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This e-book Engineering 

Mathematics 1 Volume 2 on 

Chapter 4 Matrices included the 

following topics: 

❖ Understand of Matrices 

❖ Operation of Matrices 

❖ Simultaneous Linear Equation 

using Invers Matrices and 

Cramer’s Rule.

Hopefully with this e-book can help 

enhance students in the solution of 

Matrices.
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UNDERSTAND 
MATRIX

❑ Matrices are sets of numbers that

are arranged in rectangular forms.

❑ It is a rectangular array of numbers.

❑ These numbers are arranged inside

a round or square bracket.

❑ Look at the examples shown below.

❑ It is important to study the

fundamentals of matrices first and get

a good introduction on how to apply

simple algebra operations on matrices.

❑ This can help in solving engineering

problems. For example, you can use

matrices to solve systems of linear

simultaneous equations.

Example 

of Matrix  

3 x 2 



FUNDAMENTAL OF MATRIX

NOTATION

A matrix is usually

shown by a capital

letter (such as A, or B

and so on).

Small letter represent

the elements of

matrix.

Each number inside

a matrix is called an

element of the matrix.

These number are

arranged in rows and

columns.

9

ROWS

Rows go left – right

which that elements

of matrix arranged

horizontally.

For example,

The shaded region

shows the second

row of the matrix.

COLUMN

Column go up – down

which that elements in

matrix arranged

vertically.

For example,

The shaded region

shows the second

column of the matrix.



SIZE OF MATRIX

1

2

3

1

0

The size of a matrix is the number of rows and columns that it has.  If a matrix has 

3 rows and 4 columns, then its size is 3 x 4.

Let’s look at the following matrix:

















−

−

−

=

6935

1038

7441

A

  

How many rows 

and columns do 

you see? 

Size of matrix A = 3 x 4,  which the formula of size of matrix is A= row × column

















−

−

−

=

6935

1038

7441

A

  

Row 1

Row 2

Row 3

C
o

lu
m

n
 1

C
o

lu
m

n
 2

C
o

lu
m

n
 3

C
o

lu
m

n
 4

( 3 x 4 )

4 Elements of  matrix A can be represented by the notation of aij where i = number 

of row and j = number of column      

a11

a21

a12

a22

a31
a32

A =
a22 is element of 

matrix A which 

located second row 

and second column

(3 x 2)



Exercise

1. State the size of each of the 

following matrices: 

a)

b)

c)

d)

1

1

EXAMPLE 

State the size of the following matrix.

Solution:

❑ There are 4 rows and 3 columns.
Therefore, the size of this matrix is 4
x 3.

❑ For a matrix A of 4 x 3, you can use

the notation A4x3 to represent the

matrix.

2. Referring to matrix                         , 

state the element of:

a) b23

b) b21

c) b31

http://tiny.cc/c4e1

http://tiny.cc/c4e1
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2
TYPES OF A MATRIX

Square Matrices

❑ A square matrix is a matrix

where the number of rows is

equal to the number of columns.

❑ The following examples are

square matrices:

Zero Matrices

❑ A matrix is known as a zero 

matrix if all of its elements 

are zero.

❑ The following examples are

zero matrices:

2 × 2
i

3 × 3

ii

4 × 4

iii

2 × 2
i

3 × 3

ii

1 2

4



1

3
TYPES OF A MATRIX

Diagonal Matrices

❑ If all the elements of a square

matrix consist of zeroes except

the diagonal, then this matrix is

called a diagonal matrix.

❑ The following examples are

diagonal matrices:

2 × 2
i

3 × 3

ii

Identity Matrix

❑ Identity matrix is a square matrix in

which all the elements of the

principal diagonal are ones and all

other elements are zeros.

