR-SCN and SS-
ELM algorithms adopts the Sigmoid function, and the regularization parameters 
of all four algorithms are from the range of 5 4 4 510 ,10 , ,10 ,10− −  

.  

https://doi.org/10.4236/jcc.2025.134011


H. M. Meng, W. Ai 
 

 

DOI: 10.4236/jcc.2025.134011 176 Journal of Computer and Communications 
 

Figure 1 shows the trend of the test accuracy of each algorithm with different 
proportions of labeled training samples. It can be observed that all four methods, 
MR-SCN, LapRLS, SS-ELM and LapSVM, show good classification performance 
on all datasets, and the overall test accuracy tends to increase with the increase of 
the proportion of labeled training samples, implying that more labeled data helps 
the model to more accurately learn the features of the data distributions and 
improve the generalization ability. Furthermore, when the proportion of labeled 
training samples remains constant, the MR-SCN method consistently achieves 
higher test accuracy compared to the three other methods. This suggests that MR-
SCN demonstrates superior classification performance in semi-supervised learning 
settings. Particularly when the proportion of labeled samples is large, the MR-SCN 
method achieves test accuracies nearing 100% on the 2Moons and COIL20 
datasets, demonstrating its strong ability to learn and generalize effectively. In 
terms of training time, as can be seen from Figure 2, the training time of all 
methods increases as the proportion of labeled training samples increases, which 
is due to the fact that more labeled data increases the amount of computation. 
With the same proportion of labeled samples, LapRLS and LapSVM take the 
longest training time, while MR-SCN and SS-ELM have relatively short and 
similar training times. This indicates that MR-SCN also has high computational 
efficiency while ensuring the classification performance. 

5. Conclusions 

In this paper, we introduce MR-SCN, a semi-supervised learning algorithm built 
upon the manifold regularization framework and SCN. This method can effectively 
utilize a small set of labeled data along with a large amount of unlabeled data for 
semi-supervised classification. It not only improves the computational speed and 
generalization ability, but also overcomes the limitation of the SCN’s dependence 
on the labeled data, further expanding the scope of SCN’s application. To evaluate 
the performance of MR-SCN, we performed experiments using four different 
datasets: 2Moons, G50C, COIL20 and Image. The results show that compared 
with the supervised learning algorithm SCN, MR-SCN maintains high classification 
accuracy with fewer labeled samples, but its training time increases due to the 
computation of Laplacian matrix. In addition, MR-SCN outperforms LapRLS, SS-
ELM and LapSVM in terms of classification accuracy across different labeled 
training sample ratios. It also requires less training time, demonstrating excellent 
learning capability and computational efficiency. Overall, MR-SCN can effectively 
balance the classification performance and computational cost in semi-supervised 
learning tasks, and has high application value. 

However, the MR-SCN algorithm also has certain limitations. The four datasets 
used in this experiment, 2Moons, G50C, COIL20 and Image, gradually increase 
in size. Correspondingly, the training time of MR-SCN on these datasets also 
gradually increases. This is because the input weights and biases of SCN are set 
based on the data-driven supervision mechanism, and the calculation of the manifold 
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regularization term requires considering the similarity between all samples. For 
large-scale datasets, this results in higher computational costs and longer training 
time. 
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