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A B S T R A C T   

In this paper, we propose a manipulation planning method for cable wiring in the assembly of electric appliances 
etc. We address a scenario where a robot grasps a connector attached to the end of a cable and has to bring the 
connector to a socket. To accomplish this automatically, we propose a novel manipulation planning method. The 
method extends the Encode-Manipulate-Decode network (EMD net), which can predict shape changes of 
deformable objects and generate robot motion sequences for producing desired shape transitions. This enables us 
to find connector trajectories that avoid collision between the cable and the surrounding environment. We 
conducted experiments with several different cable lengths. We also introduce some functions required for real- 
world wiring, such as online cable shape modification. Experimental results show that the proposed method can 
achieve stable manipulation of real cables.   

1. Introduction 

In the assembly of electrical appliances, automating cable wiring is a 
challenging task. This is because cables are flexible objects that deform 
when manipulated. Furthermore, motors and circuit boards are often 
incorporated into electrical appliances before cable wiring, presenting 
obstacles that must be avoided during the wiring process. The wiring 
process requires consideration of all the forces and deformations applied 
to the cable during manipulation, and avoidance of any snagging on 
surrounding structures. Consequently, much of cable wiring is currently 
performed manually. However, assembling electrical appliances is a 
burdensome task for humans, and automation is necessary. Such auto
mated systems should require minimal human intervention, and should 
be robust enough to adapt to changes in cable length and type, as well as 
to changes in the work environment. 

The purpose of this study is to establish a motion planning method 
for wiring a connector-terminated cable. Fig. 1 shows a simplified dia
gram of the wiring scenario addressed in this study. Challenges to be 
considered are also presented. The manipulation target is a cable with a 
connector attached to its end. The root of the cable is attached to a 
circuit board. The actions required of the robot in automating this task is 
to grasp the connector, move it to a predetermined socket position, and 

then insert the connector into the socket. At this point, it is desirable to 
avoid interference of the cable, which deforms during connector trans
port, with surrounding structures. One important challenge for 
achieving this is to generate a path along which the connector can safely 
be transported. 

Various studies on the automation of cable wiring are reported in the 
literature. Many studies target the task of connector insertion [1,2]. 
Others have proposed manipulation planning methods for applying 
arbitrary deformations to cables [3,4]. In the former, force sensing and 
control for proper mating of connectors and sockets are central subjects. 
Since the goal of the present study is to move the connector to the vi
cinity of the socket, potential for compatibility with these studies is high. 
On the other hand, the latter studies address similar subject matter as the 
present study. However, the goal of the present study is to avoid inter
ference in situations where the cable may get caught on surrounding 
structures, by actively deforming the cable through appropriate 
manipulation of the connector. This is a practical function in wiring 
work, but has not been considered much in previous studies. 

The method proposed in this paper makes it possible to predict the 
deformation of cables when the connector is picked and moved, and uses 
the prediction result as a cue to generate an appropriate manipulation. 
This results in a trajectory for transporting the connector that avoids 
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interference between the cable and the surrounding environment. The 
prediction and generation of manipulation trajectories are performed 
using the EMD net (Encode-Manipulate-Decode network) [5], which has 
a modular neural network architecture. However, since interference 
avoidance was previously not considered in this architecture, we here 
extend the method and propose a new Collision-Free EMD net (CF-EMD 
net). 

The contributions of the present study are as follows:  

• We propose a manipulation planning method to move a connector 
attached to a cable fixed at one end on a circuit board to a desired 
position while avoiding interference of the cable with surrounding 
obstacles.  

• As a strategy for efficient use of the method, we show how to 
generate training data using physical simulation of Deformable 
Linear Objects (DLOs) and train the neural network using this 
simulation data.  

• We confirm that the proposed method works in a problem setting 
that simulates the internal structure of an electrical appliance 
through experiments on actual equipment. Furthermore, we show 
how to manipulate real cables while bridging the gap between 
simulation and reality by correcting the difference between the 
predicted and real cable geometry on the spot. 

The structure of this paper is as follows. The next section introduces 
related work. Section 3 describes the problem setup, our approach, and 
an overview of our methodology. Section 4 describes our extended 
modular neural network for interference avoidance. Section 5 describes 
data collection and neural network training using physical simulation. 
In Section 6, we describe a method for correcting the results of physical 
simulations to match the geometry of real cables in order to apply the 
proposed method in real-world cable manipulation. Section 7 presents 
our verification experiments, and Section 8 summarizes the study. 

2. Related work 

2.1. Cable manipulation 

In R&D aimed at product assembly automation, there are several 
existing works on the topic of cable manipulation. As mentioned in the 
previous section, one representative task is robotic insertion of con
nectors into sockets. Huang et al. [1] successfully inserted a connector 
into a socket using force control. Chen et al. [2] investigated the rela
tionship between the force sensor signal and the relative positions of a 
connector pair, in order to avoid jamming during the connector mating 
process. Song et al. [6] used visual servo and impedance control to 
minimize position errors in the mating process. Yumbla et al. [7] made a 
dataset of mating tolerances between 70 types of connectors and sockets 
commonly used in manufacturing. Romeres et al. [8] proposed a method 
based on Gaussian process regression to learn the profile of forces during 
successful insertion and quantify the deviations of the tolerances ob
tained from it. 