❑ An identity matrix is special

because a matrix does not change

when multiplying with an identity

matrix. For example:

❑ The following examples are identity

matrices:

→ 𝑨𝑰 = 𝑨
→ 𝑰𝑨 = 𝑨

3 × 3

ii

2 × 2
i

3 4



TRANSPOSE OF MATRIX SYMMETRIC MATRIX

• When you interchange the

rows of a matrix with its

columns, you would have

converted a matrix 𝐴𝑚×𝑛 to

another matrix 𝐴𝑛×𝑚 .

• In other words, a matrix of size

𝒎×𝒏 now is size 𝒏 ×𝒎 .

• This new matrix is called the

transpose of a matrix.

• The symbol for a transpose of

a matrix A is AT.

• Let’s look at the following

examples:

2

1

9

0

7 3

A =

For square matrix,

2

9

1

0

7

3
AT =

7

1

6

−4

8 3

B =
−2

0

9

7

6

1

−4

−2 0

BT =
8

9

3

Transpose

• A symmetric matrix is a square matrix that 

is equal to its transpose. 

• Matrix is symmetric if: 𝐴 = 𝐴𝑇

1

2

2

4

3 5

A =
3

5

8

1

2

2

4

3 5

AT =
3

5

8

SYMMETRIC

1

4



1

2

EXAMPLE 

 

Determine whether the following matrices are symmetric or not. 

a)  

b)  

c)  

d)  

Solution: 

a) Not symmetric 

b) Not symmetric 

c) Symmetric 

d) Symmetric 

• State the types of the following 

matrices.

• If , determine .

a) 







=

50

03
A  

b) 








−
=

23

42
B  

c) 
















=

001

010

100

C  

d) 





















−

−
=

3

5

5

3

D  

e) 







=

10

01
F  

 

Exercise

http://tiny.cc/c4transpose

http://tiny.cc/c4e2

1

5

http://tiny.cc/c4transpose
http://tiny.cc/c4e2


2 Wow!!!!

Try this

calculator.net

1

6

https://www.calculator.net/matrix-calculator.html
https://www.calculator.net/matrix-calculator.html


1

7

OPERATION OF 
MATRIX

ADDITION

❑ The first algebra operation we are going

to learn is how to add or subtract two

matrices.

❑ Matrix addition and subtraction can only

be performed on matrices that have the

same size.

❑ The result of a matrix addition or

subtraction is a new matrix that is of the

same size.

❑ All we need to do is match the elements

that are at the same position in their

matrices.

a b

c d

e f

g h

a+e b+f

c+g d+h

Given that,                        and  

Determine:

a) 

b) 

Solution: 

a)  

















−−

−−

−

=

















−++−++−

+−−++−+

+−++−−+

=+

2526

2043

10441

)1(305)3(11)7(

0)2()3(313)4(1

010)8(45)1()2(3

BA

 

b)  

















−

−

−

=

















−−−−−−−

−−−−−−−

−−−−−−−

=−

4548

2625

101265

)1(305)3(11)7(

0)2()3(313)4(1

010)8(45)1()2(3

BA

 

 

EXAMPLE 

a b

c d

e f

g h

a - e b - f

c - g d - h

SUBTRACTION



1

8OPERATION OF 
MATRIX

(addition & substraction)

https://bit.ly/3jIAQVI
https://bit.ly/3jIAQVI


MULTIPLICATION OF MATRIX

1

2

3

1

9

Matrix multiplication is a little bit more complicated.  

That means we can multiply matrix  Amxn with matrix Bnxk because matrix A has

n columns and matrix B has n rows.  

4

In order to be able to multiply two matrices AB, we have to ensure that the number 

of columns in matrix A is same as the number of rows in matrix B . 

The result of the matrix multiplication is a new matrix that has m rows and k

columns.  

The multiplication process involves taking a row i of matrix A and matching it with a 

column j of matrix B .  

The result becomes the element ij of the new matrix. 

5

6

Matrix A

(m x n)
Matrix B

(n x k)
New Matrix 

(m x k)

match

result



2

0

The multiplication is as follows:

Therefore, ABC =  with size km . 

REMEMBER!

