

A) Installation 2D Game Development software
1. Installing Unity Hub

a. The Unity Hub is a management tool that you can use to manage all of
your Unity Projects and installations, To install the Unity Hub for
Windows, macOS, and Linux visit :

 https://unity3d.com/get-unity/download

b. Choose UNITY HUB to begin download installation file

c. Download file and select the file to begin installation

d. Complete installation and run UNITYHUB

https://unity3d.com/get-unity/download

e. Create new UNITY Account by click on icon below :

f. Login using your GMAIL account to create new user account

g. Complete sing-in step to complete UNITY account registration

h. Your Avatar at top right connect will show your name:

2. Installing UNITY ENGINE
a. Run UNITY HUB and select INSTALL; then Select ADD button to add

installation for new UNITY ENGINE VERSION

b. Select 2020.3.17f1(LTS) and Select NEXT button

c. Select Microsoft Visual Studio Community 2019 and Windows Build

Support; then select NEXT button to proceed installation process.

d. Agree condition and select DONE button

e. Wait until installation complete

B) GAME ENGINE’S INTERFACE

(A) The Toolbar : provides access to the most essential working features. On the left
it contains the basic tools for manipulating the Scene view and the GameObjects
 within it. In the centre are the play, pause and step controls. The buttons to the
right give you access to Unity Collaborate, Unity Cloud Services and your Unity
Account, followed by a layer visibility menu, and finally the Editor layout menu
(which provides some alternate layouts for the Editor windows, and allows you to
save your own custom layouts).
(B) The Hierarchy window : is a hierarchical text representation of every
GameObject in the Scene. Each item in the Scene has an entry in the hierarchy, so
the two windows are inherently linked. The hierarchy reveals the structure of how
GameObjects attach to each another.
(C) The Game view : simulates what your final rendered game will look like through
your Scene Cameras . When you click the Play button, the simulation begins.
(D) The Scene view : allows you to visually navigate and edit your Scene. The Scene
view can show a 3D or 2D perspective, depending on the type of Project you are
working on.
(E) The Inspector Window : allows you to view and edit all the properties of the
currently selected GameObject. Because different types of GameObjects have
different sets of properties, the layout and contents of the Inspector
 window change each time you select a different GameObject.
(F) The Project window : displays your library of Assets that are available to use in
your Project. When you import Assets into your Project, they appear here.
(G) The status bar : provides notifications about various Unity processes, and quick
access to related tools and settings.

C) RESOURCES IN GAME DEVELOPMENT
1. Creating New Unity Project File

a. Login to your CIDOS portal account, and download
“labsheet1_resources.unitypackage” from download section.

b. Open UNITY HUB to create new project; select NEW button at the top
right corner of UNITY HUB window

c. Next, choose 2D from template, then name or project as “labsheet1”

and locate your project file into New Folder called “Labsheet”.

d. Select CREATE button to create the project

2. Importing unitypackage file into project
a. Select and double click (2X) at “labsheet1_resources.unitypackage”

to perform installation new unitypackage file.
b. Select IMPORT button to begin installation

3. Opening Game Scene
a. Select “Scene” folder in Project Panel inside “Assets” folder

b. Select and Double Click (2X) on scene file called “level 1” inside Scene

folder

c. Your Scene Panel will show as below :

EXERCISE :

Fill the blank with CORRECT image from unity project (labsheet_1) : (use snapping tool)

1. GAMEOBJECT is the most important concept in the Unity Editor. Every object in your
game is a GameObject, from characters and collectible items to lights, cameras and
special effects.

2. SCENE are where you work with content in Unity. They are assets that contain all or
part of a game or application.

3. Audio can be it background music or sound effects. It can import most standard
audio file formats and has sophisticated features for playing sounds in 3D space,
optionally with effects like echo and filtering applied.

4. Font used to display the text. Text can be used to provide captions or labels for
other GUI controls or to display instructions or other text.

5. Script is an essential ingredient in all applications you make in Unity. Most
applications need scripts to respond to input from the player and to arrange for
events in the gameplay to happen when they should. Beyond that, scripts can be
used to create graphical effects, control the physical behaviour of objects or even
implement a custom AI system for characters in the game.