Various methods have also been proposed for high-level automation 
involving 3D pose estimation [9,10]. Sumi et al. [11] developed a robot 
assembly system with a 3D vision sensing system and demonstrate servo 
amplifier assembly with manipulation of a connector-terminated cable. 
Yumbla et al. [12] successfully detected the position of a connector. 
Zhou et al. [13] estimated the pose of a connector and used this pose to 
insert the connector into a socket using a dual-armed robot. Ying et al. 
[14] proposed a method to accurately estimate the 3D pose of a 
connector and grasp it. They combined PointNet++ [15] for connector 
part detection with ICP for accurate pose estimation. As described 
above, there are many studies of recognition and manipulation for 
wiring tasks, but these studies did not explicitly consider cable shape 
change. 

On the other hand, there have been studies that consider a cable as a 
DLO subject to direct manipulation. Sano et al. [16] demonstrate wiring 
of a flexible flat cable onto an electronic substrate. The main contribu
tions of this study were novel manipulation procedures and dedicated 
end-effectors, but cable shape estimation was not addressed. She et al. 

Fig. 1. If only the robot and the connector are considered in motion generation, the cable may interfere with surrounding structures, as in (a). This study aims to 
generate manipulations that avoid interference of the cable with surrounding structures, as shown in (b). The challenge here is to generate a connector trajectory that 
accounts for the time-series of the cable shape. 
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[17] focused on sliding hand motions for clamping a cable, and detected 
cable posture and frictional force between cables using tactile sensors. 
Zhu et al. [3] proposed a motion planning method for transitioning a 
cable from its current shape, estimated from color images, to a target 
shape, and succeeded in deforming a cable grasped at both ends by a 
dual-armed robot into a desired shape. 

2.2. DLO modeling and manipulation learning 

Outside the context of cable assembly as well, DLOs have been an 
active topic of research in recent years. We can find excellent work in 
modeling and manipulation learning. With regard to DLO simulation, 
one class of methods builds on the finite element model (FEM) [18]. 
FEM simulation results have been used to control the shape of physical 
DLOs. Position-based dynamics (PBD) is another representative recent 
simulation method, which has been applied to DLO manipulation as 
well. Liu et al. [19] proposed a modeling method for rope-like objects 
based on PBD. These models make it possible to compensate for the 
shortcomings of physical parameter estimation, and improve the 
matching of rope physics to real-world scenarios. Ying et al. [20] pro
posed a differentiable physics simulation method and demonstrated 
shape-control on rope-like objects, with consideration of the effects of 
contacts with surrounding environment. 

Several methods have been proposed that tightly couple simulation 
and learning. Yang et al. [21] combined an interaction network and a 
recurrent neural network to learn a dynamic DLO model. They used the 
obtained model in a model predictive controller to achieve a given goal 
shape. Huo et al. [22] proposed an approach for training a network from 
a synthetic dataset to encode key points on DLOs. Yu et al. [4] proposed 
an efficient method for obtaining a deformation model by learning the 
relationship between a manipulation and a DLO shape change in a 
simulated environment, and then learning the same thing in the real 
world. Yamazaki et al. [23] proposed the use of GANs as a method for 
generating DLO shape transitions. They showed that it is possible to 
generate smooth shape transitions for motions of the endpoints of DLOs, 
and also to automatically generate transitions between different shapes. 
Chang et al. [24] proposed a model-based DLO manipulation method, 
called Sim2Real2Sim, to perform the task of inserting a plug into a 
socket. These studies are useful for applying specific manipulations to 
cables, but their applicability in other settings, such as wiring in the 
presence of obstacles, is unknown. The distinguishing feature of the 
method presented here is its ability to generate appropriate manipula
tion sequences while predicting the DLO’s shape transitions over a long 
horizon. This makes it possible to obtain a manipulation sequence that 
does not break down even when parts of the cable part have to traverse 
through the vicinity of obstacles in the scene. 

3. Problem setting and our approach 

3.1. Problem setting 

We assume a task environment consisting of the circuit board of an 
electrical appliance, with a cable extending from the circuit board and 
terminating in a connector. Hence, the connector part is floating freely. 
It is assumed that the circuit board has elements and other structures 
attached to it, and that these structures are of non-negligible height. 
That is, it is possible for cables or the robot itself to collide with them 
during wiring. Such structures are assumed to extend upward from the 
board, and the structures are assumed not to protrude from above or 
from the side. 

Under these conditions, we consider the task of grasping such a 
connector and inserting it into a socket on the board, as shown in Fig. 1. 
We adopt an industrial robot manipulator equipped with a gripper-type 
end-effector as our robot platform. Such simple systems are commonly 
employed in the manufacturing of electronics products because of their 
lower cost compared to multi-arm systems. Here, to manipulate the 

cable, the robot should grasp the connector. We let the end-effector 
grasp the connector, because grasping the cable would make the sub
sequent insertion of the connector into the socket difficult. Therefore, 
we will consider manipulation planning under the assumption that only 
the connector is directly manipulated and that the cable deforms pur
suant to the connector’s movements. However, we assume that the cable 
has a certain level of stiffness, and that as long as the connector part is 
grasped, gravity will induce no significant downward deformation in the 
cable. 

