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Abstract

The stochastic configuration network (SCN) is an incremental neural network
with fast convergence, efficient learning and strong generalization ability, and
is widely used in fields such as medical data analysis. However, SCN is mainly
used for supervised learning and its performance is limited in the case of scarce
labeled data. To this end, this paper proposes semi-supervised SCN (MR-
SCN) in combination with manifold regularization to make full use of unla-
beled data to improve the model performance. Experimental results show that
MR-SCN can still maintain high classification accuracy with a small number
of labeled samples, which is better than LapRLS, SS-ELM and LapSVM, and
the training time is shorter, showing good learning ability and computational
efficiency.
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1. Introduction

In many practical applications, acquiring a large amount of labeled data is usually
costly, especially in fields such as medical diagnosis, autonomous driving, and
natural language processing, where manual labeling is not only time-consuming
and laborious, but may also require specialized knowledge. On the other hand,
unlabeled data is often abundant and easily available, so how to efficiently utilize
unlabeled data becomes a key issue. Supervised learning requires a large amount

of labeled data but the labeling cost is high, and unsupervised learning only relies

DOI: 10.4236/jcc.2025.134011  Apr. 27, 2025

166 Journal of Computer and Communications


https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2025.134011
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jcc.2025.134011
http://creativecommons.org/licenses/by/4.0/

H. M. Meng, W. Ai

on the intrinsic structure of the data and lacks clear guidance signals, which
usually makes it difficult to achieve the effect of supervised learning. Semi-supervised
learning emerges as a solution to efficiently and fully utilize cheap and easily
available unlabeled data. This approach integrates the characteristics of supervised
learning and unsupervised learning, leveraging the synergy between a small
amount of labeled data and a large quantity of unlabeled data. It not only reduces
dependence on labeled data and improve the model’s generalization ability while
ensuring the accuracy.

For the classification scenario of semi-supervised learning, the representative
algorithms can be roughly divided into four categories, namely discriminant-
based methods [1] [2], difference-based methods [3], generation-based methods
[4], and graph-based methods [5]. Among them, graph-based methods are
hotspots in the field of semi-supervised learning, which abstract all data into a
graph and use the graph to characterize the similarities between data pairs thus
revealing the distribution of the data, but their essence is still propagated by
labeling [6]. Manifold regularization is a semi-supervised learning technique
based on graphs, which builds a manifold structure of the data. This enables the
model to leverage the distribution information from unlabeled data, thereby
enhancing its learning ability.

Therefore, many researchers have combined the manifold regularization
framework with different classification models to fully utilize the information of
unlabeled data and improve the classification performance of the models. Zhao et
al. proposed a semi-supervised broad learning system (SS-BLS) by combining
manifold regularization with broad networks, which improves feature extraction
and classification under limited labeled data by utilizing the information of the
manifold structure of the data [7]. Belkin ef a/ applied manifold regularization to
support vector machines (SVMs) and constructed semi-supervised SVMs to
improve the model learning performance [8]. Huang et a/. integrated the manifold
regularization framework with extreme learning machines (ELMs), introducing
semi-supervised and unsupervised ELMs to enhance the learning ability of
ELMs with limited or unlabeled data [9]. And Li et al. introduced the manifold
regularization framework into the multilayer extreme learning machine (ML-
ELM) and proposed the LAP-ML-ELM model to enhance the adaptability of deep
learning methods in semi-supervised environments [10]. These studies show that
manifold regularization has broad application prospects in enhancing the learning
ability of classification models, especially in semi-supervised and unsupervised
learning tasks, which can effectively utilize the manifold structure of data and
improve the classification accuracy and generalization ability of the model.