D) GAME RESOLUTION SETTING
1. Open previous game project (C.1)
2. Select Game View

3. From DISPLAY 1 select STANDALONE (1024X768)

4. Select (+) button to add new Resolution

5. Insert New value as below :
a. LABEL = Full HD
b. Width & Height = 1920 ; 1080

6. Select OK button

A) Downloading Pixel Adventure 1 from Unity Asset Store
1. Open Asset Store

a. Click on Window tab in unity then click on Asset Store

b. A popup will open and click on Search Online

c. Type Pixel Adventure in asset store (chrome). Click Pixel Adventure 1 to

download and click Open in Unity

d. Click Window > Package Manager > Packages: My Assets > Pixel

Adventure 1. Click download and then import to your project

e. A popup of Import Unity Package will be open, click All and then click

Import

f. Tips: you must login to your unity id before downloading and importing

the asset from Unity Asset Store

2. Create a Tilemap & Tile Palette

a. Create a new scene name “Scene1” in Scene folder

b. Navigate to Assets > Pixel Adventure 1 > Assets > Terrain. There will be

two sprites, click on the first sprite and change the size (Pixels Per Unit) in

the inspector panel to 16 and click Apply.

c. Then, change the sprite mode to multiple and then click on Sprite Editor

in the Inspector of Terrain sprite and click Apply if a popup appears

d. Sprite editor popup will be appearing, click on Slice and click Type: Grid By

Cell Size. Change the Pixel Size 16 x 16 and then click Slice and then click

Apply once the sprite slices successfully

e. Right click on the hierarchy panel to create a tilemap. Click on 2D Object >

Tilemap and click Rectangular

f. Rename the Tilemap to Terrain and click Open Tile Map. A tile palette

popup will appear

g. Click “Create New Palette” then name it as Terrain and then click “Create”

and save the palette in Assets folder

h. Then, drag the sprites that been slices (16x16) into the tile palette and

save the tiles to a new folder name Tiles in the Terrain folder

i. Then click on the tile in the tile palette and click on the Terrain scene to

start creating the paring. The result shown as below

j. Create empty rectangular tilemap for “Background”

k. Click on Background in the hierarchy and click on Add Sorting Layer in the

inspector

l. Click + to add sorting layer. Then add 2 more sorting layer and rename to

“Background” and “Terrain”. Sort the position of the sorting layer as

below

m. Then click on Background in the hierarchy and change the sorting layer to

Background. Do the same to Terrain game object in the hierarchy

n. Repeat step 2 (b) until 2 (2) for the Background game object. Make sure

to use the sprite from Background Folder

o. After slicing and creating sprite for the desire background, drag the sprite

into the same Terrain Tiles used earlier. Make sure to save the

background tile palette in new folder.

p. Then choose all the tiles for background and paste to the Background

tilemap

q. The results are as shown bellows. Make sure the background is at the

back of the terrain

r. Done creating tilemap and tile

3. Create main player

a. Right click on the hierarchy and click on 2D Object > Sprites > Square.

Then, rename the square to player

b. Click on the Player in the hierarchy then navigate to Assets > Pixel

Adventure 1 > Assets > Main Characters > Virtual Guy. Drag the first sprite

of Idle (32x32) into the Sprite at Sprite Renderer in the Player’s inspector

panel

c. The square sprite will be changes to the Virtual Guy sprite as shown

below

d. Change the size of all sprites available in Virtual Guy folder to 16 Pixels

Per Unit and click on Apply at the bottom. Now the size of the player is

proportionate with the terrain size

e. Next add Rigidbody 2D to the player in order to put a mass to the player

by click on Add Component in the player inspector panel

f. Next add Box Collider 2D to the player in order to put a mass to the player

by click on Add Component in the player inspector panel

Tips: Collider is used to make sure the player able to collide with the

terrain

g. Next add Tilemap Collider to the terrain in order to make sure the player

able to stop when collide with the terrain by click Add Component in the

Terrain Inspector and click on Tilemap Collider 2D

Tips: Tilemap Collider 2D will put collider on each of the tile palette for

the terrain tilemap as shown below

h. Next add Composite Collider to the Terrain in order to merge all the

tilemap collider into one big collider and then Check on Used By

Composite at the Tilemap Collider 2D as shown below

i. Next change the Body Type of Rigidbody 2D in Terrain inspector to static

in order to remove gravity concept from the terrain

j. Play the game and observe the result

4. Create Player Movement

a. Create a new C# script name “PlayerMovement” and attach the script to

Player game object

b. Next open the script using any IDE and add the following script to make

the player jump up (7) when space button is push down (for PC)