3.2. Issues and approach 

A possible problem in the above setup is that the cable gets caught on 
parts of the surrounding environment when the robot moves the 
connector, preventing the connector from moving to its goal position or 
damaging the cable. Therefore, motion planning must be able to predict 
the state of not only the robot but also the cable appropriately and detect 
when a motion would cause such snagging in advance. Furthermore, it is 
desirable to generate manipulations for transporting the connector to 
the goal position that avoid snagging. However, cables are flexible ob
jects and deform as they are manipulated. Therefore, it is necessary to 
know how the cable deforms when a manipulation is applied. If this is 
not adequately addressed, the likelihood of the cable interfering with its 
surroundings increases. 

To solve this problem, this study implements neural network mod
ules for predicting how the cable geometry changes and for generating 
connector trajectories. We construct a manipulation planner for DLOs by 
learning both of these functions simultaneously. The base of this system 
is the EMD net [5]. However, since the EMD net does not provide 
collision avoidance, we extend the method here to add this function
ality. In this study, we refer to the extended method as the Collision-Free 
EMD net (CF-EMD net). 

To train the CF-EMD net, a certain amount of training data is 
required. Collecting these data in the real world is a heavy burden. 
Therefore, we implement a DLO physics simulation and collect training 
data in virtual space. However, there are subtle differences in the 
behavior of flexible objects between the real and virtual environments. 
Our approach for bridging this gap is to use a range image sensor to 
measure the real-world cable shape, and adjust the CF-EMD net’s output 
on basis of the measured shape. The details of the method are explained 
in the next section. 

4. CF-EMD net 

4.1. EMD net [5] 

The EMD net is an action planner that primarily targets deformable 
object manipulation. It takes the state of a deformable object as input, 
performs a virtual manipulation on it, and outputs the predicted state 
after the manipulation. The network consists of a modular structure: an 
encoder, manipulation network, and decoder. This modular structure 
can be connected recursively to predict state changes over long horizons 
and generate appropriate manipulations accordingly. The encoder and 
decoder use fully-connected layers to compress and decompress data, 
respectively. Although there are several implementation patterns for 
manipulation networks [25], this study adopts the method of processing 
minute manipulations continuously. The manipulation network com
bines fully connected layers and an LSTM (Long Short-Term Memory). 
LSTM [26] is a type of recurrent neural network that is known to have 
high prediction performance for medium-term time series data. There
fore, it is suitable for our study, which requires smooth time-series of 
changes in the cable shape. 

Fig. 2 shows the structure and data flow of the EMD net. Let sn be the 
cable shape at the n-th time step and let mn be a minute manipulation 
applied to the cable. We let ̂s indicate the shape of the cable predicted by 
EMD net. The EMD net’s encoder converts the shape s into a low- 
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dimensional compressed representation c. Then, cn and the manipula
tion value mn are input to the manipulation network to obtain a com
pressed representation cn+1 of the shape after manipulation. This 
network is used recursively to predict how the cable will be deformed by 
a sequence of micro-manipulations specified as a time series of m values. 

Next we explain how to use the EMD net. First, the target DLO shape 
sn(= s∗) and the current shape s0 are given. Also, a sequence of minute 
manipulations m0:n− 1 is given. Then, as indicated by the blue arrows in 
Fig. 2, virtual operations are successively applied to s0, yielding a series 
ŝ1:n of the resulting shape predicted for each operation. Then we 
compare the final shape prediction ̂sn with sn, and update m0:n− 1 by back 
propagation of the difference, as illustrated by the orange arrows in 
Fig. 2. This is repeated until the difference between ̂sn and sn is deemed 
sufficiently small. The resulting manipulation time-series m0:n− 1 is used 
as the planning result. 

4.2. Representation of cable, robot and environment 

To use the above EMD net, the shape s must be given in an appro
priate representation. Additionally, since our problem setting requires 
collision avoidance, we need to represent the robot hand and the sur
rounding environment in a form that is suitable for collision checking. 
These representation formats are described below. 

First off, we consider the cable as a Deformable Linear Object (DLO) 
represented by a point chain model. That is, the cable is divided into 
segments of a given length, with equally spaced nodes set at the division 
points. Assuming that adjacent nodes are connected by straight line 
segments, the resulting collection of line segments approximates the 
shape of the cable. However, only the node positions are observed by 
EMD net, and the line segments between nodes are not used in practice. 

Hence, s can be expressed as {xk}
K
k=1, where x denotes three-dimensional 

node coordinates and K is the total number of nodes. fMeanwhile, the 
robot hand and the surrounding structures are first approximated as a set 
of rectangular cuboids, and then represented as a set of three- 
dimensional points sampled at equal intervals on the cuboids’ sur
faces. This simplified representation allows for simple and fast distance- 
based calculation of collision risk during manipulation planning. 

4.3. CF-EMD net 

We modify the EMD net as shown in Fig. 3 to meet the requirements 
of this study. In order to use this network for manipulation planning, a 
new loss function is defined as follows. 

argmin
mi

L(ŝi, hi, hn, h∗,mi, o),

where hi denotes the set of points that approximates the shape of the 
hand during manipulation, hn denotes the same set of points in their 
final posture at the end of the manipulation, and h∗ is the same set of 
points for the hand posture obtained when the connector is in its goal 
pose. Set o contains the points representing the surrounding structures. 
Loss L is composed of four terms as follows. 

