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In this paper, we propose a manipulation planning method for cable wiring in the assembly of electric appliances
etc. We address a scenario where a robot grasps a connector attached to the end of a cable and has to bring the
connector to a socket. To accomplish this automatically, we propose a novel manipulation planning method. The
method extends the Encode-Manipulate-Decode network (EMD net), which can predict shape changes of

deformable objects and generate robot motion sequences for producing desired shape transitions. This enables us
to find connector trajectories that avoid collision between the cable and the surrounding environment. We
conducted experiments with several different cable lengths. We also introduce some functions required for real-
world wiring, such as online cable shape modification. Experimental results show that the proposed method can
achieve stable manipulation of real cables.

1. Introduction

In the assembly of electrical appliances, automating cable wiring is a
challenging task. This is because cables are flexible objects that deform
when manipulated. Furthermore, motors and circuit boards are often
incorporated into electrical appliances before cable wiring, presenting
obstacles that must be avoided during the wiring process. The wiring
process requires consideration of all the forces and deformations applied
to the cable during manipulation, and avoidance of any snagging on
surrounding structures. Consequently, much of cable wiring is currently
performed manually. However, assembling electrical appliances is a
burdensome task for humans, and automation is necessary. Such auto-
mated systems should require minimal human intervention, and should
be robust enough to adapt to changes in cable length and type, as well as
to changes in the work environment.

The purpose of this study is to establish a motion planning method
for wiring a connector-terminated cable. Fig. 1 shows a simplified dia-
gram of the wiring scenario addressed in this study. Challenges to be
considered are also presented. The manipulation target is a cable with a
connector attached to its end. The root of the cable is attached to a
circuit board. The actions required of the robot in automating this task is
to grasp the connector, move it to a predetermined socket position, and
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then insert the connector into the socket. At this point, it is desirable to
avoid interference of the cable, which deforms during connector trans-
port, with surrounding structures. One important challenge for
achieving this is to generate a path along which the connector can safely
be transported.

Various studies on the automation of cable wiring are reported in the
literature. Many studies target the task of connector insertion [1,2].
Others have proposed manipulation planning methods for applying
arbitrary deformations to cables [3,4]. In the former, force sensing and
control for proper mating of connectors and sockets are central subjects.
Since the goal of the present study is to move the connector to the vi-
cinity of the socket, potential for compatibility with these studies is high.
On the other hand, the latter studies address similar subject matter as the
present study. However, the goal of the present study is to avoid inter-
ference in situations where the cable may get caught on surrounding
structures, by actively deforming the cable through appropriate
manipulation of the connector. This is a practical function in wiring
work, but has not been considered much in previous studies.

The method proposed in this paper makes it possible to predict the
deformation of cables when the connector is picked and moved, and uses
the prediction result as a cue to generate an appropriate manipulation.
This results in a trajectory for transporting the connector that avoids
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interference between the cable and the surrounding environment. The
prediction and generation of manipulation trajectories are performed
using the EMD net (Encode-Manipulate-Decode network) [5], which has
a modular neural network architecture. However, since interference
avoidance was previously not considered in this architecture, we here
extend the method and propose a new Collision-Free EMD net (CF-EMD
net).
The contributions of the present study are as follows:

e We propose a manipulation planning method to move a connector
attached to a cable fixed at one end on a circuit board to a desired
position while avoiding interference of the cable with surrounding
obstacles.

e As a strategy for efficient use of the method, we show how to
generate training data using physical simulation of Deformable
Linear Objects (DLOs) and train the neural network using this
simulation data.
We confirm that the proposed method works in a problem setting
that simulates the internal structure of an electrical appliance
through experiments on actual equipment. Furthermore, we show
how to manipulate real cables while bridging the gap between
simulation and reality by correcting the difference between the
predicted and real cable geometry on the spot.

The structure of this paper is as follows. The next section introduces
related work. Section 3 describes the problem setup, our approach, and
an overview of our methodology. Section 4 describes our extended
modular neural network for interference avoidance. Section 5 describes
data collection and neural network training using physical simulation.
In Section 6, we describe a method for correcting the results of physical
simulations to match the geometry of real cables in order to apply the
proposed method in real-world cable manipulation. Section 7 presents
our verification experiments, and Section 8 summarizes the study.
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2. Related work
2.1. Cable manipulation

In R&D aimed at product assembly automation, there are several
existing works on the topic of cable manipulation. As mentioned in the
previous section, one representative task is robotic insertion of con-
nectors into sockets. Huang et al. [1] successfully inserted a connector
into a socket using force control. Chen et al. [2] investigated the rela-
tionship between the force sensor signal and the relative positions of a
connector pair, in order to avoid jamming during the connector mating
process. Song et al. [6] used visual servo and impedance control to
minimize position errors in the mating process. Yumbla et al. [7] made a
dataset of mating tolerances between 70 types of connectors and sockets
commonly used in manufacturing. Romeres et al. [8] proposed a method
based on Gaussian process regression to learn the profile of forces during
successful insertion and quantify the deviations of the tolerances ob-
tained from it.