With the development of information technology and the improvement of data
storage capacity, human society has stepped into the era of big data. Characterized
by huge volume, rapid growth, and diverse types, big data has a profound impact
on various fields, and at the same time brings challenges in data storage,

management and analysis. In this context, machine learning (ML), as an important
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branch of artificial intelligence, has attracted widespread attention because of its
ability to automatically learn data patterns and make predictive decisions.
Traditional analysis methods can hardly cope with the scale and complexity of big
data, while deep learning (DL), as the core direction of machine learning, has
made remarkable achievements in computer vision, natural language processing,
financial forecasting and other fields with the help of the continuous evolution of
neural networks (e.g., DBN, CNN, RNN). Advances in large-scale data and high-
performance computing devices have further boosted the development of deep
learning, enabling it to play a key role in the age of intelligence.

However, models such as CNN [11] and RNN [12] usually rely on the BP
algorithm to calculate gradients layer by layer to update weights, which results in
a complex training process, large number of parameters, and high computational
cost. In contrast, randomized learning (RL) has shown broad prospects in the field
of machine learning due to its efficient modeling capabilities. Randomized
learning technology started in the 1980s and was further developed in the 1990s.
Pao and Takefuji proposed the random vector function link network (RVFL) [13]
[14], and Schmidt et al proposed the random weight feed-forward neural network
(FNNRW) [15]. The core idea is to randomly initialize the weights and biases of
the hidden layer and use the least squares method to calculate the output weights,
thereby simplifying the training process and improving learning efficiency.
However, subsequent studies have shown that the universal approximation of
RVFL and FNNRW depends on the number of hidden layer nodes and the range
of random parameters, and whether the model can approximate the target
function with high probability depends on whether the parameters are properly
selected. To enhance the generalization ability of randomized neural networks,
Wang and Li proposed the stochastic configuration network (SCN) in 2017 [16].
SCN adopts an incremental learning method and introduces a supervision
mechanism to adaptively adjust the range of random parameters through inequality
constraints to ensure universal approximation, reduce human intervention, and
improve the learning accuracy and training efficiency of the model.

In order to improve the performance and stability of SCNs, scholars have
proposed SCN's based on L1 regularization [17], SCNs based on L2 regularization
[18], and SCNs based on Dropout regularization [19], which reduce the over-
fitting during model increment. In addition, Wang and Li proposed a robust SCN
using kernel density estimation method to calculate the penalty weights of the
training samples, which improves the generalization of the learning model by
reducing the negative impact of noise or outliers [20]. To solve the problem of
time-consuming model training in SCNs, a bidirectional SCN algorithm [21] was
introduced to categorize the addition of hidden nodes into forward learning mode
and backward learning mode. In addition, block-based incremental SCNs [22]
and hybrid parallel SCNs [23] were developed to improve the modeling speed and
shorten the training time. Deep SCNs [24] were also developed based on SCNs,

which provide faster and more extensive network generation. There are also other
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excellent SCN-based models, such as deep stacked SCN [25], distributed SCN [26],
etc. Although SCNs have many important variants and are widely used in areas
such as hardware implementation, computer vision, medical data analysis, and
fault detection and diagnosis, these models are mainly targeted at supervised
learning tasks, and SCN models dedicated to semi-supervised learning have not
yet emerged. In some cases, such as text categorization, information retrieval, and
fault diagnosis, acquiring labeled data is both time-consuming and expensive,
while a large amount of unlabeled data is simple and cheap to collect. Therefore,
it is of significant research value to explore how to design a semi-supervised SCN
by combining the unique supervisory mechanism of SCNs and its universal
approximation properties with graph regularization frameworks, such as manifold
regularization, in order to improve the learning efficiency while guaranteeing the
learning accuracy.

In this paper, we will explore the combination of SCNs and semi-supervised
learning, aiming to improve the model’s learning ability on complex network data
by constructing a semi-supervised learning framework based on SCNs. Through
theoretical analysis and experimental validation, we hope to reveal the potential
of SCNs in semi-supervised learning and provide new ideas and methods for

future research.