L(ŝi, hi, hn, h∗,mi, o) =

MSE(h∗, hn) + ω0⋅LEN(mi) + ω1⋅
1

AVO(ŝi, hi, o)
+ ω2⋅DIS(si, hi),

where ω∗ are weight coefficients. The first term on the right-hand side, 
MSE, calculates the Mean Squared Error between the hand shape at the 
goal pose and the predicted final hand shape. The purpose of the second 
term on the right-hand side is to minimize the length of the manipula
tion trajectory. This function calculates the lengths of the translation 
vectors for each manipulation mi and adds them up. 

The third term AVO is defined as follows: 

Fig. 2. EMD net structure and data flow. The case shown here is one in which 
the goal shape is reached in two operations. In actual wiring task, dozens of 
module instances are connected to generate long-horizon manipula
tion sequences. 

Fig. 3. CF-EMD net structure and data flow. Box T applies rigid body trans
formations (rotation and translation) on basing of manipulation input mi. 
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AVO(ŝi , hi, o) =
{

da(ŝ, hi, o) if da ≤ r
∞ otherwise,

where 
da(ŝ, hi, o) = min

x∈ŝi ,hi
min
y∈o

‖ x − y ‖ .

Fig. 4 illustrates the role of this function. Given the set of points 
describing the hand-cable complex and the set of points describing the 
surrounding structures, the function searches for the pair of points at 
which the distance between the two point sets is smallest. The smaller 
this distance, the larger the output value of the function. In the above 
equation, r is a threshold value. There are two reasons for setting a 
threshold. One is to prevent the generation of paths that keep excessive 
distance from the surrounding structures. The other is to avoid leaving 
distance between hn and h∗ in cases where the DLO or hand necessarily 
approach an obstacle in their final pose. 

The fourth term DIS is defined as follows 

DIS(si, hi) =

{
− dd(si, hi, o) if dd < 0

0 otherwise,

where 

dd(si, hi) = min
x∈si ,hi

x 

In this study, x is effectively the z-coordinate, since only the height 
direction needs to be checked. 

Fig. 5 illustrates the role of this function. This term is responsible for 
avoiding contact of the hand or cable with the circuit board, and is set to 
0 when the minimum distance to the circuit board is greater than or 
equal to 0, in order to prevent generation of trajectories at unnecessarily 
large heights. 

Using the above configuration of the loss function, a path can be 
generated for the DLO and the hand to move the connector around 
without interfering with the surroundings. Adam [27] is used as the 
optimization algorithm. As a reminder, the abovementioned loss func
tion is used for manipulation planning. For training the neural network a 
different loss function is used. The training process is discussed in the 
next section. 

5. Data collection and learning 

5.1. Strategies for using learning-based planners 

The CF-EMD net is a neural network. Therefore, as is the case with 
other such methods, it needs to be trained with training data in advance. 
In other words, it is necessary to collect a large amount of numerical data 
representing the deformation of DLOs by manipulation. There are two 
options for this: collecting the data through real-world manipulation, or 
using simulation. However, since there are an infinite number of 
possible cable states, collecting data using an actual robot is a very 
burdensome task. In this study, data collection is performed using 
physical simulation. 

One key issue is how to handle the difference between the DLO shape 
estimated by the planner and the real cable shape when cable manipu
lation is performed using robot hardware. In this study, when per
forming real-world cable manipulation, the initial DLO shape input to 
the CF-EMD net is corrected using the results of in-situ cable measure
ments. When running the CF-EMD net, the initial shape s0 of the DLO is 
generated by physical simulation, using the poses of the cable’s root and 
connector as inputs. This is because the root’s pose is known, and the 
connector’s pose can be calculated given the assumption that the robot 
hand is grasping the connector normally. However, there may be a 
difference between the result of the physics simulation and the actual 
cable geometry. If this difference is left unchecked, all predictions of the 
DLO geometry during operation will be affected. 

The initial shape of the actual cable is then measured with a distance 
sensor or similar device. However, while it would be good if the mea
surement could be done perfectly, in our cable routing setting we have to 
contend with problems such as a small workspace and a tendency for the 
cable to be occluded by parts of the surrounding structures, the robot 
hand, and the cable itself. Therefore, it is not always possible to measure 
the cable shape completely. In consideration of these facts, we proceed 
as follows. We obtain point cloud data from a distance sensor before 
manipulation planning, and use it to bridge the gap between simulation 
and reality, under the assumption that only partial measurements can be 
obtained. A detailed description is given in the next section. 

5.2. Physics simulation 

Physics simulation is employed to collect training data. We apply the 
method of Lv et al. [28], which falls into the category of methods that 
represent DLOs using mass-spring elements [29]. An overview of the 
method is given below. 

As shown in Fig. 6, we let each mass point be connected by three 
types of springs, corresponding to tension-compression, bending, and 
torsion. The mass points we refer to here correspond to the nodes of the 
DLO model. The coordinates xp

i of each mass point are obtained by 
solving the following equation using the Euler method: 

mi
∂2xp

i

∂t2 + kd∂xp
i

∂t
= Fi = −

∂E
∂xp

i
+ Fe

i ,

where mi is the mass of point i, Fe
i indicates the external force exerted on 

it, and E is the sum of the energy due to the tension-compression, 

Fig. 4. Conceptual diagram of collision avoidance function with struc
tural objects. 

Fig. 5. Conceptual diagram of the function for maintaining proper height of 
the cable. 