Various methods have also been proposed for high-level automation
involving 3D pose estimation [9,10]. Sumi et al. [11] developed a robot
assembly system with a 3D vision sensing system and demonstrate servo
amplifier assembly with manipulation of a connector-terminated cable.
Yumbla et al. [12] successfully detected the position of a connector.
Zhou et al. [13] estimated the pose of a connector and used this pose to
insert the connector into a socket using a dual-armed robot. Ying et al.
[14] proposed a method to accurately estimate the 3D pose of a
connector and grasp it. They combined PointNet++ [15] for connector
part detection with ICP for accurate pose estimation. As described
above, there are many studies of recognition and manipulation for
wiring tasks, but these studies did not explicitly consider cable shape
change.

On the other hand, there have been studies that consider a cable as a
DLO subject to direct manipulation. Sano et al. [16] demonstrate wiring
of a flexible flat cable onto an electronic substrate. The main contribu-
tions of this study were novel manipulation procedures and dedicated
end-effectors, but cable shape estimation was not addressed. She et al.
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Fig. 1. If only the robot and the connector are considered in motion generation, the cable may interfere with surrounding structures, as in (a). This study aims to
generate manipulations that avoid interference of the cable with surrounding structures, as shown in (b). The challenge here is to generate a connector trajectory that

accounts for the time-series of the cable shape.



K. Yamazaki et al.

[17] focused on sliding hand motions for clamping a cable, and detected
cable posture and frictional force between cables using tactile sensors.
Zhu et al. [3] proposed a motion planning method for transitioning a
cable from its current shape, estimated from color images, to a target
shape, and succeeded in deforming a cable grasped at both ends by a
dual-armed robot into a desired shape.

2.2. DLO modeling and manipulation learning

Outside the context of cable assembly as well, DLOs have been an
active topic of research in recent years. We can find excellent work in
modeling and manipulation learning. With regard to DLO simulation,
one class of methods builds on the finite element model (FEM) [18].
FEM simulation results have been used to control the shape of physical
DLOs. Position-based dynamics (PBD) is another representative recent
simulation method, which has been applied to DLO manipulation as
well. Liu et al. [19] proposed a modeling method for rope-like objects
based on PBD. These models make it possible to compensate for the
shortcomings of physical parameter estimation, and improve the
matching of rope physics to real-world scenarios. Ying et al. [20] pro-
posed a differentiable physics simulation method and demonstrated
shape-control on rope-like objects, with consideration of the effects of
contacts with surrounding environment.

Several methods have been proposed that tightly couple simulation
and learning. Yang et al. [21] combined an interaction network and a
recurrent neural network to learn a dynamic DLO model. They used the
obtained model in a model predictive controller to achieve a given goal
shape. Huo et al. [22] proposed an approach for training a network from
a synthetic dataset to encode key points on DLOs. Yu et al. [4] proposed
an efficient method for obtaining a deformation model by learning the
relationship between a manipulation and a DLO shape change in a
simulated environment, and then learning the same thing in the real
world. Yamazaki et al. [23] proposed the use of GANs as a method for
generating DLO shape transitions. They showed that it is possible to
generate smooth shape transitions for motions of the endpoints of DLOs,
and also to automatically generate transitions between different shapes.
Chang et al. [24] proposed a model-based DLO manipulation method,
called Sim2Real2Sim, to perform the task of inserting a plug into a
socket. These studies are useful for applying specific manipulations to
cables, but their applicability in other settings, such as wiring in the
presence of obstacles, is unknown. The distinguishing feature of the
method presented here is its ability to generate appropriate manipula-
tion sequences while predicting the DLO’s shape transitions over a long
horizon. This makes it possible to obtain a manipulation sequence that
does not break down even when parts of the cable part have to traverse
through the vicinity of obstacles in the scene.

3. Problem setting and our approach
3.1. Problem setting

We assume a task environment consisting of the circuit board of an
electrical appliance, with a cable extending from the circuit board and
terminating in a connector. Hence, the connector part is floating freely.
It is assumed that the circuit board has elements and other structures
attached to it, and that these structures are of non-negligible height.
That is, it is possible for cables or the robot itself to collide with them
during wiring. Such structures are assumed to extend upward from the
board, and the structures are assumed not to protrude from above or
from the side.

Under these conditions, we consider the task of grasping such a
connector and inserting it into a socket on the board, as shown in Fig. 1.
We adopt an industrial robot manipulator equipped with a gripper-type
end-effector as our robot platform. Such simple systems are commonly
employed in the manufacturing of electronics products because of their
lower cost compared to multi-arm systems. Here, to manipulate the
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cable, the robot should grasp the connector. We let the end-effector
grasp the connector, because grasping the cable would make the sub-
sequent insertion of the connector into the socket difficult. Therefore,
we will consider manipulation planning under the assumption that only
the connector is directly manipulated and that the cable deforms pur-
suant to the connector’s movements. However, we assume that the cable
has a certain level of stiffness, and that as long as the connector part is
grasped, gravity will induce no significant downward deformation in the
cable.

3.2. Issues and approach

A possible problem in the above setup is that the cable gets caught on
parts of the surrounding environment when the robot moves the
connector, preventing the connector from moving to its goal position or
damaging the cable. Therefore, motion planning must be able to predict
the state of not only the robot but also the cable appropriately and detect
when a motion would cause such snagging in advance. Furthermore, it is
desirable to generate manipulations for transporting the connector to
the goal position that avoid snagging. However, cables are flexible ob-
jects and deform as they are manipulated. Therefore, it is necessary to
know how the cable deforms when a manipulation is applied. If this is
not adequately addressed, the likelihood of the cable interfering with its
surroundings increases.