2. Preliminaries

2.1. Stochastic Configuration Network (SCN)

SCN is a stochastic incremental learning model proposed in the last few years,
whose network structure can grow gradually according to the training data.
Specifically, it starts with a simple small neural network, randomly configures the
input weights and biases through a data-dependent inequality supervision
mechanism, and gradually adds new hidden layer nodes until a predefined
termination condition is met, then stops and successfully generates a SCN
network model. This incremental structural growth allows the SCN to adaptively
scale the network to accommodate data of varying complexity.

Consider an objective function f:R? — R", then a SCN network with L —1

hidden nodes can be given by the following formula.
L-1 L-1
fL—l(x):Zﬂlgl(x)=2ﬂlgl(x’wl’bl)’ Jo=0, (1)
=1 =]

where x is the input vector, f, = [ﬂ“, Bioss ﬂ,,mT is the output weights of
the /-th hidden node, w, and b, respectively represent the input weight and
bias of the /-th hidden node, g () is the activation function of the /-th

hidden node. In practice, the sigmoid function is frequently employed as the

1
activation function, expressed as g(x,w,b) =—————_ The residual of the
1+ e—(w x+b)
current network can be expressed as
e, =f—fi,= [eL—l,l’eL—l,Z""’eL—l,m:" (2)
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If ||eL,1 || does not reach the preset expected residuals, the hidden layer will add
new nodes. We must create a new random basis function g, (w, and b,)
under the supervision mechanism, and then recompute the output weights /S, .
This adjustment ensures that the model f, =f, ,+/f,g, achieves a reduced
residual error.

In practice, let the input matrix be X e R"“ and the targets matrix be
T eR"™ . Denote 5, (X) as the output of the L -th hidden node for X

hL(X):[gL(xl),---,gL(xN)T, (3)

where g, (xn)zg(xn,wL,bL),n:1,2,-~-,N. The output matrix of the entire

hidden layer can be written as
HL(X):[hl(X)""’hL(X)]' )
The residual matrix is represented as ¢, (X)eR"™", where

.
e 1, (X) = [eL_l’q (xl),--‘,eL_Lq (xN )J eRY, ¢=12-,m . According to the
global approximation theorem proposed by Wang [16], a new set of random basis
functions g, (wL,bL) is generated when the residuals ||eL_l|| do not reach the

pre-set target values . If the new vector g, satisfies the inequality
2
(ez—l,q (X) “hy (X))
hLT (X ) hy (X )

then the new input weights w, and bias b, can enter the candidate node pool,
and the size of the candidate pool is denoted by T, where £, (X ) is defined as

g’L(X)=§§L,q(X)- (6)

éL,q (X) =

—(1—”_#L)e;|,q(x)el4,q (X)ZO’ (%)

The node with the largest &, (X ) in the candidate pool becomes the added
node. Then, the output weights can be obtained by the following optimization

problem

[ﬂl",ﬂ;...,pz]T :arg;nin

f_z_:ﬂzg/ H (7)
f=f

Then, we have lim,

* * * * T
B :[ﬂz,laﬂl,z"”’ﬂz,m] :

* L *
=0, where f; 221:1'31 g

2.2. Semi-Supervised Learning

Manifold regularization is a semi-supervised learning approach based on graphs,
which creates a manifold structure for the data. This allows the model to leverage
the distributional information from unlabeled data, thereby enhancing its
learning capacity. The core idea of this framework is that high-dimensional data
is usually distributed on a low-dimensional manifold, so the model can be

constrained by manifold regularization to make it change smoothly on the data
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manifold, thereby improving the generalization ability of classification and
regression tasks. The manifold regularization framework is usually based on semi-
supervised learning, combining information from labeled and unlabeled data, and
mainly includes the following assumptions:

Assumption 1 (Smoothness Assumption [8]) Iftwo input samples x,,x, are
close to each other, then the corresponding conditional probabilities
P(ylx),P(ylx,) should be similar.