Fig. 6. Physical model of cable.  
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bending, and torsion springs comprising the cable. The damping coef
ficient kd prevents excessive vibration of the masses in the calculation 
process. The derivative − ∂E/∂xp

i is given by the following equation: 

−
∂E
∂xp

i
= Fs

i + Fb
i + Ft

i = −
∂Es

∂xp
i
−

∂Eb

∂xp
i
−

∂Et

∂xp
i 

Here, Fs
i , F

b
i , and Ft

i are the forces due to the tension-compression, 
bending and torsion springs, respectively, and Es, Eb, and Et are their 
respective energies. 

In the process of wiring a cable by its connector, the torsion applied 
to the cable is small and hence torsion is less important than tension- 
compression and bending. Therefore, we omit torsion from consider
ation, in order to reduce the simulation time costs and avoid unnec
essary instability in the behavior of the simulated DLO. 

5.3. Data collection for cable wiring 

DLO Manipulation data is collected using the simulation method 
described in the previous subsection. Each data example consists of the 
sequence of manipulations m0:n− 1 applied to DLO, the DLO’s initial ge
ometry s0, and the sequence of DLO geometries s1:n traversed over the 
course of the manipulation sequence. Let one manipulation m = (δx, δy,
δz, θx, θy, θz), where the first three parameters specify a minute 

displacement of the DLO’s end point, and the remaining three parame
ters specify its rotation. 

At the start of the simulation, the length of the DLO is set to a given 
value and the DLO’s root is placed in its fixed pose. Then the following 
procedure is conducted and the obtained data is registered:  

1. Set the initial connector pose p and the length of the DLO,  
2. Obtain the DLO geometry s0 at pose p,  
3. Randomly initialize a manipulation sequence m̃0:n− 1, 
4. Generate manipulation sequence m0:n− 1 from m̃0:n− 1 via the modu

lation procedure described below, 
5. Obtain the sequence of geometries s1:n that results as the manipula

tions in m0:n− 1 are iteratively applied to p. 

Item 4 requires further explanation. In this study, it is assumed that 
the connector should avoid surrounding structures, so the required 
connector path will not always be a straight line. Therefore, it is 
necessary to have training data that evokes the kind of movements that 
are to be avoided. For this reason, we modulate the initial manipulation 
sequence m̃0:n− 1 using the following rule. 

y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m

0

m⋅sin
(

2πωi
L − 1

+ ψ
)

,

where y is the modulated manipulation and L is the number of manip
ulations. Coefficients ψ and ω control phase and wavelength, respec
tively, and are randomly generated. By modifying each element of the 
initial m0:n− 1 as described above, a variety of manipulation and DLO 
shape data are generated. 

5.4. CF-EMD net training 

From the data collected in the procedure explained in the previous 
subsection, we extract triplets consisting of a DLO shape si, a manipu
lation mi applied to it, and the resulting shape si+1. An appropriate 
number of such triplets are prepared as training data, and used to train 
the CF-EMD net. The following loss function is used for training. 

Loss = MSE(si+1:n, ŝi+1:n)

Since the DLO geometry is represented by a point chain model, the 

above equation calculates the average of the square of the distances 
between corresponding points in si+1 and ŝi+1:n. Adam is used as the 
optimization algorithm. 

6. Real-World cable detection and geometry correction 

6.1. Overview 

The method described in Section 4 does not guarantee consistency 
between the DLO shape maintained internally by the planner and the 
cable in the real world. Therefore, we introduce a process that reduces 
the gap between the planner’s internal DLO representation and the real 
cable, by fitting the initial DLO geometry s0 to the real cable’s observed 
shape. For this purpose, we construct our manipulation setup as shown 
in Fig. 7. In addition to the manipulator that grips the connector, a 
manipulator equipped with a 3D range image sensor at its tip is prepared 
to enable highly accurate 3D measurement from arbitrary viewpoints. 
Ideally, this system would allow us to obtain an accurate point cloud 
measurement of the cable. However, high-precision sensors generally 
have trade-offs between the field of view and depth of field, and narrow 
measurement ranges. Therefore, it is realistic to assume that only a 
portion of the cable can be measured in our task setup. In order to 
perform manipulation planning under assumption of such incomplete 
data, an effective strategy is to recover the cable’s overall geometry from 
the partial data using physical simulation. 

We must also account for the possibility that part of the surrounding 
structures may be included in the measurements. We propose the 
following procedure. We assume that the root position of the cable is 
known, and that the robot has already grasped the connector. This 
means that the system is in a state where the geometry of the DLO can be 
specified in the physical simulator. The first step is to point the range 
image sensor at the cable and measure it. Points originating from the 
surroundings may be obtained at the same time, so we isolate those 
points in the measurement that originate from the cable. Next, we decide 
which part of the simulated DLO geometry s0 corresponds to the 
resulting point cloud. Then, s0 is corrected using this information as a 
constraint. The resulting DLO geometry is then used as s0. 

This procedure allows the manipulation planning to be performed 
taking into account both the real cable geometry and the physical con
straints of the DLO. In the following subsections, we will explain how we 
extract the point cloud of the cable and how to correct s0, respectively. 

6.2. Cable point cloud extraction 

As we assume that cable geometry is highly variable, it is difficult to 
determine which of the measured points correspond to the cable by 
means of simple pattern matching. Therefore, we adopt a classification 
approach using PointNet++ [30]. Specifically, the measured point 
cloud is input to the PointNet++ classifier, to obtain a binary classifi
cation of the points that divides the cloud into points originating from 
the cable and points originating from the surrounding environment. 