To solve this problem, this study implements neural network mod-
ules for predicting how the cable geometry changes and for generating
connector trajectories. We construct a manipulation planner for DLOs by
learning both of these functions simultaneously. The base of this system
is the EMD net [5]. However, since the EMD net does not provide
collision avoidance, we extend the method here to add this function-
ality. In this study, we refer to the extended method as the Collision-Free
EMD net (CF-EMD net).

To train the CF-EMD net, a certain amount of training data is
required. Collecting these data in the real world is a heavy burden.
Therefore, we implement a DLO physics simulation and collect training
data in virtual space. However, there are subtle differences in the
behavior of flexible objects between the real and virtual environments.
Our approach for bridging this gap is to use a range image sensor to
measure the real-world cable shape, and adjust the CF-EMD net’s output
on basis of the measured shape. The details of the method are explained
in the next section.

4. CF-EMD net
4.1. EMD net [5]

The EMD net is an action planner that primarily targets deformable
object manipulation. It takes the state of a deformable object as input,
performs a virtual manipulation on it, and outputs the predicted state
after the manipulation. The network consists of a modular structure: an
encoder, manipulation network, and decoder. This modular structure
can be connected recursively to predict state changes over long horizons
and generate appropriate manipulations accordingly. The encoder and
decoder use fully-connected layers to compress and decompress data,
respectively. Although there are several implementation patterns for
manipulation networks [25], this study adopts the method of processing
minute manipulations continuously. The manipulation network com-
bines fully connected layers and an LSTM (Long Short-Term Memory).
LSTM [26] is a type of recurrent neural network that is known to have
high prediction performance for medium-term time series data. There-
fore, it is suitable for our study, which requires smooth time-series of
changes in the cable shape.

Fig. 2 shows the structure and data flow of the EMD net. Let s, be the
cable shape at the n-th time step and let m, be a minute manipulation
applied to the cable. We let 5 indicate the shape of the cable predicted by
EMD net. The EMD net’s encoder converts the shape s into a low-
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Fig. 2. EMD net structure and data flow. The case shown here is one in which
the goal shape is reached in two operations. In actual wiring task, dozens of
module instances are connected to generate long-horizon manipula-
tion sequences.

dimensional compressed representation c. Then, ¢, and the manipula-
tion value m, are input to the manipulation network to obtain a com-
pressed representation c,,; of the shape after manipulation. This
network is used recursively to predict how the cable will be deformed by
a sequence of micro-manipulations specified as a time series of m values.

Next we explain how to use the EMD net. First, the target DLO shape
sp(= s*) and the current shape s, are given. Also, a sequence of minute
manipulations mg.,_; is given. Then, as indicated by the blue arrows in
Fig. 2, virtual operations are successively applied to sy, yielding a series
S1n of the resulting shape predicted for each operation. Then we
compare the final shape prediction s, with s,, and update my., 1 by back
propagation of the difference, as illustrated by the orange arrows in
Fig. 2. This is repeated until the difference between S, and s, is deemed
sufficiently small. The resulting manipulation time-series my,,_1 is used
as the planning result.

4.2. Representation of cable, robot and environment

To use the above EMD net, the shape s must be given in an appro-
priate representation. Additionally, since our problem setting requires
collision avoidance, we need to represent the robot hand and the sur-
rounding environment in a form that is suitable for collision checking.
These representation formats are described below.

First off, we consider the cable as a Deformable Linear Object (DLO)
represented by a point chain model. That is, the cable is divided into
segments of a given length, with equally spaced nodes set at the division
points. Assuming that adjacent nodes are connected by straight line
segments, the resulting collection of line segments approximates the
shape of the cable. However, only the node positions are observed by
EMD net, and the line segments between nodes are not used in practice.
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Hence, s can be expressed as {xk}l,le, where x denotes three-dimensional
node coordinates and K is the total number of nodes. fMeanwhile, the
robot hand and the surrounding structures are first approximated as a set
of rectangular cuboids, and then represented as a set of three-
dimensional points sampled at equal intervals on the cuboids’ sur-
faces. This simplified representation allows for simple and fast distance-
based calculation of collision risk during manipulation planning.

4.3. CF-EMD net

We modify the EMD net as shown in Fig. 3 to meet the requirements
of this study. In order to use this network for manipulation planning, a
new loss function is defined as follows.

argmin L(5;, hi, hy, h*,m;,0),
m;

where h; denotes the set of points that approximates the shape of the
hand during manipulation, h, denotes the same set of points in their
final posture at the end of the manipulation, and h* is the same set of
points for the hand posture obtained when the connector is in its goal
pose. Set o contains the points representing the surrounding structures.
Loss L is composed of four terms as follows.

L(S;, iy hyy B mi,0) =

MSE(h*, h,,) + a)oLEN(m,) + ;- + C()z'DIS(Si, hi),

1
where w, are weight coefficients. The first term on the right-hand side,
MSE, calculates the Mean Squared Error between the hand shape at the
goal pose and the predicted final hand shape. The purpose of the second
term on the right-hand side is to minimize the length of the manipula-
tion trajectory. This function calculates the lengths of the translation
vectors for each manipulation m; and adds them up.