Assumption 2 (Cluster Assumption [8]) The decision boundary should be
positioned within a low-density region of the input space X .

Assumption 3 (Manifold Assumption [8]) The marginal distribution P, is
defined over a low-dimensional manifold M embeddedin X .

Based on the above assumptions, the manifold regularization framework
introduces an additional manifold regularization term into the traditional
supervised learning loss function to maintain the smoothness of the model over
the manifold structure.

To impose the assumptions on the data, the manifold regularization framework

minimizes the following loss function
: 1EE 2
||f||M:EZZVKy(P(nyi)—P(ny,—)) : 8)
i

where W, is the pairwise similarity between two samples x;, and x; and
w=|w,

o JN v N is the total number of samples, including / labeled samples
and u unlabeled samples. Regarding the computation of W , according to the

work in [27], W can be defined by the Gaussian kernel function, Ze,

2
=
Lol

W, =e ©)

where 0 >0 is the regulation parameter.

It is well known that it is practically difficult to calculate the conditional
probabilities P(y|x;) and P( y|xj) . Therefore, for the convenience of
calculation, the predicted output of the model can be used to replace the

conditional probabilities and obtain the following approximate expression
5 1 N N . 2
||f||M=§ZZWv(yi_yf) ’ (10)
i

where y, and p; are the predictions for samples x; and x,, respectively.
By defining the total predicted output );=[ P12 ¥yse+ Py ] and the diagonal
elementstobe D, = Zjv:] W, of the diagonal matrix D , we can simplify (10) to

a matrix form
7L, =7e(F727), (11)

where £ &R isthe Laplacian matrixand £ =D —W . Furthermore, in order
to facilitate calculation, Belkin et al [8] recommended using the normalized
Laplacian matrix £=D 2£D 2 instead of L.
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3. Semi-Supervised SCNs Based on Manifold Regularization
Framework

In the practical applications of semi-supervised learning, a common situation is that
labeled data is scarce while unlabeled data is abundant. This situation of uneven data
distribution is one of the challenges that semi-supervised learning methods need to
focus on. To fully leverage the substantial amount of unlabeled data and improve the
classification accuracy in the presence of scarce labeled samples, we combine the
SCN with the manifold regularization framework and propose a semi-supervised
SCN algorithm called the MR-SCN algorithm. In semi-supervised learning, the

dataset S is set to contain N’ labeled samples and N* unlabeled samples,

denoted as S’ :{(xfl,t,i)}Nl , S :{x;’}N” , where N =N'+N" is the total

n=1 n=l1
number of samples. The traditional SCN is a supervised learning, which only needs
NI
labeled data for model training. For the labeled data set S’ = {(xft,t,i )} _,» Wecan

get the optimization objective function of the standard SCN as
N/
. 2 Cyp
min S, +S o]
n=1

st h(x))B=t-¢& .n=1,2, N

n

(12)

where the first term is the loss function, &

n

is the training error vector of the

output neuron corresponding to the training sample x!,
h(xi):[gl(x;),---,gL (xf,)}:[g(xf,,wl,bl),---,g(xi,wL,bL)J is the output of
the hidden node relative to the input sample x/ ; the second term is the L,
regularization term, and C >0 is the regularization parameter.

By incorporating the loss function of the manifold regularization framework
into the conventional supervised SCN formula (12), we can derive a semi-
supervised SCN algorithm.

Nl
min Y |£
n=1

st h(x)B=t7 ~E], =12V, (13)

no

f,=h(x,)B, n=1,2,--- N,

2 Cyon 7
+= sl +5Tr(FT£F)

where £ eR™ is the graph Laplacian matrix constructed by labeled samples
and unlabeled samples, F e R"” is the final output matrix of the network,
whose n -th row represents the output f(x,) ofthe »-thsample,and 7>0
is the trade-off parameter of the manifold regularization term.