For this purpose, it is necessary to train PointNet++ in advance. As 
in the case of manipulation planning, the data collection burden should 
be reduced as much as possible. However, in our experience, a certain 
degree of realism is required for the cable point cloud. Therefore, the 

Fig. 7. Configuration of our robotic cable wiring system. The system consists of 
two manipulators: one for cable-handling and one for range sensing from an 
appropriate viewpoint. 
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following method is used to generate data. First, a real cable is 
straightened, and measured with the range image sensor to obtain point 
cloud data. This point cloud is then divided into segments of pre
determined length. Then, the DLO is generated in various shape geom
etries using physical simulation. Then, the point cloud segments are 
arranged along the geometry of each virtual DLO. The resulting data 
mimics the point cloud data obtained from real cables. A point cloud 
data set of the surrounding environment is generated via simulation as 
well. PointNet++ is then trained as a binary classifier for distinguishing 
the cable from other objects in its input point cloud. Using this neural 
network, the system performs inference on the unknown point clouds 
obtained from the 3D range image sensor to extract the points origi
nating from the cable. 

6.3. Geometry correction using partial cable data 

Suppose that the geometry s0 of the DLO is initialized via physical 
simulation. The following procedure corrects the shape of the DLO. First, 
based on the DLO geometry obtained from the physics simulation, the 
range image sensor is moved so that at least the middle part of the cable 
is in the field of view, and the measurement data is obtained as point 
cloud PO. Then, the point originating from the cable are isolated using 
the method described in the previous section. Then, using the ICP al
gorithm [31], a part of the DLO is matched with the point cloud data. 
Since a nearest neighbour search is required here, we map the point 
cloud to the node points of the DLO using Euclidean distance. Then, a 
rigid body transformation H is obtained to fit the point cloud to the 
simulated DLO geometry. Let PR be the transformed point group. 

Next, for each node point in the DLO, select the point in PR with the 
closest distance. If the distance is less than a predefined threshold, they 
are considered to be associated. Let Q be the set of the node points for 
which such correspondence has been obtained. Next, Q is subjected to 
the inverse transformation of H and moved to the vicinity of PO (the 
point set before the rigid body transformation). Then, physical simula
tion is performed with the points in Q fixed in place, thereby correcting 
the positions of the remaining nodes. Fig. 8 shows a schematic diagram 
of the above. 

The above procedure corrects the DLO geometry by constraining the 
intermediate node points in addition to the cable ends, thereby 
approximating the actual current shape of the real cable. 

7. Experiments 

7.1. Experimental settings 

To confirm the effectiveness of the proposed method, we conducted 
verification experiments in simulation, and real-world experiments on 
robot hardware. The pose of the cable root and the geometry of the 
surrounding structures were given as prior knowledge. The robot used to 
manipulate the connector was SEIKO-EPSON’s N2 [32], a 
ceiling-suspended six-axis serial link manipulator. The end effector of 

the robot was a parallel gripper. The tip of the gripper was designed as a 
jig that can clamp the connector from both sides. In our hardware ex
periments, the workpiece, which mimicked a laptop PC circuit board, 
was placed on a horizontal platform. Fig. 9 shows an overview of the 
experimental platform. 

A 3D range image sensor was attached to the wrist of the robot. The 
specifications of this sensor were as follows: 720 × 540 pixel resolution, 
79.1 × 59.3 mm measurement range, 10 mm effective measurement 
height, and 20 mm measurable height. The point cloud data obtained 
from the sensor was used for connector detection and pose estimation. 
We implemented Ying et al.’s [14] method to determine the connector 
pose with sufficient accuracy to be grasped by the robot. 

Next, we describe the cables and connectors used for verification. 
Five cables with lengths of 150 mm, 200 mm, 250 mm, 300 mm, and 350 
mm were prepared. Each cable was made by twisting together three 
wires. The conductor diameter of each wire was 0.65 mm, the outer 
diameter (including the sheath) was 1.45 mm, and the cross section of 
the resulting stranded cables was approximately 3 mm × 4.2 mm. In 
physical simulation, these stranded cables were approximated as single 
DLOs. 

7.2. Appropriateness of the physics simulation 

The proposed method collects DLO data using physical simulation, 
and trains the CF-EMD net on the resulting dataset. Before reporting on 
real-world cable manipulation, we assess the gap between the physical 
simulation and reality, and evaluate the correction methods described in 
Section 6. The parameters for the DLO physics simulation were experi
mentally selected following [28]. A cable diameter of 4 mm, Young’s 
modulus of 126 MPa, and Poisson’s ratio of 0.3 were used. 

The verification setup is as follows. Measuring targets points are 
located at equal spacings along the cable length, dividing it into 10 
sections. We bring the real cable in a shape configuration that features 
substantial bending as well as torsion. With both ends of the cable fixed, 
we measure the 3D coordinates of the target points manually. We then 
simulate the cable with the same connector pose and cable length, and 
calculate the difference in the 3D positions of the target points on the 
real and simulated cable. The left panel of Fig. 10 shows the definition of 
the coordinate system for the cable root and connector. In this experi
ment, the position of the connector was set as (x, y) = (60, − 60) mm and 
a rotation of π/2 was added along the y axis. The right panel of Fig. 10 
shows this example. 