The third term AVO is defined as follows:

R e ettt

¢ : estimate ® :real
9@ : prediction/plan = : forward propagation
< : neural net » : backward propagation

Fig. 3. CF-EMD net structure and data flow. Box T applies rigid body trans-
formations (rotation and translation) on basing of manipulation input m;.
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AVO(S\,, hi7 0) — {da(s7 hi7 0) lfda <r

oo otherwise,
where
dy(S, hi, 0) = minmin||x —y| .
x€s;.h y€o

Fig. 4 illustrates the role of this function. Given the set of points
describing the hand-cable complex and the set of points describing the
surrounding structures, the function searches for the pair of points at
which the distance between the two point sets is smallest. The smaller
this distance, the larger the output value of the function. In the above
equation, r is a threshold value. There are two reasons for setting a
threshold. One is to prevent the generation of paths that keep excessive
distance from the surrounding structures. The other is to avoid leaving
distance between h, and h* in cases where the DLO or hand necessarily
approach an obstacle in their final pose.

The fourth term DIS is defined as follows

—du(si, hi, 0) if dg <0
0 otherwise,

DIS(s;, h;) = {

where

dy(si, b)) = minx
xEsih;

In this study, x is effectively the z-coordinate, since only the height
direction needs to be checked.

Fig. 5 illustrates the role of this function. This term is responsible for
avoiding contact of the hand or cable with the circuit board, and is set to
0 when the minimum distance to the circuit board is greater than or
equal to 0, in order to prevent generation of trajectories at unnecessarily
large heights.

Using the above configuration of the loss function, a path can be
generated for the DLO and the hand to move the connector around
without interfering with the surroundings. Adam [27] is used as the
optimization algorithm. As a reminder, the abovementioned loss func-
tion is used for manipulation planning. For training the neural network a
different loss function is used. The training process is discussed in the
next section.

5. Data collection and learning
5.1. Strategies for using learning-based planners

The CF-EMD net is a neural network. Therefore, as is the case with
other such methods, it needs to be trained with training data in advance.
In other words, it is necessary to collect a large amount of numerical data
representing the deformation of DLOs by manipulation. There are two
options for this: collecting the data through real-world manipulation, or
using simulation. However, since there are an infinite number of
possible cable states, collecting data using an actual robot is a very
burdensome task. In this study, data collection is performed using
physical simulation.

~ End-effector h;

000000
Cable’s 00000
able s; O000O0
Obstacl
OOOOO(? stacle 0
CPOOOOQ
Distance d, ©-0-0-0-0-O

Fig. 4. Conceptual diagram of collision avoidance function with struc-
tural objects.
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Fig. 5. Conceptual diagram of the function for maintaining proper height of
the cable.

One key issue is how to handle the difference between the DLO shape
estimated by the planner and the real cable shape when cable manipu-
lation is performed using robot hardware. In this study, when per-
forming real-world cable manipulation, the initial DLO shape input to
the CF-EMD net is corrected using the results of in-situ cable measure-
ments. When running the CF-EMD net, the initial shape sy of the DLO is
generated by physical simulation, using the poses of the cable’s root and
connector as inputs. This is because the root’s pose is known, and the
connector’s pose can be calculated given the assumption that the robot
hand is grasping the connector normally. However, there may be a
difference between the result of the physics simulation and the actual
cable geometry. If this difference is left unchecked, all predictions of the
DLO geometry during operation will be affected.

The initial shape of the actual cable is then measured with a distance
sensor or similar device. However, while it would be good if the mea-
surement could be done perfectly, in our cable routing setting we have to
contend with problems such as a small workspace and a tendency for the
cable to be occluded by parts of the surrounding structures, the robot
hand, and the cable itself. Therefore, it is not always possible to measure
the cable shape completely. In consideration of these facts, we proceed
as follows. We obtain point cloud data from a distance sensor before
manipulation planning, and use it to bridge the gap between simulation
and reality, under the assumption that only partial measurements can be
obtained. A detailed description is given in the next section.

5.2. Physics simulation

Physics simulation is employed to collect training data. We apply the
method of Lv et al. [28], which falls into the category of methods that
represent DLOs using mass-spring elements [29]. An overview of the
method is given below.

As shown in Fig. 6, we let each mass point be connected by three
types of springs, corresponding to tension-compression, bending, and
torsion. The mass points we refer to here correspond to the nodes of the
DLO model. The coordinates x¥ of each mass point are obtained by
solving the following equation using the Euler method:

P o OE
o

+F,

where m; is the mass of point i, F{ indicates the external force exerted on
it, and E is the sum of the energy due to the tension-compression,

. Mass Point
/\/\ Linear Spring
O Bending Spring

Fig. 6. Physical model of cable.
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bending, and torsion springs comprising the cable. The damping coef-
ficient k; prevents excessive vibration of the masses in the calculation
process. The derivative —dE/dx! is given by the following equation:

OE OE* OE" OF'
—— =F+4+F +F =—— —— _

ax[/ l + 1 + I3

i i

Here, F;, Ff.’, and F; are the forces due to the tension-compression,
bending and torsion springs, respectively, and E°, E, and E' are their
respective energies.

In the process of wiring a cable by its connector, the torsion applied
to the cable is small and hence torsion is less important than tension-
compression and bending. Therefore, we omit torsion from consider-
ation, in order to reduce the simulation time costs and avoid unnec-
essary instability in the behavior of the simulated DLO.