Let

h(xll) f7 h(xl)

h(x! e’ h(x
H'= (2) ,T'=|"7 |, H= (.2) . (14)
' IT .
h(xiv, ) Ly h(xN)
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Substituting the constraints in formula (13) into the objective function, we can

obtain the equivalent unconstrained optimization objective function
.1 2 Cyoie
min —[#'8-T'[ += ] +gﬂTHT£H,B. (15)

According to (15), we can easily derive the optimal coefficient vectors of MR-

SCN by gradient operation as follows

B =(H"H'+Cl+nH LH) H'T". (16)

4. Numerical Experiments

In this section, we conduct experiments using four publicly available benchmark
datasets to evaluate the performance of the proposed MR-SCN. The 2Moons
dataset is a classical artificially generated binary categorization dataset, which
consists of two clusters of points in the shape of two interleaved half moons,
usually each category contains the same number of data points. The G50C dataset
is a typical binary classification dataset, where each class is generated from a 50-
dimensional multivariate Gaussian distribution. The COIL20 dataset is an image
recognition task that consists of 1,440 images of 20 different objects taken from
different angles, each with a size of 32 x 32 gray pixels. The Image Segmentation
dataset is derived from the UCI Machine Learning Repository, which contains
multiple image samples, each sample consists of multiple features, including
information such as color, texture and location, labeled into different classes, and
the dataset contains multiple classes such as buildings, trees and people and is
suitable for evaluating the performance of various image processing and machine
learning algorithms. All input variables are normalized before conducting the
experiments. All simulation experiments conducted in this study were performed
using MATLAB R2022b.

In the experiment, in order to meet the needs of semi-supervised learning, we
divide the dataset into three parts: labeled dataset L, unlabeled dataset U and
test dataset T, and the specific features are shown in Table 1.

Table 1. Details of the datasets.

Dataset L U T Attributes Class

2Moons 15 285 100 2 2
G50C 50 314 186 50 2

COIL20 40 1000 400 1024 20
Image 50 1450 810 19 7

Here, we first compare and analyze the proposed MR-SCN algorithm with the
traditional supervised learning algorithm SCN, and the experimental results are
shown in Table 2. From Table 2, it can be seen that the proposed semi-supervised
algorithm MR-SCN is able to achieve comparable classification results with the

supervised learning algorithm SCN on most datasets in terms of classification
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Table 2. Performance of the two algorithms on different datasets.

Dataset Method Training RMSE ~ Test RMSE  Training Time(s)
2Moons SCN 0.0099 0.0127 0.345
MR-SCN 0.0091 0.1088 20.0072
G50C SCN 0.0071 0.0406 2.4566
MR-SCN 0.0094 0.0811 54.6992
COIL20 SCN 0.0109 0.1835 30.3567
MR-SCN 0.0095 0.1063 78.0631
Image SCN 0.2334 0.4399 15.9883
MR-SCN 0.0093 0.1825 57.1824
1 : : . : ) 0.9 . . : | )
—6— MR-SCN ,41 —6— MR-SCN[§
—E— LapRLS 0.88 =& LapRLS |
0.98 SS-ELM SS-ELM
—O— LapSVM \ 0.86 —O— LapSVM | 1
0.84 i
0.96
%E g 0.82 |
3 3
2094 g o8 4
8 & 078 1
P e
0.92
0.76 i
0.74 i
0.9
0.72 E
0.859 . . . . 07| . . . .
5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30%
Different ratios of labeled training samples Different ratios of labeled training samples
(a) 2Moons (b) G50C
1 T T T i 0.9 . : : :
—©—MR-SCN —O6— MR-SCN ﬁ’
—8— LapRLS 0.88 —+&— LapRLS
0.95 - SS-ELM SS-ELM
—O—LapSVM [ o086 —&O— LapSVM
0.9 { o4
g g o.82
3 5
085 1 § 0.8
8 % ors
0.8 .
0.76
0.75 . 0.74
0.72
0.7 L L L . 0.7 ! ! , \ ,
5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 259, 30%
Different ratios of labeled training samples Different ratios of labeled training samples
(c) COIL20 (d) Image
Figure 1. Test accuracy for different numbers of labeled training samples.
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Figure 2. Training time for different numbers of labeled training samples.