Table 1 summarizes the measured position error against cable length 
as a percentage of the total length. Since both ends of the cable are fixed, 
the error tended to be larger at larger distances from both ends; for a 350 

Fig. 8. Correction of DLO geometry using measured point clouds. First, the 
point cloud is matched to the DLO by looking for corresponding node points. 
Then, an inverse transformation is performed to obtain a fixed area for the cable 
correction process. Fig. 9. Appearance of the robot system.  
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mm cable, the maximum error was about 50 mm, which is not negli
gible. The left panel of Fig. 11 plots the error between the simulated and 
real shape for the set of measurement targets on our five cables, with a 
maximum misalignment of 45 mm for the 350 mm geometry. The right 
graph in Fig. 11 shows the error after applying correction as described in 
Section 6. For the cables up to 300 mm, the error is reduced to less than 
10 mm, and even for the 350 mm cable, the error is about 20 mm. 

Note that this setup results in a fairly large cable twist. The authors 
have also verified the difference between simulation and reality under 
simpler conditions [33]. In this case, the error was less than 5% of the 
total cable length, and the maximum error was about 15 mm without the 
corrections described in Section 6. Although this value is not negligible, 
it can be adequately accommodated by providing a safety margin during 
manipulation planning. 

7.3. Implementation and training of CF-EMD net 

The specific structure of the CF-EMD net is as follows: For the 
encoder, the input is 30 × 3 dimensional, the output is 30 dimensional, 
and in between are three fully-connected layers with 30 neurons each. 
For the decoder, the input has 30 dimensions, the output has 30 × 3 
dimensions, and in between are fully-connected layers with 30, 30, and 
90 neurons. The 30 × 3 dimensionality derives from the fact that the 
number of DLO nodes was set to 30 and the coordinates of each node are 
three-dimensional. Meanwhile, the manipulation module accepts 6- 
dimensional manipulation inputs and outputs 30-dimensional com
pressed shape predictions. The LSTM consists of three layers with 30- 
dimensional input each. 

Training data for the CF-EMD net was generated using physical 
simulation as described in Section 5.3. Manipulation values m are 

randomly generated using ranges of ±0.01 m for the displacement 
quantities (δx, δy, δz) and ±π/20 rad for the rotation quantities (θx, θy,

θz), respectively. Twenty manipulations were performed on each initial 
DLO geometry, and the DLO geometries and the manipulation were 
recorded as a set. The total number of data was 80,000 for each cable 
length, of which 64,000 were used for training and 16,000 for testing. 

Training was performed separately for each cable length. Fig. 12 
shows two example learning curves. Although there was a tendency for 
the learning curve to converge to a larger value as the cable length 
increased, a straightforward learning curve was obtained in each case, 
and the final loss was found to be sufficiently small. The test data 
showed similar loss values as the training data, indicating that no 
overfitting occurred. 

7.4. Wiring experiment 

Verification experiments were conducted using the robot system. As 
shown in Fig. 13, three layouts, (A) to (C), were prepared for the 
placement of structures, the root of the cable, and the position of the 
target socket. In all of these layouts, the cables would catch on work 
space structures if the connectors were simply moved to the sockets in 
straight lines. The approximate initial pose of the connector side of the 
cable was also determined, and the experiment was initiated from a pose 
in the vicinity thereof. The number of manipulations for generation of 
the connector trajectory was set to 30, and the number of cable node 
points in the simulation was set to 30. 

The experimental procedure was as follows: 

1. The 3D range image sensor is used to acquire a point cloud mea
surement of the workspace, from which we detect the connector and 
estimate its pose. We then grasp the connector with the manipulator.  

2. Using the connector pose estimated in step 1 as input, we perform 
physical simulation of the cable, determine suitable viewpoints for 
the sensor on basis of the obtained geometry, and acquire a point 
cloud of the cable accordingly.  

3. Based on the connector pose and the obtained point cloud of the 
cable, we correct the DLO geometry using the method described in 
Section 6. 

4. Based on the connector pose obtained in step 1 and the DLO geom
etry obtained in step 3, we generate a manipulation trajectory for the 
connector using the method described in Section 5.5.  

5. Let the manipulator perform the generated manipulation. 

Table 2 shows results for the manipulation experiments. The ‘Result’ 
column shows the outcome classification, which is defined as follows.  

(a) [Success] Wiring succeeded without snagging of the cable  
(b) [Success] Wiring was successful despite some contacts  
(c) [Failure] Cable snagging occurred  
(d) [Failure] The connector was dislodged from the end-effector 

Fig. 10. Left: Definition of the connector coordinate system with respect to the 
root of the cable. Right: A fixed cable with bending and twisting. 

Table 1 
Measured differences between real and simulated cables.  

Length [mm] Average[mm(%)] Max[mm(%)] 

150 3.6 (2.4) 7.2 (4.8) 
200 6.5 (3.3) 15.5 (7.7) 
250 12.0 (4.8) 26.3 (10.5) 
300 16.4 (5.5) 36.7 (12.2) 
350 24.1 (6.9) 51.2 (14.6)  

Fig. 11. Difference between measured and simulated values at each measurement point. Left: before correction, right: after correction.  
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We consider a trial a success if the cable did not interfere with task 
space structures or only touched them. On the other hand, if the cable 
caught on the structures or the connector got dislodged from the hand, 
we considered a trial a failure. 