5.3. Data collection for cable wiring

DLO Manipulation data is collected using the simulation method
described in the previous subsection. Each data example consists of the
sequence of manipulations my.,_1 applied to DLO, the DLO’s initial ge-
ometry sg, and the sequence of DLO geometries s;., traversed over the
course of the manipulation sequence. Let one manipulationm = (x, Jy,
62, Oy, 0y, 0;), where the first three parameters specify a minute
displacement of the DLO’s end point, and the remaining three parame-
ters specify its rotation.

At the start of the simulation, the length of the DLO is set to a given
value and the DLO’s root is placed in its fixed pose. Then the following
procedure is conducted and the obtained data is registered:

. Set the initial connector pose p and the length of the DLO,

. Obtain the DLO geometry sy at pose p,

. Randomly initialize a manipulation sequence mg,_1,

. Generate manipulation sequence my., 1 from my.,, 1 via the modu-
lation procedure described below,

5. Obtain the sequence of geometries s;., that results as the manipula-

tions in moy.,_; are iteratively applied to p.

H WM

Item 4 requires further explanation. In this study, it is assumed that
the connector should avoid surrounding structures, so the required
connector path will not always be a straight line. Therefore, it is
necessary to have training data that evokes the kind of movements that
are to be avoided. For this reason, we modulate the initial manipulation
sequence my., 1 using the following rule.

where y is the modulated manipulation and L is the number of manip-
ulations. Coefficients y and @ control phase and wavelength, respec-
tively, and are randomly generated. By modifying each element of the
initial mg.,_1 as described above, a variety of manipulation and DLO
shape data are generated.

5.4. CF-EMD net training

From the data collected in the procedure explained in the previous
subsection, we extract triplets consisting of a DLO shape s;, a manipu-
lation m; applied to it, and the resulting shape s;;;. An appropriate
number of such triplets are prepared as training data, and used to train
the CF-EMD net. The following loss function is used for training.

Loss = MSE(Sii1m, Sit1n)

Since the DLO geometry is represented by a point chain model, the
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above equation calculates the average of the square of the distances
between corresponding points in s;;; and $;;.,. Adam is used as the
optimization algorithm.

6. Real-World cable detection and geometry correction
6.1. Overview

The method described in Section 4 does not guarantee consistency
between the DLO shape maintained internally by the planner and the
cable in the real world. Therefore, we introduce a process that reduces
the gap between the planner’s internal DLO representation and the real
cable, by fitting the initial DLO geometry s, to the real cable’s observed
shape. For this purpose, we construct our manipulation setup as shown
in Fig. 7. In addition to the manipulator that grips the connector, a
manipulator equipped with a 3D range image sensor at its tip is prepared
to enable highly accurate 3D measurement from arbitrary viewpoints.
Ideally, this system would allow us to obtain an accurate point cloud
measurement of the cable. However, high-precision sensors generally
have trade-offs between the field of view and depth of field, and narrow
measurement ranges. Therefore, it is realistic to assume that only a
portion of the cable can be measured in our task setup. In order to
perform manipulation planning under assumption of such incomplete
data, an effective strategy is to recover the cable’s overall geometry from
the partial data using physical simulation.

We must also account for the possibility that part of the surrounding
structures may be included in the measurements. We propose the
following procedure. We assume that the root position of the cable is
known, and that the robot has already grasped the connector. This
means that the system is in a state where the geometry of the DLO can be
specified in the physical simulator. The first step is to point the range
image sensor at the cable and measure it. Points originating from the
surroundings may be obtained at the same time, so we isolate those
points in the measurement that originate from the cable. Next, we decide
which part of the simulated DLO geometry s, corresponds to the
resulting point cloud. Then, sy is corrected using this information as a
constraint. The resulting DLO geometry is then used as so.

This procedure allows the manipulation planning to be performed
taking into account both the real cable geometry and the physical con-
straints of the DLO. In the following subsections, we will explain how we
extract the point cloud of the cable and how to correct sy, respectively.

6.2. Cable point cloud extraction

As we assume that cable geometry is highly variable, it is difficult to
determine which of the measured points correspond to the cable by
means of simple pattern matching. Therefore, we adopt a classification
approach using PointNet++ [30]. Specifically, the measured point
cloud is input to the PointNet-++ classifier, to obtain a binary classifi-
cation of the points that divides the cloud into points originating from
the cable and points originating from the surrounding environment.

For this purpose, it is necessary to train PointNet++ in advance. As
in the case of manipulation planning, the data collection burden should
be reduced as much as possible. However, in our experience, a certain
degree of realism is required for the cable point cloud. Therefore, the

Manipulator —)Q\

Sensing range ¢

i A 3D range

Point cloud of structure .
image sensor

Point cloud of cable

Cable
Structure

Fig. 7. Configuration of our robotic cable wiring system. The system consists of
two manipulators: one for cable-handling and one for range sensing from an
appropriate viewpoint.
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following method is used to generate data. First, a real cable is
straightened, and measured with the range image sensor to obtain point
cloud data. This point cloud is then divided into segments of pre-
determined length. Then, the DLO is generated in various shape geom-
etries using physical simulation. Then, the point cloud segments are
arranged along the geometry of each virtual DLO. The resulting data
mimics the point cloud data obtained from real cables. A point cloud
data set of the surrounding environment is generated via simulation as
well. PointNet++ is then trained as a binary classifier for distinguishing
the cable from other objects in its input point cloud. Using this neural
network, the system performs inference on the unknown point clouds
obtained from the 3D range image sensor to extract the points origi-
nating from the cable.