performance. This shows that MR-SCN can effectively use unlabeled data for
training, so that it can still maintain high classification accuracy with fewer labeled
samples. However, in terms of training time, MR-SCN is much higher than SCN.
The main reason is that MR-SCN needs to calculate the Laplacian matrix, which
involves the construction of graph structure and feature extraction, adding
additional computational overhead.

In order to investigate the effect of different number of labeled samples on the
performance of the algorithm, we selected six different labeled sample ratios in
the experiments: 5%, 10%, 15%, 20%, 25% and 30%. We compare and analyze the
experimental results using three algorithms, SS-ELM, LapRLS and LapSVM. In
this experiment, the hidden layer activation function of both MR-SCN and SS-
ELM algorithms adopts the Sigmoid function, and the regularization parameters

of all four algorithms are from the range of [10"5,10"4,~-~,104,105J .
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Figure 1 shows the trend of the test accuracy of each algorithm with different
proportions of labeled training samples. It can be observed that all four methods,
MR-SCN, LapRLS, SS-ELM and LapSVM, show good classification performance
on all datasets, and the overall test accuracy tends to increase with the increase of
the proportion of labeled training samples, implying that more labeled data helps
the model to more accurately learn the features of the data distributions and
improve the generalization ability. Furthermore, when the proportion of labeled
training samples remains constant, the MR-SCN method consistently achieves
higher test accuracy compared to the three other methods. This suggests that MR-
SCN demonstrates superior classification performance in semi-supervised learning
settings. Particularly when the proportion of labeled samples is large, the MR-SCN
method achieves test accuracies nearing 100% on the 2Moons and COIL20
datasets, demonstrating its strong ability to learn and generalize effectively. In
terms of training time, as can be seen from Figure 2, the training time of all
methods increases as the proportion of labeled training samples increases, which
is due to the fact that more labeled data increases the amount of computation.
With the same proportion of labeled samples, LapRLS and LapSVM take the
longest training time, while MR-SCN and SS-ELM have relatively short and
similar training times. This indicates that MR-SCN also has high computational

efficiency while ensuring the classification performance.

5. Conclusions

In this paper, we introduce MR-SCN, a semi-supervised learning algorithm built
upon the manifold regularization framework and SCN. This method can effectively
utilize a small set of labeled data along with a large amount of unlabeled data for
semi-supervised classification. It not only improves the computational speed and
generalization ability, but also overcomes the limitation of the SCN’s dependence
on the labeled data, further expanding the scope of SCN’s application. To evaluate
the performance of MR-SCN, we performed experiments using four different
datasets: 2Moons, G50C, COIL20 and Image. The results show that compared
with the supervised learning algorithm SCN, MR-SCN maintains high classification
accuracy with fewer labeled samples, but its training time increases due to the
computation of Laplacian matrix. In addition, MR-SCN outperforms LapRLS, SS-
ELM and LapSVM in terms of classification accuracy across different labeled
training sample ratios. It also requires less training time, demonstrating excellent
learning capability and computational efficiency. Overall, MR-SCN can effectively
balance the classification performance and computational cost in semi-supervised
learning tasks, and has high application value.

However, the MR-SCN algorithm also has certain limitations. The four datasets
used in this experiment, 2Moons, G50C, COIL20 and Image, gradually increase
in size. Correspondingly, the training time of MR-SCN on these datasets also
gradually increases. This is because the input weights and biases of SCN are set

based on the data-driven supervision mechanism, and the calculation of the manifold
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regularization term requires considering the similarity between all samples. For
large-scale datasets, this results in higher computational costs and longer training

time.
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