Multiplication can only 

happen if n = j



2

1

EXAMPLE EXAMPLE 

A(2x2)•B(2x2)

can multiply

AB ≠ BA



2

2

EXERCISE

1. Based on the following matrices,

, ,    

and . Determine: 

2. Given that                         and 

, find:

3. If                                 and , 

find the product of MN .

How to multiply

1

2

3

4 6

5
7

8

0

1 4

3

9 2 5

1 × 7 + 3 × 8 + 5 × 9

= 7 + 24 + 45

= 76

76

http://tiny.cc/c4e3

http://tiny.cc/c4e3


2

3

https://youtu.be/8iIgdQjEG6s

Calculating 

multiplication 

matrices using 

calculator 

Casio 

fx-570MS

https://youtu.be/8iIgdQjEG6s
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4OPERATION OF 
MATRIX

(multiplication)

https://bit.ly/3fMZH9r
https://bit.ly/3fMZH9r


DETERMINANT OF MATRIX

❑ Determinant is a unique number that can be determined from a square matrix. 

❑ It is used to represent the real-value of the matrix which can be used to solve simple 

algebra problems later on. 

❑ The symbol for the determinant of matrix A is det (A) or |A| .

Determinant of the matrix  2 x 2

For a matrix of size 2 x 2, the method to 

find the determinant is:

Let’s say, 







=

dc

ba
A  

Determinant of The Matrix 3 x 3

For a matrix of size 3 x 3, the steps to 

find the determinant are:

❑ Set polarity

❑ Choose any column or any row

If 
















=

333231

232221

131211

aaa

aaa

aaa

A  

Then,  

( ) ( ) ( )221323123132133312213223332211

2322

1312

31

3332

1312

21

3332

2322

11

aaaaaaaaaaaaaaa

aa

aa
a

aa

aa
a

aa

aa
aA

−+−−−=

+−=
 

2

5



2

6

EXAMPLE EXAMPLE 

1. Determine the determinant of matrix 

Solution: 

Choose row number 1 

( ) ( )  ( ) ( )  ( ) ( ) 

( )

22

4246

231422024310231

12

34
2

22

04
3

21

03
1tDeterminan

−=

−+−=

−+−−−=

+−=

 

A=

Det (A)

If
















=

864

297

531

A , determine A . 2.

 

Solution: 

Choose row number 1 

( ) ( )  ( ) ( )  ( ) ( ) 

54

3014460

496754287362891

64

97
5

84

27
3

86

29
1

−=

+−=

−+−−−=

+−=A

 

To set polarity, it is 

easier if we  

choose row or 

column consists of    

element “0”.

1. Determine determinant, |A| for 

each of the following:

 







=

87

65
A

a)  

 







=

95

24
Ab)  

Solution:  

 ( ) ( )7685 −=Aa)  

2

4240

−=

−=

 

 ( ) ( )5294 −=Aa)  

26

1036

=

−=

 

b)



2

7

❑ Try choose other row/column! 

Choose column number 1 because consist 

element 0

EXAMPLE 

If  𝐴 =
2 8 6
0 10 −5
−3 −6 9

, determine 𝐴 .

Solution:

Choose row number 2 because consist element 0

𝐴 = −0
6 9
−6 9

+ 10
2 6
−3 9

− −5
2 8
−3 −6

= 0 + 10 18 − −18 + 5 −12 − −24

= 0 + 360 + 60

= 420

𝐴 = 2
10 −5
−6 9

− 0
8 6
−6 9

+ −3
8 6
10 −5

= 2 90 − 30 − 0 − 3 −40 − 60

= 120 − 0 + 300

= 420

If we choose whatever row/column, it gives 

same answer.

To set polarity, we can choose

any row/column but it give

different formula for determinant.

For odd number row/column 

such as column number 1 

Formula: 

𝑨 = 𝒂𝟏𝟏 − 𝒂𝟐𝟏 + 𝒂𝟑𝟏

For even number row/column 

such as row 2 and column 2.