6.3. Geometry correction using partial cable data

Suppose that the geometry sy of the DLO is initialized via physical
simulation. The following procedure corrects the shape of the DLO. First,
based on the DLO geometry obtained from the physics simulation, the
range image sensor is moved so that at least the middle part of the cable
is in the field of view, and the measurement data is obtained as point
cloud Po. Then, the point originating from the cable are isolated using
the method described in the previous section. Then, using the ICP al-
gorithm [31], a part of the DLO is matched with the point cloud data.
Since a nearest neighbour search is required here, we map the point
cloud to the node points of the DLO using Euclidean distance. Then, a
rigid body transformation H is obtained to fit the point cloud to the
simulated DLO geometry. Let Pg be the transformed point group.

Next, for each node point in the DLO, select the point in Pz with the
closest distance. If the distance is less than a predefined threshold, they
are considered to be associated. Let Q be the set of the node points for
which such correspondence has been obtained. Next, Q is subjected to
the inverse transformation of H and moved to the vicinity of Py (the
point set before the rigid body transformation). Then, physical simula-
tion is performed with the points in Q fixed in place, thereby correcting
the positions of the remaining nodes. Fig. 8 shows a schematic diagram
of the above.

The above procedure corrects the DLO geometry by constraining the
intermediate node points in addition to the cable ends, thereby
approximating the actual current shape of the real cable.

7. Experiments
7.1. Experimental settings

To confirm the effectiveness of the proposed method, we conducted
verification experiments in simulation, and real-world experiments on
robot hardware. The pose of the cable root and the geometry of the
surrounding structures were given as prior knowledge. The robot used to
manipulate the connector was SEIKO-EPSON’s N2 [32], a
ceiling-suspended six-axis serial link manipulator. The end effector of

/ ICP
=
-

Point cloud P
obtained from the sensor

Shape predicted
by physics simulation

=== Point cloud P; obtained from the sensor
: Point cloud Py after registration
@ : Associated mass point

Fig. 8. Correction of DLO geometry using measured point clouds. First, the
point cloud is matched to the DLO by looking for corresponding node points.
Then, an inverse transformation is performed to obtain a fixed area for the cable
correction process.
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the robot was a parallel gripper. The tip of the gripper was designed as a
jig that can clamp the connector from both sides. In our hardware ex-
periments, the workpiece, which mimicked a laptop PC circuit board,
was placed on a horizontal platform. Fig. 9 shows an overview of the
experimental platform.

A 3D range image sensor was attached to the wrist of the robot. The
specifications of this sensor were as follows: 720 x 540 pixel resolution,
79.1 x 59.3 mm measurement range, 10 mm effective measurement
height, and 20 mm measurable height. The point cloud data obtained
from the sensor was used for connector detection and pose estimation.
We implemented Ying et al.’s [14] method to determine the connector
pose with sufficient accuracy to be grasped by the robot.

Next, we describe the cables and connectors used for verification.
Five cables with lengths of 150 mm, 200 mm, 250 mm, 300 mm, and 350
mm were prepared. Each cable was made by twisting together three
wires. The conductor diameter of each wire was 0.65 mm, the outer
diameter (including the sheath) was 1.45 mm, and the cross section of
the resulting stranded cables was approximately 3 mm x 4.2 mm. In
physical simulation, these stranded cables were approximated as single
DLOs.

7.2. Appropriateness of the physics simulation

The proposed method collects DLO data using physical simulation,
and trains the CF-EMD net on the resulting dataset. Before reporting on
real-world cable manipulation, we assess the gap between the physical
simulation and reality, and evaluate the correction methods described in
Section 6. The parameters for the DLO physics simulation were experi-
mentally selected following [28]. A cable diameter of 4 mm, Young’s
modulus of 126 MPa, and Poisson’s ratio of 0.3 were used.

The verification setup is as follows. Measuring targets points are
located at equal spacings along the cable length, dividing it into 10
sections. We bring the real cable in a shape configuration that features
substantial bending as well as torsion. With both ends of the cable fixed,
we measure the 3D coordinates of the target points manually. We then
simulate the cable with the same connector pose and cable length, and
calculate the difference in the 3D positions of the target points on the
real and simulated cable. The left panel of Fig. 10 shows the definition of
the coordinate system for the cable root and connector. In this experi-
ment, the position of the connector was set as (x, y) = (60, —60) mm and
a rotation of 7/2 was added along the y axis. The right panel of Fig. 10
shows this example.

Table 1 summarizes the measured position error against cable length
as a percentage of the total length. Since both ends of the cable are fixed,
the error tended to be larger at larger distances from both ends; for a 350

1 : /

Manipulator

Fig. 9. Appearance of the robot system.
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X

Connector Coordinates

Cable Root Coordinates

Fig. 10. Left: Definition of the connector coordinate system with respect to the
root of the cable. Right: A fixed cable with bending and twisting.