As can be seen from the table, in 11 of the 12 cases, the cable was 

manipulated without any contact. In the remaining one case, the 
connector separated from the hand during cable manipulation, although 
the trajectory was appropriate. This means that in all cases, the system 
was able to avoid getting the cable caught on any surrounding struc
tures. The reason why there are no results for cables of 150 to 250 mm in 
layout (B) is that this layout requires longer cables in the first place, a 
fact we determined in advance using existing methods [33]. The two 
columns on the right side of the table show the length of the connector 
trajectory in the generated manipulation plan for the proposed method 
and an existing method [24]. We observe that the proposed method 
generated shorter paths than the existing method in all cases but one. As 
for processing time, the average time taken to isolate the cable using 
PointNet++ was 3.33 s with a standard deviation of 0.15. The average 
time for connector trajectory generation using the CF-EMD net was 
12.10 s with a standard deviation of 2.88. This processing time consisted 
of 0.18 s for shape estimation, 1.76 s for computation of the objective 
function, 3.32 s for calculation of the hand poses, and 6.84 s for updating 
the manipulation. 

Fig. 14 shows data concerning the identification of the cables at step 
3 above. PointNet++ was trained on the composite data as shown in the 
first row and output the appropriate identification results as shown in 
the second and third rows. Fig. 15 shows examples of generated tra
jectories. It can be seen that smoother and shorter connector trajectories 

Fig. 12. Learning results of the CF-EMD net. Left: Learning curve for a 150mm-long cable, Right: Learning curve for a 350mm-long cable.  

Fig. 13. Three task layouts for the cable wiring experiments.  

Table 2 
Result of the cable wiring experiment.  

Layout Cable 
Length 

Result Trajectory Length 
(proposed) 

Trajectory length  
[24] 

(A) 150 (a) 301 357 
200 (a) 245 351 
250 (d) 296 380 
300 (a) 302 471 
350 (a) 332 448 

(B) 300 (a) 302 471 
350 (a) 344 457 

(C) 150 (a) 194 254 
200 (a) 229 297 
250 (a) 176 309 
300 (a) 202 421 
350 (a) 188 181  

Fig. 14. Example of data concerning the identification of the cables. Top row: 
Training data, a composite of actual cable data (green), actual data of sur
rounding environment (pink), simulated data of surrounding components 
(blue), and simulated noise data (orange). 2nd and 3rd rows: Results of cable 
identification; in both cases, cable parts (green) were properly separated from 
other parts (dark blue). 
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are generated compared to the existing method. This is due to the fact 
that the manipulation trajectory is determined in consideration of the 
nearby cable geometry and connector location at each point in time, 
which is characteristic for CF-EMD-based planning. 

In other attempts to investigate the behavior of the proposed 
method, the effect of the number of nodes in the DLO was examined. The 
number was set to 10, 15, 20, and 30, respectively, and CF-EMD net was 
trained at each DLO, and manipulation planning were performed using 
the trained network. The length of the DLO was set to 250 mm, and the 
two verification environments were Layout (A) and Layout (C) shown in 
Fig. 13. Ten plans were executed for each environment. The results were 
as follows. Regardless of the number of nodes, manipulation trajectories 
were generated without any problems. In Layout (A), the computation 
time of the objective function decreased by only a few percent when the 
number of nodes was small, whereas there was almost no difference in 
Layout (C). Connector path length obtained did not change with the 
number of nodes in both layouts. These results suggest that the number 
of nodes does not significantly change the manipulation. 

Finally, Fig. 16 shows an example of moving an actual connector to 
the vicinity of a socket. The robot system succeeded in automatically 
generating a motion that brings the connector close to the socket posi
tion, while avoiding a tall structure. Note that this experiment is auto
mated from the detection of the connector; no human intervention is 
involved in the series of movements. The experimental movie can be 
viewed on our project web page: http://www.ais.shinshu-u.ac.jp/ 
cfemdnet/ 

8. Conclusions 

In this paper, we described a manipulation planning method for 
automated wiring of connector-terminated cables with one end mounted 
on a circuit board. We presented a method for generating a transport 
trajectory for the floating connector. We let the robot grasp the floating 
connector, and transport it to its socket while avoiding collision with 
surrounding structures. Core of the proposed method is the CF-EMD net, 
a modular neural network. We described its internal structure, motion 
planning flow, and learning method in detail. We also presented our 
policy of using physical simulation for training data collection and 
introduced a method for bridging the gap between reality and simula
tion. The effectiveness of the proposed method is demonstrated by 
manipulating stranded cables with lengths ranging from 150 mm to 350 
mm in a test environment using ceiling-suspended robot arms. The 
maximum positional error between real and simulated cable was about 
20 mm, indicating that the operation plans produced by the proposed 

method are realistically executable. In our hardware experiments, the 
proposed method was integrated with existing connector detection and 
pose estimation methods, demonstrating that many parts of the 
connector wiring task can be automatically performed by a robot. 

Future work includes improving the processing speed of CF-EMD net. 
The results of the proposed method depend on which parts of the cable 
can be measured. We believe that the introduction of a mechanism for 
estimating the degree of shape compensation could further improve 
robustness for real-world cable manipulation. We also plan to extend the 
simulation environment and CF-EMD net to accommodate cases where 
cable deformation is affected by gravity. Other prospects include 
extension to multi-point grasping. Lastly, in order to meet the demand 
for wiring in more complex environments, we are modifying the pro
posed method to accommodate grasping of the cable itself in addition to 
its terminal connector. 
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