c. Change the gravity scale of the player to 3 in order to make the player

jump lower when space is push

d. Play the game and observe

e. Next, modify the coding to add left and right movement to the player by

adding the following code in the Update method in PlayerMovement

script

Tips: Do not forget to declare the dirX variable before start method

f. Next freeze rotation Z of the player to disable the player from rotating in

Z position by navigate to Player game object > Rigidbody 2D component

in the inspector

g. In order to make the camera follows the player create a new script name

CameraController and attach to the Main Camera game object in the

hierarchy

h. Open the CameraController script in Visual Studio and add the following

code

Tips: [SerializeField] is use to make the value of available to be access in

unity. We can achieve the same result by using public

i. Next, drag the Player game object to variable Player in the Main Camera

inspector panel

j. Click play and observe the result

A) Create animation for the player
1. Create Animation for the main player

a. Right click on the project panel and click on Create > Animation to create
an animation for the player. Rename the animation to Player_Idle

b. Next, drag the Player_Idle animation file to Player game object in the
hierarchy. It will then create an animator controller name Player

c. Then go to Window > Animation > Animation to open the animation state

panel. An animation panel will be popup as shown

d. Next, drag the Idle sprites collection in the animation panel. Change the

sample rate to 18

e. Next, open the animator controller panel by click on Window > Animation
> Animator

f. An animator controller panel will be open and there will be 4 state
available
Tips : Click on Player game object to make sure the animation state are
for player animation

g. Next, create an animation for running and drag the animation to Player
game object. Then open animation tab and adding running sprite to the
Player_Running
Note: Modify the sample rate of Player_Running to 20

h. Open Animator controller and now there’s a new state created name
Player_Running as shown below

i. Next, in animator controller right click on Player_Running and click on
Make Transition then drag to the Player_Idle state. Repeat the ssame
process to Player_Idle state in order to switch the transition from running
to idle and from idle to running

j. Next add parameter to the state in order to create the condition for the
state by click on Parameters tab. Then click + sign and choose Bool

k. Name the parameter created as running

l. Click on one of the arrow from Player_Idle state to Player_Running state
then untick has exit time and set the Transition Duration to 0 in the
inspector tab

m. Next, go to Condition at the bottom of the inspector and click + sign and
set the condition of the parameter to true as shown below
Note: Make sure the condition for the parameters is for Idle to Running

n. Repeat step (m) for Player_Running state to Player_Idle state arrow and
set the running condition to false

o. Next add the following code to PlayerMovement script in order to make
the Player_Idle state to Player_Running state transitioning automatically
from one to another

p. Add the following code to the PlayerMovement script in order to make
the Player able to turn right or turn left

q. Play and observe the result

r. In order to maximize the use of transition state, create a new variable

name state that contain all the transition state available

s. Delete the running parameters from the animator controller tab

t. Click on + sign at the Parameters tab to add a new parameter name state

u. Next, modify the animation code to add multiple transition state by
creating collection of related constants (idle and running state)

v. Play and observe the result

PRACTICAL WORK

1. Using the unity package provided, create animation for Player jumping and falling state
………

2. Modify the PlayerMovement script to active the jumping transition state for the Player
………

3. Modify the PlayerMovement script to active the falling transition state for the Player

………

4. Paste the the script and the outcome below

A) Set ground checking for the player
1. Create IsGround method to check if the player collides with the ground or not

a. Click on Terrain Tilemap and declare a new layer name Ground

b. Then go back to Terrain and click on Ground as Layer in the inspector tab

c. Modify the PlayerMovement script by adding the following code

d. Next, add a new method to add a BoxCast2D to the player by adding the

following code after UpdateAnimation method

e. Then click on Player game object and click on Ground at the Jumpable

Ground in the inspector tab under Player Movement script

f. Next, click on Terrain and add Platform Effector 2D by click on add

component in the inspector

g. Next, untick Use One Way at the Platform Effector 2D component

B) Collect & Count Items
1. Create a game object for the player to collect and gain point

a. Create a 2D game object and rename as Cherry

b. Change the sprite of the Cherry game object to cherry image from Fruits
folder
Notes: use the first image of the sprite collector

c. Create animation for the cherry and rename as Cherry_Anim

d. Drag all the images of the cherry in the animation tab and set the sample
rate to 30

e. Next add Box Collider 2D to the Cherry game object

f. Resize the collider boundary to fit the cherry sprite and tick Is Trigger

g. Next create a tag name CollectItems in the Cherry Inspector tab

h. Then change the tag of the Cherry game object to the created tag earlier

i. Next create a C# script called ItemCollection and attach to player

j. Add the following lines of codes in the ItemCollection script

Tips: Make sure the tag name is correct

k. Play the game and observe the cherry will disappear when the player
collides with the cherry