Table 1

Measured differences between real and simulated cables.
Length [mm] Average[mm(%)] Max[mm(%)]
150 3.6 (2.4) 7.2 (4.8)
200 6.5 (3.3) 15.5(7.7)
250 12.0 (4.8) 26.3 (10.5)
300 16.4 (5.5) 36.7 (12.2)
350 24.1 (6.9) 51.2 (14.6)

mm cable, the maximum error was about 50 mm, which is not negli-
gible. The left panel of Fig. 11 plots the error between the simulated and
real shape for the set of measurement targets on our five cables, with a
maximum misalignment of 45 mm for the 350 mm geometry. The right
graph in Fig. 11 shows the error after applying correction as described in
Section 6. For the cables up to 300 mm, the error is reduced to less than
10 mm, and even for the 350 mm cable, the error is about 20 mm.

Note that this setup results in a fairly large cable twist. The authors
have also verified the difference between simulation and reality under
simpler conditions [33]. In this case, the error was less than 5% of the
total cable length, and the maximum error was about 15 mm without the
corrections described in Section 6. Although this value is not negligible,
it can be adequately accommodated by providing a safety margin during
manipulation planning.

7.3. Implementation and training of CF-EMD net

The specific structure of the CF-EMD net is as follows: For the
encoder, the input is 30 x 3 dimensional, the output is 30 dimensional,
and in between are three fully-connected layers with 30 neurons each.
For the decoder, the input has 30 dimensions, the output has 30 x 3
dimensions, and in between are fully-connected layers with 30, 30, and
90 neurons. The 30 x 3 dimensionality derives from the fact that the
number of DLO nodes was set to 30 and the coordinates of each node are
three-dimensional. Meanwhile, the manipulation module accepts 6-
dimensional manipulation inputs and outputs 30-dimensional com-
pressed shape predictions. The LSTM consists of three layers with 30-
dimensional input each.

Training data for the CF-EMD net was generated using physical
simulation as described in Section 5.3. Manipulation values m are

60
[ —e—150 [mm]
50 b -+ =200 [mm]
L o x. 250 [mm]
40 : ) . 300 [mm]
T 30 | Py X <%+ 350 [mm]
Q 20 | 7 T
10 n’ . -
0 1 1 1
o 1 2 3 4 5 6 7 8 9 10
Measuring point
Fig. 11.
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randomly generated using ranges of +0.01 m for the displacement
quantities (6x, 8y, 6z) and +x/20 rad for the rotation quantities (6, 6,,
6,), respectively. Twenty manipulations were performed on each initial
DLO geometry, and the DLO geometries and the manipulation were
recorded as a set. The total number of data was 80,000 for each cable
length, of which 64,000 were used for training and 16,000 for testing.

Training was performed separately for each cable length. Fig. 12
shows two example learning curves. Although there was a tendency for
the learning curve to converge to a larger value as the cable length
increased, a straightforward learning curve was obtained in each case,
and the final loss was found to be sufficiently small. The test data
showed similar loss values as the training data, indicating that no
overfitting occurred.

7.4. Wiring experiment

Verification experiments were conducted using the robot system. As
shown in Fig. 13, three layouts, (A) to (C), were prepared for the
placement of structures, the root of the cable, and the position of the
target socket. In all of these layouts, the cables would catch on work
space structures if the connectors were simply moved to the sockets in
straight lines. The approximate initial pose of the connector side of the
cable was also determined, and the experiment was initiated from a pose
in the vicinity thereof. The number of manipulations for generation of
the connector trajectory was set to 30, and the number of cable node
points in the simulation was set to 30.

The experimental procedure was as follows:

1. The 3D range image sensor is used to acquire a point cloud mea-
surement of the workspace, from which we detect the connector and
estimate its pose. We then grasp the connector with the manipulator.

2. Using the connector pose estimated in step 1 as input, we perform
physical simulation of the cable, determine suitable viewpoints for
the sensor on basis of the obtained geometry, and acquire a point
cloud of the cable accordingly.

3. Based on the connector pose and the obtained point cloud of the
cable, we correct the DLO geometry using the method described in
Section 6.

4. Based on the connector pose obtained in step 1 and the DLO geom-
etry obtained in step 3, we generate a manipulation trajectory for the
connector using the method described in Section 5.5.

5. Let the manipulator perform the generated manipulation.

Table 2 shows results for the manipulation experiments. The ‘Result’
column shows the outcome classification, which is defined as follows.

(a) [Success] Wiring succeeded without snagging of the cable
(b) [Success] Wiring was successful despite some contacts

(c) [Failure] Cable snagging occurred

(d) [Failure] The connector was dislodged from the end-effector

60
L —— 150 [mm]
50 -+ =200 [mm]
r 250 [mm]
40 i 300 [mm]
T 30 | <% 350 [mm)
E i .
a 20 : e ' X,
10
0

o 1 2 3 4 5 6 7 8 9
Measuring point

Difference between measured and simulated values at each measurement point. Left: before correction, right: after correction.
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Fig. 12. Learning results of the CF-EMD net. Left: Learning curve for a
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Fig. 13. Three task layouts for the cable wiring experiments.

Table 2
Result of the cable wiring experiment.
Layout  Cable Result  Trajectory Length Trajectory length
Length (proposed) [24]
A) 150 (@) 301 357
200 (@) 245 351
250 (d) 296 380
300 (a) 302 471
350 (@ 332 448
(B) 300 (@) 302 471
350 (a) 344 457
©) 150 (@) 194 254
200 (@ 229 297
250 (a) 176 309
300 (@) 202 421
350 (@ 188 181

We consider a trial a success if the cable did not interfere with task
space structures or only touched them. On the other hand, if the cable
caught on the structures or the connector got dislodged from the hand,
we considered a trial a failure.