Formula:

𝑨 = −𝒂𝟐𝟏 + 𝒂𝟐𝟐 − 𝒂𝟐𝟑
Therefore, the different is

positive and negative sign.

EXERCISE

http://tiny.cc/c4e4

http://tiny.cc/c4e4


2

8INVERSE MATRIX

❑ The inverse of a square matrix is its complement because if you multiply a matrix by 

its inverse, the product is an identity matrix. 

❑ In other words, if A  is a square matrix and A-1 its inverse, 

then: 

𝑨𝑨−𝟏 = 𝑰

where I is an identity matrix

Inverse of a square matrix (2x2)

For 







=

dc

ba
A , the inverse can be found using this formula: 

EXAMPLE 

Find inverse matrix for matrix 
1 2
3 4



2

9

Inverse of a square matrix (3x3)

The formula to find  A-1 for a (3x3) matrix is

Step to find A-1

MINOR OF MATRIX

❑ The minor of a matrix is a new 

matrix where all the elements are 

determinants.  

❑ Each determinant is calculated by 

removing a row and a column from 

the original matrix.

❑ For example, in order to determine 

the element at position ij, you will 

have to remove row i and column j

from the matrix.  

❑ Next, calculate the determinant of 

what is left.

𝐼𝑓 𝐴 =

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝑡ℎ𝑒𝑛,𝑀𝑖𝑛𝑜𝑟 𝐴 =
𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

𝑀11 =
𝑎22 𝑎23
𝑎32 𝑎33

𝑀11 = 𝑎22 × 𝑎33 − 𝑎23 × 𝑎32

𝑀21 =
𝑎22 𝑎23
𝑎32 𝑎33

𝑀21 = 𝑎12 × 𝑎33 − 𝑎13 × 𝑎32

𝑀31 =
𝑎12 𝑎13
𝑎22 𝑎23

𝑀31 = 𝑎12 × 𝑎23 − 𝑎13 × 𝑎22



3

0

𝑀12 =
𝑎21 𝑎23
𝑎31 𝑎33

𝑀12 = 𝑎21 × 𝑎33 − 𝑎23 × 𝑎31

𝑀22 =
𝑎12 𝑎13
𝑎32 𝑎33

𝑀22 = 𝑎12 × 𝑎33 − 𝑎13 × 𝑎32

𝑀32 =
𝑎11 𝑎13
𝑎21 𝑎23

𝑀32 = 𝑎11 × 𝑎23 − 𝑎13 × 𝑎21

𝑀13 =
𝑎21 𝑎22
𝑎31 𝑎32

𝑀13 = 𝑎21 × 𝑎32 − 𝑎22 × 𝑎31

EXAMPLE 

𝑀23 =
𝑎11 𝑎12
𝑎31 𝑎32

𝑀23 = 𝑎11 × 𝑎32 − 𝑎12 × 𝑎31

𝑀33 =
𝑎11 𝑎12
𝑎21 𝑎22

𝑀33 = 𝑎11 × 𝑎22 − 𝑎12 × 𝑎21

If
















=

864

297

531

A , determine minor A . 

Solution: 

The elements are: 

( ) ( ) 64967
64

97
13

=−==M  

( ) ( ) 66583
86

53
21

−=−==M     

( ) ( ) 124581
84

51
22

−=−==M  ( ) ( ) 124581
84

51
22

−=−==M  

( ) ( ) 64361
64

31
23

−=−==M  

Therefore, 

( ) ( ) 399523
29

53
31

−=−==M   



3

1

EXERCISE

Determine the minor of the following 

matrices.

1)

2)

3)

EXAMPLE 

If
















=

212

034

231

P , determine minor P . 