l. Next to make sure the cherry adds a points for the player add the
following codes in the ItemCollection script

m. Next create a Prefab folder and drag Cherry game object in the prefab
folder
Tips: This step is used to create a prefab

n. Drag the Cherry prefab and design it in the game scene as desire

o. Organize all the prefab in the hierarchy by creating an empty game object
and rename as Collectable

p. Drag all the cherry prefab under Collectable

q. Play the game and observe the result

2. Create counter placeholder in the game scene

a. Right click on the hierarchy and click UI > Text - TextMeshPro. Rename to
Collect_Item
Notes: You may use regular text instead of TextMeshPro

b. Positioning the text on the top left of the game

c. Change the content of the text to Cherries : 0

d. Open the ItemCollection script and add the following codes

e. Done and play the game

C) Enemy AI

1. Create a game object name enemy in the hierarchy
a. Navigate to Assets > Pixel Adventure 1 > Assets > Main Characters > Mask

Dude

b. Shift + A all the sprite and change the pixels per unit to 22 in the inspector

c. Click on Apply at the bottom

d. Right click in hierarchy and create 2D object name enemy as shown below

e. Move the enemy to any desire position

f. Drag Idle sprite to the enemy inspector under Sprite Renderer

g. Create the animation for the enemy and rename to Enemy_Idle

h. Drag the animation in the player to create the Animator Controller

i. Drag all the idle sprite to the animation tab and change the sample rate to 18
or any suitable sample (You may follow Labsheet 3: Animation)

j. Add collider for the enemy by click on Add Component at the Inspector tab
(You may use any suitable 2D collider)

k. Resize the collider use to make sure the collider border fit nicely to the
enemy

l. Play the game and observe if the player able to jump over the enemy
Tips: Change the jump force if the player unable to jump over the enemy

m. Add Rigidbody 2D to the enemy and tick Freeze Z under Constraints

n. Create new C# script name EnemyAI and attach to the enemy in the hierarchy

o. Double click to open the script and add the following codes

p. Click on enemy in the hierarchy and change the Jumpable Ground to Ground
Tips : Ground is the layer name set for Terrain tilemap

q. Drag the Enemy game object in the hierarchy to the Trigger Collider in the
Inspector tab

r. Play the game and observe the enemy movement

s. Add a new tilemap and rename as Wall

t. Create the tile palette for the Wall and design the tilemap as desire

u. Add new layer and rename to Wall

v. Click on Layer in the Wall inspector tab and choose Wall as the name of the
layer

w. Click on Add Component in the Wall inspector tab and add Tilemap Collider
2D and Composite Collider 2D to the Wall
Tips : Do not forget to tick Use By Composite under Tilemap Collider 2D

x. Change the Body Type (Rigidbody 2D) to Static to disable gravity scale for the
Wall game object as shown above

y. Double click EnemyAI script and add the following code

z. Play the game and observe the result

D) Player Death
1. Create an obstacle

a. Go to Trap folder and drag Idle sprite from Spikes folder into the scene

b. Position the spikes as desire

c. Add a Box Collider 2D to the spikes and resize the collider boundary as

desire

d. Add a new tag called Trap to the Spikes game object

e. Create animation called Death_Anim to the Player game object in order

to make the player disappear when the player collide with any obstacles
Notes: use Appearing & Disappearing sprite in Main Character folder

f. Drag the disappearing sprites collection into the Death_Anim and change
the sample rate to 18
Notes: Do not forget to change the pixel per unit for Disappearing &
Appearing sprite to 16

g. Next open the animator controller for the player and make transition
from Any State to Death_Anim

h. Next create a trigger parameter called death in the animator tab

i. Then click on the transition arrow from Any State to Death_Anim and set
the transition duration to 0

j. Next set the Conditions at the bottom and add death

k. Next create a new C# script name Player_Life and add the following codes

l. Play and observe the result
Notes: The player will disappear when hit the spikes and the body type
change to static (no movement)

2. Restart level once the player died
a. Add the following codes to Player_Life script in order to reload player to

the current scene

b. Click on Player animation tab and choose Death_Anim

c. Click on Record button to add keyframe

d. Go to the last keyframe (0:07) and turn off the Sprite Renderer by untick
at the inspector tab

e. Click the record button to turn off the animation recording

f. Next to call the Restart() method, click on add animation event at
keyframe 27 as shown below

g. Then choose Restart() at Function: as shown below

h. Change the tag of all obstacles and enemy in the game to Trap

i. Play the game