As can be seen from the table, in 11 of the 12 cases, the cable was
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150mm-long cable, Right: Learning curve for a 350mm-long cable.

manipulated without any contact. In the remaining one case, the
connector separated from the hand during cable manipulation, although
the trajectory was appropriate. This means that in all cases, the system
was able to avoid getting the cable caught on any surrounding struc-
tures. The reason why there are no results for cables of 150 to 250 mm in
layout (B) is that this layout requires longer cables in the first place, a
fact we determined in advance using existing methods [33]. The two
columns on the right side of the table show the length of the connector
trajectory in the generated manipulation plan for the proposed method
and an existing method [24]. We observe that the proposed method
generated shorter paths than the existing method in all cases but one. As
for processing time, the average time taken to isolate the cable using
PointNet++ was 3.33 s with a standard deviation of 0.15. The average
time for connector trajectory generation using the CF-EMD net was
12.10 s with a standard deviation of 2.88. This processing time consisted
of 0.18 s for shape estimation, 1.76 s for computation of the objective
function, 3.32 s for calculation of the hand poses, and 6.84 s for updating
the manipulation.

Fig. 14 shows data concerning the identification of the cables at step
3 above. PointNet++ was trained on the composite data as shown in the
first row and output the appropriate identification results as shown in
the second and third rows. Fig. 15 shows examples of generated tra-
jectories. It can be seen that smoother and shorter connector trajectories

e

Training data

(1) Ground Truth

\%M

(1) Result

(2) Ground Truth (2) Result

Fig. 14. Example of data concerning the identification of the cables. Top row:
Training data, a composite of actual cable data (green), actual data of sur-
rounding environment (pink), simulated data of surrounding components
(blue), and simulated noise data (orange). 2nd and 3rd rows: Results of cable
identification; in both cases, cable parts (green) were properly separated from
other parts (dark blue).



K. Yamazaki et al.

Top view Top view

Proposed method Previous method
(1) Layout (A), 200mm cable

Top view Top view

Proposed method Previous method
(2) Layout (C), 250mm cable

Fig. 15. Examples of generated connector trajectories. The light-blue broken
line shows a trajectory to manipulate the connector output by the planner; the
previous method produced a feasible but choppy trajectory, while the proposed
method produced a smooth trajectory that did not move too far away
from obstacles.

are generated compared to the existing method. This is due to the fact
that the manipulation trajectory is determined in consideration of the
nearby cable geometry and connector location at each point in time,
which is characteristic for CF-EMD-based planning.

In other attempts to investigate the behavior of the proposed
method, the effect of the number of nodes in the DLO was examined. The
number was set to 10, 15, 20, and 30, respectively, and CF-EMD net was
trained at each DLO, and manipulation planning were performed using
the trained network. The length of the DLO was set to 250 mm, and the
two verification environments were Layout (A) and Layout (C) shown in
Fig. 13. Ten plans were executed for each environment. The results were
as follows. Regardless of the number of nodes, manipulation trajectories
were generated without any problems. In Layout (A), the computation
time of the objective function decreased by only a few percent when the
number of nodes was small, whereas there was almost no difference in
Layout (C). Connector path length obtained did not change with the
number of nodes in both layouts. These results suggest that the number
of nodes does not significantly change the manipulation.

Finally, Fig. 16 shows an example of moving an actual connector to
the vicinity of a socket. The robot system succeeded in automatically
generating a motion that brings the connector close to the socket posi-
tion, while avoiding a tall structure. Note that this experiment is auto-
mated from the detection of the connector; no human intervention is
involved in the series of movements. The experimental movie can be
viewed on our project web page: http://www.ais.shinshu-u.ac.jp/
cfemdnet/

8. Conclusions

In this paper, we described a manipulation planning method for
automated wiring of connector-terminated cables with one end mounted
on a circuit board. We presented a method for generating a transport
trajectory for the floating connector. We let the robot grasp the floating
connector, and transport it to its socket while avoiding collision with
surrounding structures. Core of the proposed method is the CF-EMD net,
a modular neural network. We described its internal structure, motion
planning flow, and learning method in detail. We also presented our
policy of using physical simulation for training data collection and
introduced a method for bridging the gap between reality and simula-
tion. The effectiveness of the proposed method is demonstrated by
manipulating stranded cables with lengths ranging from 150 mm to 350
mm in a test environment using ceiling-suspended robot arms. The
maximum positional error between real and simulated cable was about
20 mm, indicating that the operation plans produced by the proposed
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Fig. 16. Cable wiring example.

method are realistically executable. In our hardware experiments, the
proposed method was integrated with existing connector detection and
pose estimation methods, demonstrating that many parts of the
connector wiring task can be automatically performed by a robot.

Future work includes improving the processing speed of CF-EMD net.
The results of the proposed method depend on which parts of the cable
can be measured. We believe that the introduction of a mechanism for
estimating the degree of shape compensation could further improve
robustness for real-world cable manipulation. We also plan to extend the
simulation environment and CF-EMD net to accommodate cases where
cable deformation is affected by gravity. Other prospects include
extension to multi-point grasping. Lastly, in order to meet the demand
for wiring in more complex environments, we are modifying the pro-
posed method to accommodate grasping of the cable itself in addition to
its terminal connector.
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