Solution: 

The elements are: 

( ) ( ) 61023
21

03
11

=−==M        

( ) ( ) 82024
22

04
12

=−==M  

( ) ( ) 61023
21

03
11

=−==M        

( ) ( ) 82024
22

04
12

=−==M  

Therefore,  

http://tiny.cc/c4e5

http://tiny.cc/c4e5


3

2

Calculating 

determinant 

using calculator 

Casio fx-570MS

https://youtu.be/4QzhnDyaEt0

https://youtu.be/4QzhnDyaEt0


3

3

COFACTOR OF MATRIX

❑ Once you have found the minor of a

matrix, you can easily determine the

cofactor of the matrix.

❑ All the hard work is already done

when you determine the minor of a

matrix.

❑ All you need to do now is multiply

each element of the matrix minor with

a factor, and the cofactor is done.

Let’s look at the following example: 

If 
















=

333231

232221

131211

aaa

aaa

aaa

A  and minor 
















=

333231

232221

131211

MMM

MMM

MMM

A  

Where, ij

ji

ij MK +−= )1( . 

Then, cofactor of a matrix  

Then, cofactor of a matrix  



3

4

EXAMPLE 

If
















=

864

297

531

A , determine the cofactor of a matrix A . 

From  previous example, Minor A =

Solution: 

First, find the minor of a matrix A . 

Next, multiply each element by its factor ( ) ji+
−1 . 

Therefore, the cofactor of a matrix A : 

EXAMPLE 

If
















=

212

034

231

P , determine the cofactor of a matrix P . 

Solution: 

First, find the minor of a matrix P . 

From  previous example, Minor P =

Next, multiply each element by its factor ( ) ji+
−1 . 

Therefore, the cofactor of a matrix: 



3

5

EXERCISEQuick way to solve cofactor

60

-6

48

-12

-39 -33

Minor A =
6

-6

-12

60

6

-48

-12

-39 33

Cofactor A =

6

6

-12

Multiply by 

positive/negative

http://tiny.cc/c4e6

http://tiny.cc/c4e6
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6

MATRIX ADJOINT

❑ For a square matrix A with 𝑛 × 𝑛, you can

find the adjoint of matrix A when

transposing the cofactors of matrix A.

❑ In this case, for matrix A, adjoint of matrix

A , written as 𝐴𝑑𝑗 𝐴 = 𝐾𝑇 where K is

the cofactor for matrix A .

If

and cofactor matrix 

Then adjoint matrix A ,

,

 Adj  𝑨 =  

𝑲11 𝑲21 𝑲31

𝑲12 𝑲22 𝑲32

𝑲13 𝑲23 𝑲33

  

So formula of adjoint :



3

7

EXAMPLE 

If
















=

864

297

531

A , determine the adjoint of the matrix A . 

Solution: 

You will find minor and cofactor for matrix A: 

 From previous example, minor 
















−−−

−−−=

123339

6126

64860

A  

From previous  example, cofactor 
















−−

−

−

=

123339

6126

64860

A  

Then, adjoint of matrix A , ( )
















−

−−

−

=

1266

331248

39660

Adj A  

EXAMPLE 

If
















=

212

034

231

P , determine the adjoint for matrix P . 

Solution: 

You will find minor and cofactor for matrix P: 

 From previous example, minor 
















−−−

−−

−

=

976

524

286

P . 

From previous example, cofactor 
















−−

−−

−−

=

976

524

286

P . 

Then, adjoint of matrix P,  ( )
















−−

−−

−−

=

952

728

646

Adj P . 



3

8

EXERCISE

http://tiny.cc/c4e7

http://tiny.cc/c4e7
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INVERSE OF MATRIX (3 X 3) EXAMPLE 

If
















=

864

297

531

A , find 1−
A  

Step 1 : Find determinant

Solution: 

The determinant of A ,  

54

3014460

64

97
5

84

27
3

86

29
1

−=

+−=

+−=A

 

Step 2 : Minor Matrix

From previous example Minor A ,

Step 3 : Cofactor

Step 4 : Adjoint

From previous example Cofactor A ,

From previous example adjoint A ,

 

The formula to find 1−
A   for a (3x3) matrix is 
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EXAMPLE 
EXERCISE

http://tiny.cc/c4e8

http://tiny.cc/c4e8
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https://youtu.be/svR_Dp37-LI

Calculating 

invers using 

calculator 

Casio 

fx-570MS

https://youtu.be/svR_Dp37-LI


2

Wow!!!!

Try this

4

2

https://matrixcalc.org/en/
https://matrixcalc.org/en/
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SIMULTANEOUS 

LINEAR EQUATION –

INVERSE MATRIX

Consider one set of three equations: 

Then, write the equations in a matrix form: 

If we take the matrix 
















333231

232221

131211

aaa

aaa

aaa

 as matrix A  

matrix 
















z

y

x

 as c  and matrix 
















3

2

1

b

b

b

 as b , 

we can write the above matrix form as bAc =   

and multiply both sides of the equation with 1−
A . 

To obtain 



















=

z

y

x

c  we need to multiply inverse of A  with b .  

. 

To obtain 



















=

z

y

x

c  we need to multiply inverse of A  with b .  

Therefore, the key to solve this problem  

is getting the inverse A , which is 1−
A . 



4

4

Inverse Matrix

Step 5

Solve 

simultaneous 

equation

Determine the solution for the set of linear equations below: 

523

2232

433

=++

=−−

=++

zyx

zyx

zyx

 

EXAMPLE 

Solution: 

Write in the matrix equation form, 𝐴𝑐 = 𝒃 : 

Step ① Matrix A = 
















−−

213

232

331

. 

Step ② Determine the determinant of matrix A , 1−=A  

Step ③ Determine the minor of matrix A =  
−4 10 11
3 −7 −8
3 −8 −9

 . 

Step ④ Determine the cofactor of matrix A = 
















−

−−

−−

983

873

11104

 

Step ⑤ Determine the adjoint of matrix A = 
















−

−−

−−

9811

8710

334

. 

 Determine the inverse of matrix A = 
















−−

−

−

9811

8710

334

. 
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Step ⑦ Determine matrix c where 𝑐 =  

𝑥
𝑦
𝑧
   

𝑐 = 𝐴−1𝑏 

 
𝑥
𝑦
𝑧
 =  

4 3 −3
10 7 −8
−11 −8 9

  
4
2
5
   =  

7
14
−15

  

Therefore, the answer is 15,14,7 −=== zyx . 

Multiply A-1b ,
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SIMULTANEOUS 

LINEAR EQUATION –

CRAMER’S RULE

❑ Another one method to solve the 

linear equations using matrix is the 

Cramer’s Rule. 

❑ Cramer’s Rule needs skill to 

obtained determinant in a matrix.

We get the matrix equation as, 
















=



































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

 

We get the matrix equation as, 
















=



































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

 

Let
















=

333231

232221

131211

aaa

aaa

aaa

A  

By replacing the column 

3

2

1

b

b

b

 in each column of matrix A, 

To obtain𝑥1 

A

A
x

1

1
= . Where,  

















=

33323

23222

13121

1

aab

aab

aab

A  

To obtain
2

x : 

A

A
x

2

2
=  . Where,  

















=

33331

23221

13111

2

aba

aba

aba

A   

And to obtain
3

x : 

A

A
x

3

3
= . Where, 

















=

33231

22221

11211

3

baa

baa

baa

A   
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EXAMPLE 

Solve the following linear equations: 

8482

5926

475

=−+

=+−

=+−

zyx

zyx

zyx

 

Solution: 

Write in matrix equation form, 𝑨𝒙 = 𝒃: 

By take
















−

−

−

=

482

926

715

A ,  

22

2

44

1

=

=

=
A

A
x

 

13

2

26

2

−=

−
=

=
A

A
y

 

 

17

2

34

3

−=

−
=

=
A

A
z
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EXERCISE

http://tiny.cc/c4e9
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REVIEW

5
0



REVIEW

5
1



REVIEW

5
2



Scan for Answer 

REVIEW

http://tiny.cc/c4Rev

5
3

http://tiny.cc/c4Rev
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